An Introduction to Exponential-Family Random Graph Models

Size: px
Start display at page:

Download "An Introduction to Exponential-Family Random Graph Models"

Transcription

1 An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, / 11

2 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at a single point in time Time series data More than one point in time at which the relation on the set of nodes is observed Covariates With information about nodal attributes in addition to the relationship information Valued relationship Some types of relationships exist in varying degrees or strengths Multiple relationships More than one type of relationship studied 2 / 11

3 Basic Notation Assume G = (V, E) to be a directed graph with no self-loops or multiple edges. Define the adjacency matrix X: The adjacency matrix for is given below. { 1 if i relates to j X ij = 0 otherwise (a) A directed graph (b) The adjacency matrix 3 / 11

4 Reciprocation and differential attaction Let M denote the number of pairs i, j for which X ij = X ji = 1. M = i<j X ij X ji. The in-degree of node j is X +j = n i=1 X ij The out-degree of node j is X j+ = In the earliest sociometric studies, Moreno (1934) found that the directed graph s observed edges are not distributed randomly. n i=1 X ji 4 / 11

5 Reciprocation and differential attaction To test it, Moreno posited a null model for X in which all adjacency matrices with out-degrees agreeing with those in the data are equally likely. For any i j, E(X ij X ji {X i+ } n i=1) = P(X ij = 1 {X i+ } n i=1)p(x ji = 1 {X i+ } n i=1) = X i+x j+. (n 1) 2 Hence E(M {X i+ } n i=1) = n X 2 2(n 1) nvar(x i+) 2(n 1) 2 and E(Var(X +i ) {X i+ } n i=1) = X X 2 2(n 1) (n 2)Var(X i+) (n 1) 2 M and Var(X +i ) usually exceeded their chance expected values, which implies the existance of reciprocation. Similarly, from intuition, it should not be surprising that nodes are differentially attractive and that some are involved in more relational ties than are others. Two kinds of nodes: stars and isolates. This will result in large values of Var(X +i ). 5 / 11

6 The p 1 distribution Let G denote the set of all n by n adjacency matrices so that X may be thought of as a random matrix taking values in G. p 1(x) = P(X = x) = exp{ρm+θx +++ i α i x i+ + j β j x +j } K(ρ, θ, {α i }, {β j }) with constraints α + = β + = 0. Df = (n 1) + (n 1) = 2n. 6 / 11

7 Special Cases of p 1 p 1(x) = P(X = x) = exp{ρm+θx +++ i α i x i+ + j β j x +j } K(ρ, θ, {α i }, {β j }) D ij = (X ij, X ji ); m ij = P(D ij = (1, 1)); a ij = P(D ij = (1, 0)); n ij = P(D ij = (0, 0)); 7 / 11

8 Dependence Graphs D = (E, E ) is the conditional dependence graph of G: {(i, j), (k, l)} E iff X ij! X kl Xij,kl c From D to G: by Hammersley-Clifford Theorem - a probability distribution can be represented as a Markov network if and only if it is a Gibbs random field, that is, its density can be factorized over the cliques (or complete subgraphs) of the graph. where K D be the clique set of D. Pr(X = x θ) = 1 Z(θ) exp( S K D θ S (i,j) S X ij ) 8 / 11

9 Dependence Graphs Simple examples: Independent edges: X ij! X kl X c ij,kl iff (i, j) = (k, l) The only cliques are the nodes of D themselves, thus Pr(X = x θ) exp( i j θ ij X ij ) Independent dyads: X ij! X kl X c ij,kl iff (i, j) = (k, l) or (i, j) = (l, k) Each dyad of D contributes a clique, as does each edge, thus Pr(X = x θ) exp( i<j θ ij X ij X ji + i j θ ijx ij ) 9 / 11

10 More Complex example-markov Graphs X ij! X kl X c ij,kl iff {i, j} {(k, l} > 0. Intuitively, edge variables are conditionally dependent iff they share at least one endpoint. D now has a large number of cliques; these are the edges, stars and triangles of G 1 trivially, includes density and reciprocity k-stars equivalent to degree count statistics, hence includes degree distribution 2 through triads, includes local clustering as well as local cyclicity and transitivity in digraphs 10 / 11

11 Conclusion Many ways to define the sufficient statistics, more statistics more parameters to estimate Many ways to describe dependence among elements Once one leaves simple cases, not always clear where to begin 11 / 11

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts p. 1/2 Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts Department of Sociology and Institute for Mathematical Behavioral Sciences

