Loss Functions, Decision Theory, and Linear Models

Size: px
Start display at page:

Download "Loss Functions, Decision Theory, and Linear Models"

Transcription

1 Loss Functions, Decision Theory, and Linear Models CMSC 678 UMBC January 31 st, 2018 Some slides adapted from Hamed Pirsiavash

2 Logistics Recap Piazza (ask & answer questions): Course site: 678/spring18/ Evaluation submission site: 678/spring18/submit

3 Course Announcement: Assignment 1 Due Wednesday, 2/7 (~7 days) Math & programming review Discuss with others, but write, implement and complete on your own

4 Recap from last time

5 What does it mean to learn? Generalization

6 Machine Learning Framework: Learning Gold/correct labels instance 1 scoring model score θ (X) instance 2 instance 3 Machine Learning Predictor Evaluator score instance 4 instances are typically examined independently Extra-knowledge give feedback to the predictor F(θ) objective

7 Gradient Ascent

8 Model, parameters and hyperparameters Model: mathematical formulation of system (e.g., classifier) Parameters: primary knobs of the model that are set by a learning algorithm Hyperparameter: secondary knobs

9 A Terminology Buffet Classification Fully-supervised Probabilistic Neural Regression Semi-supervised Generative Conditional Memorybased Exemplar Clustering Un-supervised Spectral the task: what kind of problem are you solving? the data: amount of human input/number of labeled examples the approach: how any data are being used

10 Classification: Supervised Machine Learning Assigning subject categories, topics, or genres Spam detection Authorship identification Age/gender identification Language Identification Sentiment analysis Input: an instance d a fixed set of classes C = {c 1, c 2,, c J } A training set of m hand-labeled instances (d 1,c 1 ),...,(d m,c m ) Output: a learned classifier γ that maps instances to classes γ learns to associate certain features of instances with their labels

11 Classification Example: Face Recognition What is a good representation for images? Courtesy from Hamed Pirsiavash Pixel values? Edges?

12 Ingredients for classification Inject your knowledge into a learning system Feature representation Training data: labeled examples Model Courtesy Hamed Pirsiavash

13 Ingredients for classification Inject your knowledge into a learning system Problem specific Difficult to learn from bad ones Feature representation Training data: labeled examples Model Courtesy Hamed Pirsiavash

14 Ingredients for classification Inject your knowledge into a learning system Problem specific Labeling data == $$$ Difficult to learn from bad ones Sometimes data is available for free Feature representation Training data: labeled examples Model Courtesy Hamed Pirsiavash

15 Ingredients for classification Inject your knowledge into a learning system Problem specific Difficult to learn from bad ones Feature representation Labeling data == $$$ Sometimes data is available for free Training data: labeled examples No single learning algorithm is always good ( no free lunch ) Different learning algorithms work differently Model Courtesy Hamed Pirsiavash

16 Sequence & Structured Prediction Courtesy Hamed Pirsiavash

17 Regression Like classification, but real-valued

18 Regression Example: Stock Market Prediction Courtesy Hamed Pirsiavash

19 Unsupervised learning: Clustering Courtesy Hamed Pirsiavash

20 Inductive Bias What do we know before we see the data? Courtesy Hamed Pirsiavash

21 Inductive Bias What do we know before we see the data? A B C D Partition these into two groups Courtesy Hamed Pirsiavash

22 Machine Learning Framework Gold/correct labels instance 1 instance 2 instance 3 Machine Learning Predictor Evaluator score instance 4 instances are typically examined independently Extra-knowledge

23 Machine Learning Framework Gold/correct labels instance 1 instance 2 instance 3 Machine Learning Predictor Evaluator score instance 4 instances are typically examined independently Extra-knowledge Other ML task (or consumerfacing product)

24 Today s Goal: Optimize Empirical Risk of Surrogate Loss NN yy ii = ww TT xx ii + bb formulate a linear prediction model argmin h ii=1 l yy ii, h θθ xx ii F learn about empirical risk minimization θθ FF = ii l yy ii, yy = h θθ xx ii yy θθ h θθ xx ii approximate 0-1 classification loss in a computable way

25 (Most) Probability Axioms p(everything) = 1 p(φ) = 0 p(a) p(b), when A B A B p(a B) = p(a) + p(b), when A B = φ everything p(a B) p(a) + p(b) p(a B) = p(a) + p(b) p(a B)

