Generalized Exponential Random Graph Models: Inference for Weighted Graphs

Size: px
Start display at page:

Download "Generalized Exponential Random Graph Models: Inference for Weighted Graphs"

Transcription

1 Generalized Exponential Random Graph Models: Inference for Weighted Graphs James D. Wilson University of North Carolina at Chapel Hill June 18th, 2015 Political Networks, 2015 James D. Wilson GERGMs for Weighted Networks 1 / 30

2 Outline 1 Setting the Stage: ERGMs for Unweighted Graphs 2 Generalized Exponential Random Graphs (GERGMs) Model Inference via MCMC Applications and Degeneracy Case Study 3 Tutorial on gergm.r Software 4 Using gergm.r in person James D. Wilson GERGMs for Weighted Networks 2 / 30

3 Networks / Graphs Means to visualize, model, and analyze interactions of a complex system Treat an actor" of the system as a vertex and place edges between actors that interact James D. Wilson GERGMs for Weighted Networks 3 / 30

4 Exponential Random Graph Models (ERGMs) Setting: Network x composed of n nodes and M edges Assume binary edges between nodes i, j: x i,j {0, 1} X: family of all graphs with n nodes and binary edges P X : probability measure on X Aim: Identify (and then estimate) the relational covariates that capture network structure through P X James D. Wilson GERGMs for Weighted Networks 4 / 30

5 Exponential Random Graph Models (ERGMs) The probability (likelihood) of observing network x: P X (x, θ) = exp(θ h(x)) exp(θ, x {0, 1}M h(z)) z X h {0, 1} M R p : Network covariates θ R p : unknown parameters (we have to estimate these!) James D. Wilson GERGMs for Weighted Networks 5 / 30

6 ERGM: Covariate Specification Endogeneous: network-level Exogeneous: relational data-driven covariates James D. Wilson GERGMs for Weighted Networks 6 / 30

7 ERGMs: Food for Thought Model selection Goodness of fit diagnostics Computational tools for estimation Markov Chain Monte-Carlo estimation Maximum pseudo-likelihood estimation Likelihood degeneracy: how can we avoid trivial models? James D. Wilson GERGMs for Weighted Networks 7 / 30

8 Weighted Graphs Setting: Network y composed of n nodes and M edges Edges are continuous valued between nodes i, j: y i,j (, ) Y : family of all graphs with n nodes P Y : probability measure on Y Examples: Correlation networks Financial Lending Networks Voting Networks Brain Networks James D. Wilson GERGMs for Weighted Networks 8 / 30

9 Inference for weighted networks GERGM: Generative exponential model for y that incorporates network covariates population edge-level covariates References: Desmarais, Bruce and Cranmer, Skyler. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model" (2012) PLoS ONE Wilson, James, et al. "Stochastic Weighted Graphs: Flexible Model Specification and Simulation" (2015) arxiv Preprint James D. Wilson GERGMs for Weighted Networks 9 / 30

10 Generalized Exponential Random Graph Model Probability measure on family of weighted graphs w/ n nodes, M edges Model: Two Steps 1) Model joint structure of Y on restricted network X [0, 1] M : f X (x, θ) = exp (θ h(x)) [0,1] m exp (θ, x [0, 1]M h(z)) dz h [0, 1] M R p : Network covariates (endogeneous or exogenous) θ R p : unknown structural parameters James D. Wilson GERGMs for Weighted Networks 10 / 30

11 Generalized Exponential Random Graph Model 2) Transform onto space of continuous weights: f Y (y, θ, Λ) = exp (θ h(t (y, Λ))) [0,1] m exp (θ h(z)) dz ij t ij (y, Λ), y R M T R M [0, 1] m : parametric transformation function Monotonically increasing Most obvious choice: cumulative distribution functions Λ R q : unknown transformation parameters James D. Wilson GERGMs for Weighted Networks 11 / 30

12 Features of the GERGM Flexible model for any type of weighted network Like ERGM, requires computationally efficient algorithms for estimation like Markov Chain Monte-Carlo or Maximum pseudo-likelihood Reduces to classical regression when h(x) = 0. James D. Wilson GERGMs for Weighted Networks 12 / 30

13 Model Specification: Weighted Network Statistics Network Statistic Parameter Reciprocity θ R i<j Value x ij x ji Cyclic Triads θ CT (x ij x jk x ki + x ik x kj x ji ) i<j<k In-Two-Stars θ ITS i Out-Two-Stars θ OTS i Edge Density θ E i j α R x ji x ki j<k i x ij x ik j<k i α E x ij α ITS α OTS Transitive Triads θ TT (x ij x jk x ik + x ij x kj x ki + x ij x kj x ik ) + i<j<k α CT i<j<k (x ji x jk x ki + x ji x jk x ik + x ji x kj x ki ) α TT James D. Wilson GERGMs for Weighted Networks 13 / 30