More information

Conditional Marginalization for Exponential Random Graph Models

Conditional Marginalization for Exponential Random Graph Models Conditional Marginalization for Exponential Random Graph Models Tom A.B. Snijders January 21, 2010 To be published, Journal of Mathematical Sociology University of Oxford and University of Groningen; this

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Specification and estimation of exponential random graph models for social (and other) networks

Specification and estimation of exponential random graph models for social (and other) networks Specification and estimation of exponential random graph models for social (and other) networks Tom A.B. Snijders University of Oxford March 23, 2009 c Tom A.B. Snijders (University of Oxford) Models for

More information

Conditional Independence and Factorization

Conditional Independence and Factorization Conditional Independence and Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Review: Directed Models (Bayes Nets)

Review: Directed Models (Bayes Nets) X Review: Directed Models (Bayes Nets) Lecture 3: Undirected Graphical Models Sam Roweis January 2, 24 Semantics: x y z if z d-separates x and y d-separation: z d-separates x from y if along every undirected

More information

Overview of Stochastic Approaches to Social Network Analysis

Overview of Stochastic Approaches to Social Network Analysis Overview of Stochastic Approaches to Social Network Analysis Wasserman and Faust, Chapter 13-16. Anderson, Carolyn J., Stanley Wasserman, and Bradley Crouch. 1999. A p* primer: Logit models for social

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Markov Random Fields and Gibbs Measures

Markov Random Fields and Gibbs Measures Markov Random Fields and Gibbs Measures Oskar Sandberg December 15, 2004 1 Introduction A Markov random field is a name given to a natural generalization of the well known concept of a Markov chain. It

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Generalized Exponential Random Graph Models: Inference for Weighted Graphs

Generalized Exponential Random Graph Models: Inference for Weighted Graphs Generalized Exponential Random Graph Models: Inference for Weighted Graphs James D. Wilson University of North Carolina at Chapel Hill June 18th, 2015 Political Networks, 2015 James D. Wilson GERGMs for

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

Gibbs Field & Markov Random Field

Gibbs Field & Markov Random Field Statistical Techniques in Robotics (16-831, F12) Lecture#07 (Wednesday September 19) Gibbs Field & Markov Random Field Lecturer: Drew Bagnell Scribe:Minghao Ruan 1 1 SLAM (continued from last lecture)

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Statistical Model for Soical Network

Statistical Model for Soical Network Statistical Model for Soical Network Tom A.B. Snijders University of Washington May 29, 2014 Outline 1 Cross-sectional network 2 Dynamic s Outline Cross-sectional network 1 Cross-sectional network 2 Dynamic

More information

Social Network Notation

Social Network Notation Social Network Notation Wasserman & Faust (1994) Chapters 3 & 4 [pp. 67 166] Marsden (1987) Core Discussion Networks of Americans Junesoo, Xiaohui & Stephen Monday, February 8th, 2010 Wasserman & Faust

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Independencies. Undirected Graphical Models 2: Independencies. Independencies (Markov networks) Independencies (Bayesian Networks)

Independencies. Undirected Graphical Models 2: Independencies. Independencies (Markov networks) Independencies (Bayesian Networks) (Bayesian Networks) Undirected Graphical Models 2: Use d-separation to read off independencies in a Bayesian network Takes a bit of effort! 1 2 (Markov networks) Use separation to determine independencies

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

Markov properties for undirected graphs

Markov properties for undirected graphs Graphical Models, Lecture 2, Michaelmas Term 2009 October 15, 2009 Formal definition Fundamental properties Random variables X and Y are conditionally independent given the random variable Z if L(X Y,

More information

Introduction to statistical analysis of Social Networks

Introduction to statistical analysis of Social Networks The Social Statistics Discipline Area, School of Social Sciences Introduction to statistical analysis of Social Networks Mitchell Centre for Network Analysis Johan Koskinen http://www.ccsr.ac.uk/staff/jk.htm!