26 Conditional Probability pp XX YY) = pp(xx & YY) pp(yy) Conditional Probabilities are Probabilities

27 Conditional Probability pp XX YY) = pp(xx & YY) pp(yy) pp YY =?

28 Conditional Probability pp XX YY) = pp(xx & YY) pp(yy) pp YY = pp(xx & YY)dddd

29 Marginal(ized) Probability: The Discrete Case y x 1 & y x 2 & y x 3 & y x 4 & y pp yy = xx = xx pp(xx, yy) pp xx pp yy xx)

30 Bayes Rule pp XX YY) = posterior probability likelihood pp YY XX) pp(xx) pp(yy) marginal likelihood (probability) prior probability

31 Maximum A Posteriori Classification Assigning subject categories, topics, or genres Spam detection Authorship identification Age/gender identification Language Identification Sentiment analysis class class-based likelihood (language model) prior probability of class pp XX YY) = observed data pp YY XX) pp(xx) pp(yy) observation likelihood (averaged over all classes)

32 Classify with Bayes Rule argmax XX pp XX YY)

33 Classify with Bayes Rule argmax XX pp YY XX) pp(xx) pp(yy)

34 Classify with Bayes Rule argmax XX pp YY XX) pp(xx) pp(yy) constant with respect to X

35 Classify with Bayes Rule argmax XX pp YY XX) pp(xx)

36 Classify with Bayes Rule argmax XX log pp YY XX) + log pp(xx)

37 Classify with Bayes Rule argmax XX log pp YY XX) + log pp(xx)

38 Classify with Bayes Rule how likely is label X overall? argmax XX log pp YY XX) + log pp(xx) how well does text Y represent label X?

39 Classify with Bayes Rule how likely is label X overall? argmax XX log pp YY XX) + log pp(xx) how well does text Y represent label X? For simple or flat labels: * iterate through labels * evaluate score for each label, keeping only the best (n best) * return the best (or n best) label and score

40 Conditional Probabilities: Changing the Left 1 p(a) what happens as we add conjuncts to the left? 0

41 Conditional Probabilities: Changing the Left 1 p(a) p(a, B) 0 what happens as we add conjuncts to the left?

42 Conditional Probabilities: Changing the Left 1 p(a) p(a, B) p(a, B, C) 0 what happens as we add conjuncts to the left?

43 Conditional Probabilities: Changing the Left 1 p(a) p(a, B) p(a, B, C) p(a, B, C, D) 0 what happens as we add conjuncts to the left?

44 Conditional Probabilities: Changing the Left 1 p(a) p(a, B) p(a, B, C) p(a, B, C, D) 0 p(a, B, C, D, E) what happens as we add conjuncts to the left?

45 Conditional Probabilities: Changing the Right 1 p(a) what happens as we add conjuncts to the right? 0

46 Conditional Probabilities: Changing the Right 1 p(a) p(a B) 0 what happens as we add conjuncts to the right?

47 Conditional Probabilities: Changing the Right 1 p(a B) p(a) what happens as we add conjuncts to the right? 0

48 Conditional Probabilities: Changing the Right 1 p(a B) p(a) what happens as we add conjuncts to the right? 0

49 Conditional Probabilities Bias vs. Variance Lower bias: More specific to what we care about Higher variance: For fixed observations, estimates become less reliable

50 Probability Chain Rule pp xx 1, xx 2,, xx SS = pp xx 1 pp xx 2 xx 1 )pp xx 3 xx 1, xx 2 ) pp xx SS xx 1,, xx ii = SS ii pp xx ii xx 1,, xx ii 1 ) extension of Bayes rule

51 Expected Value random variable XX ~ pp EE ff(xx) = ff(xx) pp xx expected value (distribution p is implicit) xx

52 Expected Value: Example uniform distribution of number of cats I have /6 * 1 + 1/6 * 2 + 1/6 * 3 + 1/6 * 4 + 1/6 * 5 + 1/6 * 6 = 3.5

53 Expected Value: Example non-uniform distribution of number of cats I have /2 * 1 + 1/10 * 2 + 1/10 * 3 + 1/10 * 4 + 1/10 * 5 + 1/10 * 6 = 2.5

54 Probability Prerequisites Basic probability axioms and definitions Probabilistic Independence Definition of joint probability Bayes rule Probability chain rule Expected Value (of a function) of a Random Variable Definition of conditional probability

55 Loss Functions and Decision Theory FORMALIZING LEARNING

56 Decision Theory Decision theory is trivial, apart from the computational details MacKay, ITILA, Ch 36 Input: x ( state of the world ) Output: a decision y