14 Inference on the GERGM Likelihood of GERGM is intractable; relies on MCMC Gibbs (Desmarais, et al., 2012) Major Issue: Restricts model specification by requiring first order network statistics 2 h(x) xij 2 = 0, i, j [n] Metropolis-Hastings (Wilson, et al. 2015): Removes above restriction on GERGM James D. Wilson GERGMs for Weighted Networks 14 / 30

15 Metropolis-Hastings Sampling Framework: Acceptance/Rejection algorithm for weighted edges w/ multivariate truncated normal proposal distribution. Proposal: q σ (w x) = Advantages: σ 1 φ( w x Φ( 1 x σ Flexible model specification Interaction effects σ ) x ) Φ( σ ), 0 w 1 Exponential weighting of covariates New available models can avoid likelihood degeneracy James D. Wilson GERGMs for Weighted Networks 15 / 30

16 GERGM - Metropolis Hastings Procedure 1 For i, j [n], generate proposal edge x (t) independently across edges. 2 Set i,j q σ ( x (t) i,j ) where x (t+1) x (t) = ( x (t) = i,j ) i,j [n] w.p. ρ(x (t), x (t) ) x (t) w.p. 1 ρ(x (t), x (t) ) ρ(x, y) = min ( f m X (y θ) q σ (x i y i ) f X (x θ) i=1 q σ (y i x i ), 1) = min (exp (θ m q σ (x (h(y) h(x))) i y i ), 1) (1) q σ (y i x i ) i=1 James D. Wilson GERGMs for Weighted Networks 16 / 30

17 Case Study: In-Two-Stars Model Model: f X (x, θ, α) = exp (θ Eh E (x) + θ ITS h ITS (x)), x [0, 1] m C(θ E, θ ITS ) Edge density: h E (x) = i j x ij /m In-Two-Stars: h ITS (x, α) = ( i j<k i x ji x ki ) α When α = 1, this is closely related to the well-known degenerate triangle model and the Ising model. James D. Wilson GERGMs for Weighted Networks 17 / 30

18 Case Study: In-Two-Stars Model Degeneracy Issues: In α = 1 model, simulated networks tend to be nearly empty or nearly complete leading to likelihood degeneracy: James D. Wilson GERGMs for Weighted Networks 18 / 30

19 Case Study: In-Two-Stars Model Upshot: Exponential weighting of network statistics alleviates degeneracy! James D. Wilson GERGMs for Weighted Networks 19 / 30

20 Application: International Lending Networks Lending volume (in millions of US $) between 18 countries Collected by Bank of International Settlements (BIS) Originally published in Oatley et al. (2013) James D. Wilson GERGMs for Weighted Networks 20 / 30

21 Heavy Tailed Lending volumes Log normalized volume for edge weights James D. Wilson GERGMs for Weighted Networks 21 / 30

22 Dynamic Summary of Covariates Highly transitive, not reciprocal Temporal trends suggest a change in lending structure James D. Wilson GERGMs for Weighted Networks 22 / 30

23 Goodness of Fit James D. Wilson GERGMs for Weighted Networks 23 / 30

24 Application: U.S. Migration Data -Desmarais et al Describes the inter-state migration in U.S. from 2006 to Fit a GERGM with 5 network statistics, 11 demographic covariates James D. Wilson GERGMs for Weighted Networks 24 / 30

25 Covariate Estimates James D. Wilson GERGMs for Weighted Networks 25 / 30

26 Inference on the Migration Data Statistic in Migration Transitivity Out-two-stars In-two-stars Cyclic triads Unemployment Send. Population Rec. January Temp. Send. Unemployment, population, and average January temperature each influence U.S. migration! James D. Wilson GERGMs for Weighted Networks 26 / 30

27 Goodness of Fit M-H, Gibbs, and MPLE have good performance James D. Wilson GERGMs for Weighted Networks 27 / 30

28 gergm.r Software Tutorial We ll now go through two examples of how to use the GERGM in practice. Go to under "Presentations" to get started. James D. Wilson GERGMs for Weighted Networks 28 / 30

29 Future Work Model Selection for random graph models Mixing Time Analysis Temporal Extensions New applications (always looking for exciting data) James D. Wilson GERGMs for Weighted Networks 29 / 30

30 Thank you Collaborators: Skyler Cranmer, Bruce Desmarais, Matthew Denny, and Shankar Bhamidi. Funding: National Science Foundation Grants: DMS , DMS , SES , SES , SES , and CISE Contact: Place: University of San Francisco, Department of Mathematics James D. Wilson GERGMs for Weighted Networks 30 / 30