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics EECS 281A / STAT 241A Statistical Learning Theory Solutions to Problem Set 2 Fall 2011 Issued: Wednesday,

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

6.842 Randomness and Computation February 24, Lecture 6

6.842 Randomness and Computation February 24, Lecture 6 6.8 Randomness and Computation February, Lecture 6 Lecturer: Ronitt Rubinfeld Scribe: Mutaamba Maasha Outline Random Walks Markov Chains Stationary Distributions Hitting, Cover, Commute times Markov Chains

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Dynamic modeling of organizational coordination over the course of the Katrina disaster

Dynamic modeling of organizational coordination over the course of the Katrina disaster Dynamic modeling of organizational coordination over the course of the Katrina disaster Zack Almquist 1 Ryan Acton 1, Carter Butts 1 2 Presented at MURI Project All Hands Meeting, UCI April 24, 2009 1

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case Areal data models Spatial smoothers Brook s Lemma and Gibbs distribution CAR models Gaussian case Non-Gaussian case SAR models Gaussian case Non-Gaussian case CAR vs. SAR STAR models Inference for areal

More information

Department of Statistics. Bayesian Modeling for a Generalized Social Relations Model. Tyler McCormick. Introduction.

Department of Statistics. Bayesian Modeling for a Generalized Social Relations Model. Tyler McCormick. Introduction. A University of Connecticut and Columbia University A models for dyadic data are extensions of the (). y i,j = a i + b j + γ i,j (1) Here, y i,j is a measure of the tie from actor i to actor j. The random

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Undirected Graphical Models 4 Bayesian Networks and Markov Networks. Bayesian Networks to Markov Networks

Undirected Graphical Models 4 Bayesian Networks and Markov Networks. Bayesian Networks to Markov Networks Undirected Graphical Models 4 ayesian Networks and Markov Networks 1 ayesian Networks to Markov Networks 2 1 Ns to MNs X Y Z Ns can represent independence constraints that MN cannot MNs can represent independence

More information

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Markov networks: Representation

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Markov networks: Representation STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas Markov networks: Representation Markov networks: Undirected Graphical models Model the following distribution using a Bayesian

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models Features (Ising,

More information

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation Bayesian Analysis of Network Data Model Selection and Evaluation of the Exponential Random Graph Model Dissertation Presented to the Faculty for Social Sciences, Economics, and Business Administration

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 3 1 Gaussian Graphical Models: Schur s Complement Consider

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models STA 345: Multivariate Analysis Department of Statistical Science Duke University, Durham, NC, USA Robert L. Wolpert 1 Conditional Dependence Two real-valued or vector-valued

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Partitioned Covariance Matrices and Partial Correlations. Proposition 1 Let the (p + q) (p + q) covariance matrix C > 0 be partitioned as C = C11 C 12

Partitioned Covariance Matrices and Partial Correlations. Proposition 1 Let the (p + q) (p + q) covariance matrix C > 0 be partitioned as C = C11 C 12 Partitioned Covariance Matrices and Partial Correlations Proposition 1 Let the (p + q (p + q covariance matrix C > 0 be partitioned as ( C11 C C = 12 C 21 C 22 Then the symmetric matrix C > 0 has the following

More information

Spatial Statistics with Image Analysis. Lecture L11. Home assignment 3. Lecture 11. Johan Lindström. December 5, 2016.

Spatial Statistics with Image Analysis. Lecture L11. Home assignment 3. Lecture 11. Johan Lindström. December 5, 2016. HA3 MRF:s Simulation Estimation Spatial Statistics with Image Analysis Lecture 11 Johan Lindström December 5, 2016 Lecture L11 Johan Lindström - johanl@maths.lth.se FMSN20/MASM25 L11 1/22 HA3 MRF:s Simulation

More information

Markov Random Fields

Markov Random Fields Markov Random Fields 1. Markov property The Markov property of a stochastic sequence {X n } n 0 implies that for all n 1, X n is independent of (X k : k / {n 1, n, n + 1}), given (X n 1, X n+1 ). Another

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Markov properties for undirected graphs

Markov properties for undirected graphs Graphical Models, Lecture 2, Michaelmas Term 2011 October 12, 2011 Formal definition Fundamental properties Random variables X and Y are conditionally independent given the random variable Z if L(X Y,

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016 in sparse graphs Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 206 Motivation Latent space models Successfully used in sociology since the 70ies Recently shown

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Probabilistic Graphical Models Lecture Notes Fall 2009

Probabilistic Graphical Models Lecture Notes Fall 2009 Probabilistic Graphical Models Lecture Notes Fall 2009 October 28, 2009 Byoung-Tak Zhang School of omputer Science and Engineering & ognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

Lecture 7: February 6

Lecture 7: February 6 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 7: February 6 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25 Approimate inference, Sampling & Variational inference Fall 2015 Cours 9 November 25 Enseignant: Guillaume Obozinski Scribe: Basile Clément, Nathan de Lara 9.1 Approimate inference with MCMC 9.1.1 Gibbs