57 Decision Theory Decision theory is trivial, apart from the computational details MacKay, ITILA, Ch 36 Input: x ( state of the world ) Output: a decision y Requirement 1: a decision (hypothesis) function h(x) to produce y

58 Decision Theory Decision theory is trivial, apart from the computational details MacKay, ITILA, Ch 36 Input: x ( state of the world ) Output: a decision y Requirement 1: a decision (hypothesis) function h(x) to produce y Requirement 2: a function l(y, y ) telling us how wrong we are

59 Decision Theory Decision theory is trivial, apart from the computational details MacKay, ITILA, Ch 36 Input: x ( state of the world ) Output: a decision y Requirement 1: a decision (hypothesis) function h(x) to produce y Requirement 2: a loss function l(y, y ) telling us how wrong we are Goal: minimize our expected loss across any possible input

60 Requirement 1: Decision Function instance 1 h(x) Gold/correct labels instance 2 instance 3 Machine Learning Predictor Evaluator score instance 4 Extra-knowledge h(x) is our predictor (classifier, regression model, clustering model, etc.)

61 Requirement 2: Loss Function ell (fancy l character) predicted label/result l yy, yy 0 optimize l? minimize maximize correct label/result loss: A function that tells you how much to penalize a prediction y from the correct answer y

62 Requirement 2: Loss Function ell (fancy l character) predicted label/result - l is called a utility or reward function l yy, yy 0 correct label/result loss: A function that tells you how much to penalize a prediction y from the correct answer y

63 Decision Theory minimize expected loss across any possible input arg min yy EE[l(yy, yy)]

64 Risk Minimization minimize expected loss across any possible input arg min yy EE[l(yy, yy)] = arg min h EE[l(yy, h(xx))] a particular, unspecified input pair (x,y) but we want any possible pair

65 Decision Theory minimize expected loss across any possible input arg min EE[l(yy, yy)] = yy arg min EE[l(yy, h(xx))] = h argmin EE xx,yy PP l yy, h xx h Assumption: there exists some true (but likely unknown) distribution P over inputs x and outputs y

66 Risk Minimization minimize expected loss across any possible input arg min yy EE[l(yy, yy)] = arg min h EE[l(yy, h(xx))] = argmin h EE xx,yy PP l yy, h xx = argmin h l yy, h xx PP xx, yy dd(xx, yy)

67 Risk Minimization minimize expected loss across any possible input arg min yy EE[l(yy, yy)] = arg min h EE[l(yy, h(xx))] = argmin h EE xx,yy PP l yy, h xx = argmin h l yy, h xx PP xx, yy dd(xx, yy) we don t know this distribution*! *we could try to approximate it analytically

68 Empirical Risk Minimization minimize expected loss across our observed input arg min yy EE[l(yy, yy)] = arg min h EE[l(yy, h(xx))] = argmin h EE xx,yy PP l yy, h xx NN 1 argmin h NN ii=1 l yy ii, h xx ii

69 Empirical Risk Minimization minimize expected loss across our observed input NN argmin h our classifier/predictor controlled by our parameters θ ii=1 l yy ii, h xx ii change θ change the behavior of the classifier

70 Best Case: Optimize Empirical Risk with Gradients NN argmin h ii=1 l yy ii, h θθ xx ii F θθ FF = ii l yy ii, yy = h θθ xx ii yy θθ h θθ xx ii differentiating might not always work: apart from the computational details

71 Loss Function Example: 0-1 Loss l yy, yy = 0, if yy = yy 1, if yy yy

72 Loss Function Example: 0-1 Loss l yy, yy = 0, if yy = yy 1, if yy yy Problem: not differentiable wrt yy (or θ) Solution 1: is the data linearly separable? Perceptron (next class) can work Solution 2: is h(x) a conditional distribution p(y x)? Use MAP

73 Loss Function Examples squared loss l yy, yy = y yy 2 absolute loss l yy, yy = yy yy

INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE JOHN P DICKERSON Lecture #13 3/9/2017 CMSC320 Tuesdays & Thursdays 3:30pm 4:45pm ANNOUNCEMENTS Mini-Project #1 is due Saturday night (3/11): Seems like people are able to do

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

Classification, Linear Models, Naïve Bayes

Classification, Linear Models, Naïve Bayes Classification, Linear Models, Naïve Bayes CMSC 470 Marine Carpuat Slides credit: Dan Jurafsky & James Martin, Jacob Eisenstein Today Text classification problems and their evaluation Linear classifiers