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data

Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data Maksym Byshkin 1, Alex Stivala 4,1, Antonietta Mira 1,3, Garry Robins 2, Alessandro Lomi 1,2 1 Università della Svizzera

More information

Exponential random graph models for the Japanese bipartite network of banks and firms

Exponential random graph models for the Japanese bipartite network of banks and firms Exponential random graph models for the Japanese bipartite network of banks and firms Abhijit Chakraborty, Hazem Krichene, Hiroyasu Inoue, and Yoshi Fujiwara Graduate School of Simulation Studies, The

More information

Specification and estimation of exponential random graph models for social (and other) networks

Specification and estimation of exponential random graph models for social (and other) networks Specification and estimation of exponential random graph models for social (and other) networks Tom A.B. Snijders University of Oxford March 23, 2009 c Tom A.B. Snijders (University of Oxford) Models for

More information

Conditional Marginalization for Exponential Random Graph Models

Conditional Marginalization for Exponential Random Graph Models Conditional Marginalization for Exponential Random Graph Models Tom A.B. Snijders January 21, 2010 To be published, Journal of Mathematical Sociology University of Oxford and University of Groningen; this

More information

A note on perfect simulation for exponential random graph models

A note on perfect simulation for exponential random graph models A note on perfect simulation for exponential random graph models A. Cerqueira, A. Garivier and F. Leonardi October 4, 017 arxiv:1710.00873v1 [stat.co] Oct 017 Abstract In this paper we propose a perfect

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Dynamic modeling of organizational coordination over the course of the Katrina disaster

Dynamic modeling of organizational coordination over the course of the Katrina disaster Dynamic modeling of organizational coordination over the course of the Katrina disaster Zack Almquist 1 Ryan Acton 1, Carter Butts 1 2 Presented at MURI Project All Hands Meeting, UCI April 24, 2009 1

More information

Appendix: Modeling Approach

Appendix: Modeling Approach AFFECTIVE PRIMACY IN INTRAORGANIZATIONAL TASK NETWORKS Appendix: Modeling Approach There is now a significant and developing literature on Bayesian methods in social network analysis. See, for instance,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation

Bayesian Analysis of Network Data. Model Selection and Evaluation of the Exponential Random Graph Model. Dissertation Bayesian Analysis of Network Data Model Selection and Evaluation of the Exponential Random Graph Model Dissertation Presented to the Faculty for Social Sciences, Economics, and Business Administration

More information

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that 1 More examples 1.1 Exponential families under conditioning Exponential families also behave nicely under conditioning. Specifically, suppose we write η = η 1, η 2 R k R p k so that dp η dm 0 = e ηt 1

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Likelihood Inference for Lattice Spatial Processes

Likelihood Inference for Lattice Spatial Processes Likelihood Inference for Lattice Spatial Processes Donghoh Kim November 30, 2004 Donghoh Kim 1/24 Go to 1234567891011121314151617 FULL Lattice Processes Model : The Ising Model (1925), The Potts Model

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

A multilayer exponential random graph modelling approach for weighted networks

A multilayer exponential random graph modelling approach for weighted networks A multilayer exponential random graph modelling approach for weighted networks Alberto Caimo 1 and Isabella Gollini 2 1 Dublin Institute of Technology, Ireland; alberto.caimo@dit.ie arxiv:1811.07025v1

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Bargaining, Information Networks and Interstate

Bargaining, Information Networks and Interstate Bargaining, Information Networks and Interstate Conflict Erik Gartzke Oliver Westerwinter UC, San Diego Department of Political Sciene egartzke@ucsd.edu European University Institute Department of Political

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

IV. Analyse de réseaux biologiques

IV. Analyse de réseaux biologiques IV. Analyse de réseaux biologiques Catherine Matias CNRS - Laboratoire de Probabilités et Modèles Aléatoires, Paris catherine.matias@math.cnrs.fr http://cmatias.perso.math.cnrs.fr/ ENSAE - 2014/2015 Sommaire

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Learning Bayesian Networks for Biomedical Data

Learning Bayesian Networks for Biomedical Data Learning Bayesian Networks for Biomedical Data Faming Liang (Texas A&M University ) Liang, F. and Zhang, J. (2009) Learning Bayesian Networks for Discrete Data. Computational Statistics and Data Analysis,

More information

Measuring Social Influence Without Bias

Measuring Social Influence Without Bias Measuring Social Influence Without Bias Annie Franco Bobbie NJ Macdonald December 9, 2015 The Problem CS224W: Final Paper How well can statistical models disentangle the effects of social influence from

More information

Introduction to statistical analysis of Social Networks

Introduction to statistical analysis of Social Networks The Social Statistics Discipline Area, School of Social Sciences Introduction to statistical analysis of Social Networks Mitchell Centre for Network Analysis Johan Koskinen http://www.ccsr.ac.uk/staff/jk.htm!