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models David Rosenberg, Brett Bernstein New York University April 26, 2017 David Rosenberg, Brett Bernstein (New York University) DS-GA 1003 April 26, 2017 1 / 42 Intro Question Intro

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 1: Introduction to Graphical Models Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ epartment of ngineering University of ambridge, UK

More information

Fisher Information in Gaussian Graphical Models

Fisher Information in Gaussian Graphical Models Fisher Information in Gaussian Graphical Models Jason K. Johnson September 21, 2006 Abstract This note summarizes various derivations, formulas and computational algorithms relevant to the Fisher information

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Applications of Convex Optimization on the Graph Isomorphism problem

Applications of Convex Optimization on the Graph Isomorphism problem Applications of Convex Optimization on the Graph Isomorphism problem 1 1 Department of Information and Computer Sciences UC Irvine March 8, 2011 Outline Motivation 1 Motivation The Graph Isomorphism problem

More information

An Algorithm to Determine the Clique Number of a Split Graph. In this paper, we propose an algorithm to determine the clique number of a split graph.

An Algorithm to Determine the Clique Number of a Split Graph. In this paper, we propose an algorithm to determine the clique number of a split graph. An Algorithm to Determine the Clique Number of a Split Graph O.Kettani email :o_ket1@yahoo.fr Abstract In this paper, we propose an algorithm to determine the clique number of a split graph. Introduction

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Using Potential Games to Parameterize ERG Models

Using Potential Games to Parameterize ERG Models Carter T. Butts p. 1/2 Using Potential Games to Parameterize ERG Models Carter T. Butts Department of Sociology and Institute for Mathematical Behavioral Sciences University of California, Irvine buttsc@uci.edu

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 3 -

More information

Graphical Gaussian models and their groups

Graphical Gaussian models and their groups Piotr Zwiernik TU Eindhoven (j.w. Jan Draisma, Sonja Kuhnt) Workshop on Graphical Models, Fields Institute, Toronto, 16 Apr 2012 1 / 23 Outline and references Outline: 1. Invariance of statistical models

More information

Example: multivariate Gaussian Distribution

Example: multivariate Gaussian Distribution School of omputer Science Probabilistic Graphical Models Representation of undirected GM (continued) Eric Xing Lecture 3, September 16, 2009 Reading: KF-chap4 Eric Xing @ MU, 2005-2009 1 Example: multivariate

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 00 Solutions to Problem Set (MU 60 A family of subsets F of {,,, n} is called an antichain if there is no pair of sets A and B in F satisfying

More information

Mining Triadic Closure Patterns in Social Networks

Mining Triadic Closure Patterns in Social Networks Mining Triadic Closure Patterns in Social Networks Hong Huang, University of Goettingen Jie Tang, Tsinghua University Sen Wu, Stanford University Lu Liu, Northwestern University Xiaoming Fu, University

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Representation of undirected GM. Kayhan Batmanghelich

Representation of undirected GM. Kayhan Batmanghelich Representation of undirected GM Kayhan Batmanghelich Review Review: Directed Graphical Model Represent distribution of the form ny p(x 1,,X n = p(x i (X i i=1 Factorizes in terms of local conditional probabilities

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs)

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs) Machine Learning (ML, F16) Lecture#07 (Thursday Nov. 3rd) Lecturer: Byron Boots Undirected Graphical Models 1 Undirected Graphical Models In the previous lecture, we discussed directed graphical models.

More information

3 Undirected Graphical Models

3 Undirected Graphical Models Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 3 Undirected Graphical Models In this lecture, we discuss undirected

More information

6 Evolution of Networks

6 Evolution of Networks last revised: March 2008 WARNING for Soc 376 students: This draft adopts the demography convention for transition matrices (i.e., transitions from column to row). 6 Evolution of Networks 6. Strategic network

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method In Graph Theory Ehssan Khanmohammadi Department of Mathematics The Pennsylvania State University February 25, 2010 What do we mean by the probabilistic method? Why use this method?

More information

Overview course module Stochastic Modelling

Overview course module Stochastic Modelling Overview course module Stochastic Modelling I. Introduction II. Actor-based models for network evolution III. Co-evolution models for networks and behaviour IV. Exponential Random Graph Models A. Definition

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Assessing Goodness of Fit of Exponential Random Graph Models

Assessing Goodness of Fit of Exponential Random Graph Models International Journal of Statistics and Probability; Vol. 2, No. 4; 2013 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Assessing Goodness of Fit of Exponential Random

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information