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 5: Text classification (Feb 5, 2019) David Bamman, UC Berkeley Data Classification A mapping h from input data x (drawn from instance space X) to a

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Last Time. Today. Bayesian Learning. The Distributions We Love. CSE 446 Gaussian Naïve Bayes & Logistic Regression

Last Time. Today. Bayesian Learning. The Distributions We Love. CSE 446 Gaussian Naïve Bayes & Logistic Regression CSE 446 Gaussian Naïve Bayes & Logistic Regression Winter 22 Dan Weld Learning Gaussians Naïve Bayes Last Time Gaussians Naïve Bayes Logistic Regression Today Some slides from Carlos Guestrin, Luke Zettlemoyer

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Logistic Regression & Neural Networks

Logistic Regression & Neural Networks Logistic Regression & Neural Networks CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Logistic Regression Perceptron & Probabilities What if we want a probability

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Machine Learning Gaussian Naïve Bayes Big Picture

Machine Learning Gaussian Naïve Bayes Big Picture Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 27, 2011 Today: Naïve Bayes Big Picture Logistic regression Gradient ascent Generative discriminative

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

EE 511 Online Learning Perceptron

EE 511 Online Learning Perceptron Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Kevin Jamison EE 511 Online Learning Perceptron Instructor: Hanna Hajishirzi hannaneh@washington.edu

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Lecture 6. Notes on Linear Algebra. Perceptron

Lecture 6. Notes on Linear Algebra. Perceptron Lecture 6. Notes on Linear Algebra. Perceptron COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne This lecture Notes on linear algebra Vectors

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 1 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features

More information

Decision trees COMS 4771

Decision trees COMS 4771 Decision trees COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random pairs (i.e., labeled examples).

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 2, 2015 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Naïve Bayes Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative HW 1 out today. Please start early! Office hours Chen: Wed 4pm-5pm Shih-Yang: Fri 3pm-4pm Location: Whittemore 266

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 1, 2011 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: Classification: Logistic Regression NB & LR connections Readings: Barber 17.4 Dhruv Batra Virginia Tech Administrativia HW2 Due: Friday 3/6, 3/15, 11:55pm

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Logistic Regression. Some slides adapted from Dan Jurfasky and Brendan O Connor

Logistic Regression. Some slides adapted from Dan Jurfasky and Brendan O Connor Logistic Regression Some slides adapted from Dan Jurfasky and Brendan O Connor Naïve Bayes Recap Bag of words (order independent) Features are assumed independent given class P (x 1,...,x n c) =P (x 1

More information

Linear classifiers: Logistic regression

Linear classifiers: Logistic regression Linear classifiers: Logistic regression STAT/CSE 416: Machine Learning Emily Fox University of Washington April 19, 2018 How confident is your prediction? The sushi & everything else were awesome! The

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 9 Sep. 26, 2018 1 Reminders Homework 3:

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Part of the slides are adapted from Ziko Kolter

Part of the slides are adapted from Ziko Kolter Part of the slides are adapted from Ziko Kolter OUTLINE 1 Supervised learning: classification........................................................ 2 2 Non-linear regression/classification, overfitting,

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann Machine Learning! in just a few minutes Jan Peters Gerhard Neumann 1 Purpose of this Lecture Foundations of machine learning tools for robotics We focus on regression methods and general principles Often

More information

Notes on Discriminant Functions and Optimal Classification

Notes on Discriminant Functions and Optimal Classification Notes on Discriminant Functions and Optimal Classification Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Discriminant Functions Consider a classification problem

More information

Lecture 2: Logistic Regression and Neural Networks

Lecture 2: Logistic Regression and Neural Networks 1/23 Lecture 2: and Neural Networks Pedro Savarese TTI 2018 2/23 Table of Contents 1 2 3 4 3/23 Naive Bayes Learn p(x, y) = p(y)p(x y) Training: Maximum Likelihood Estimation Issues? Why learn p(x, y)

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 4, 2015 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods

Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Machine Learning (CSE 446): Multi-Class Classification; Kernel Methods Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 12 Announcements HW3 due date as posted. make sure

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3 CS434a/541a: attern Recognition rof. Olga Veksler Lecture 3 1 Announcements Link to error data in the book Reading assignment Assignment 1 handed out, due Oct. 4 lease send me an email with your name and

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Jordan Boyd-Graber University of Colorado Boulder LECTURE 7 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Jordan Boyd-Graber Boulder Support Vector Machines 1 of

More information

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information