More information

Stein s Method for concentration inequalities

Stein s Method for concentration inequalities Number of Triangles in Erdős-Rényi random graph, UC Berkeley joint work with Sourav Chatterjee, UC Berkeley Cornell Probability Summer School July 7, 2009 Number of triangles in Erdős-Rényi random graph

More information

Assessing Goodness of Fit of Exponential Random Graph Models

Assessing Goodness of Fit of Exponential Random Graph Models International Journal of Statistics and Probability; Vol. 2, No. 4; 2013 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Assessing Goodness of Fit of Exponential Random

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Zig-Zag Monte Carlo. Delft University of Technology. Joris Bierkens February 7, 2017

Zig-Zag Monte Carlo. Delft University of Technology. Joris Bierkens February 7, 2017 Zig-Zag Monte Carlo Delft University of Technology Joris Bierkens February 7, 2017 Joris Bierkens (TU Delft) Zig-Zag Monte Carlo February 7, 2017 1 / 33 Acknowledgements Collaborators Andrew Duncan Paul

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Discrete Temporal Models of Social Networks

Discrete Temporal Models of Social Networks Discrete Temporal Models of Social Networks Steve Hanneke and Eric Xing Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213 USA {shanneke,epxing}@cs.cmu.edu Abstract. We propose

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Random Effects Models for Network Data

Random Effects Models for Network Data Random Effects Models for Network Data Peter D. Hoff 1 Working Paper no. 28 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 January 14, 2003 1 Department of

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Curved exponential family models for networks

Curved exponential family models for networks Curved exponential family models for networks David R. Hunter, Penn State University Mark S. Handcock, University of Washington February 18, 2005 Available online as Penn State Dept. of Statistics Technical

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information

Delayed Rejection Algorithm to Estimate Bayesian Social Networks

Delayed Rejection Algorithm to Estimate Bayesian Social Networks Dublin Institute of Technology ARROW@DIT Articles School of Mathematics 2014 Delayed Rejection Algorithm to Estimate Bayesian Social Networks Alberto Caimo Dublin Institute of Technology, alberto.caimo@dit.ie

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Evidence estimation for Markov random fields: a triply intractable problem

Evidence estimation for Markov random fields: a triply intractable problem Evidence estimation for Markov random fields: a triply intractable problem January 7th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

arxiv: v1 [stat.me] 3 Apr 2017

arxiv: v1 [stat.me] 3 Apr 2017 A two-stage working model strategy for network analysis under Hierarchical Exponential Random Graph Models Ming Cao University of Texas Health Science Center at Houston ming.cao@uth.tmc.edu arxiv:1704.00391v1

More information

Instability, Sensitivity, and Degeneracy of Discrete Exponential Families

Instability, Sensitivity, and Degeneracy of Discrete Exponential Families Instability, Sensitivity, and Degeneracy of Discrete Exponential Families Michael Schweinberger Abstract In applications to dependent data, first and foremost relational data, a number of discrete exponential

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics

Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics Minicourse on: Markov Chain Monte Carlo: Simulation Techniques in Statistics Eric Slud, Statistics Program Lecture 1: Metropolis-Hastings Algorithm, plus background in Simulation and Markov Chains. Lecture

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

High-dimensional Problems in Finance and Economics. Thomas M. Mertens High-dimensional Problems in Finance and Economics Thomas M. Mertens NYU Stern Risk Economics Lab April 17, 2012 1 / 78 Motivation Many problems in finance and economics are high dimensional. Dynamic Optimization:

More information

Algorithmic approaches to fitting ERG models

Algorithmic approaches to fitting ERG models Ruth Hummel, Penn State University Mark Handcock, University of Washington David Hunter, Penn State University Research funded by Office of Naval Research Award No. N00014-08-1-1015 MURI meeting, April

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods John Geweke University of Iowa, USA 2005 Institute on Computational Economics University of Chicago - Argonne National Laboaratories July 22, 2005 The problem p (θ, ω I)

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Inference in curved exponential family models for networks

Inference in curved exponential family models for networks Inference in curved exponential family models for networks David R. Hunter, Penn State University Mark S. Handcock, University of Washington Penn State Department of Statistics Technical Report No. TR0402

More information

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016 in sparse graphs Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 206 Motivation Latent space models Successfully used in sociology since the 70ies Recently shown

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Simulation of truncated normal variables Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Abstract arxiv:0907.4010v1 [stat.co] 23 Jul 2009 We provide in this paper simulation algorithms

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information