Chapter 6. Characteristic functions

Size: px
Start display at page:

Download "Chapter 6. Characteristic functions"

Transcription

1 Chapter 6 Characteristic functions We define the characteristic function of a random variable X by ' X (t) E e x for t R. Note that ' X (t) R e x P X (dx). So if X and Y have the same law, they have the same characteristic function. Also, if the law of X has a densy, that is, P X (dx) f X (x) dx, then' X (t) R e x f X (x) dx, sointhiscasethe characteristic function is the same as (one definion of) the Fourier transform of f X. Proposion 6. '(), '(t) apple, '( continuous. t) '(t), and ' is uniformly Proof. Since e x apple, everything follows immediately from the definions except the uniform continuy. For that we wre '(t + h) '(t) E e i(t+h)x E e X applee e X (e ihx ) E e ihx. e ihx tends to almost surely as h!, so the right hand side tends to by dominated convergence. Note that the right hand side is independent of t. Proposion 6. ' ax (t) ' X (at) and ' X+b (t) e b ' X (t), 47

2 48 CHAPTER 6. CHARACTERISTIC FUNCTIONS Proof. The first follows from E e (ax) E e i(at)x,andthesecondissimilar. Proposion 6.3 If X and Y are independent, then ' X+Y (t) ' X (t)' Y (t). Proof. From the multiplication theorem, E e (X+Y ) E e X e Y E e X E e Y. Note that if X and X are independent and identically distributed, then ' X X (t) ' X (t)' X (t) ' X (t)' X ( t) ' X (t)' X (t) ' X (t). Let us look at some examples of characteristic functions. (a) Bernoulli: Bydirectcomputation,thisispe +( p) p( e ). (b) Coin flip: (i.e., P(X +)P(X ) /) We have e + e cost. (c) Poisson: E e X X e k e k k k! e X ( e ) k k! e e e e (e ). (d) Point mass at a: E e X e a. Note that when a,then'. (e) Binomial: WreX as the sum of n independent Bernoulli r.v.s B i.so ' X (t) ny ' Bi (t) [' Bi (t)] n [ p( e )] n. i (f) Geometric: '(t) X p( p) k e k p X (( p)e ) k k p ( p)e.

3 6.. INVERSION FORMULA 49 (g) Uniform on [a, b]: '(t) b a b a e a e x dx eb (b a). Note that when a (h) Exponential: b this reduces to sin(bt)/bt. e x e x dx e ( )x dx. (i) Standard normal: '(t) p e x e x / dx. This can be done by completing the square and then doing a contour integration. Alternately, ' (t) (/ p ) R ixex e x / dx. (do the real and imaginary parts separately, and use the dominated convergence theorem to justify taking the derivative inside.) Integrating by parts (do the real and imaginary parts separately), this is equal to t'(t). The only solution to ' (t) t'(t) wh'() is '(t) e t /. (j) Normal wh mean µ and variance :WringX + µ, where is a standard normal, then ' X (t) e iµt ' ( t) e iµt t /. (k) Cauchy: Wehave '(t) e x +x dx. This is a standard exercise in contour integration in complex analysis. The answer is e t. 6. Inversion formula We need a preliminary real variable lemma, and then we can proceed to the inversion formula, which gives a formula for the distribution function in terms of the characteristic function.

4 5 CHAPTER 6. CHARACTERISTIC FUNCTIONS Lemma 6.4 (a) R N (sin(ax)/x) dx! sgn (A) / as N!. (b) sup a R a (sin(ax)/x) dx <. Proof. If A,thisisclear. ThecaseA<reducestothecaseA> by the fact that sin is an odd function. By a change of variables y Ax, we reduce to the case A. Part(a)isastandardresultincontourintegration, and part (b) comes from the fact that the integral can be wrten as an alternating series. An alternate proof of (a) is the following. {(x, y); < x < a, <y<}. So a sin x x dx a a e xy sin xdydx e xy sin xdxdy h e xy i a y + ( y sin x cos x) dy h e ay o y + ( y sin a cos a) sin a ye ay y + dy e xy sin x is integrable on cos a i dy y + e ay y + dy. The last two integrals tend to as a!since the integrand is bounded by ( + y)e y if a. Theorem 6.5 (Inversion formula) Let µ be a probabily measure and let '(t) R e x µ(dx). Ifa<b, then lim T! T T e a e b '(t) dt µ(a, b)+ µ({a})+ µ({b}). The example where µ is point mass at, so '(t),showsthatone needs to take a lim, since the integrand in this case is sin t/t, whichisnot integrable.

5 6.. INVERSION FORMULA 5 Proof. By Fubini, T T e a e b '(t) dt T T T e a T e a e b e b e x µ(dx) dt e x dt µ(dx). To justify this, we bound the integrand by the mean value theorem Expanding e b and e a using Euler s formula, and using the fact that cos is an even function and sin is odd, we are left wh h T sin(t(x t a)) dt T sin(t(x t Using Lemma 6.4 and dominated convergence, this tends to [ sgn (x a) sgn (x b)]µ(dx). b)) i dt µ(dx). Theorem 6.6 If R '(t) dt <, then µ has a bounded densy f and f(y) e y '(t) dt. Proof. µ(a, b)+ µ({a})+ µ({b}) lim T! apple b a T T e a e a '(t) dt. e b Letting b! a shows that µ has no point masses. e b '(t) dt '(t) dt

6 5 CHAPTER 6. CHARACTERISTIC FUNCTIONS We now wre µ(x, x + h) e x e (x+h) '(t)dt x+h e y dy '(t) dt x x+h e y '(y) dt dy. x So µ has densy (/ ) R e y '(t) dt. As in the proof of Proposion 6., we see f is continuous. Acorollarytotheinversionformulaistheuniquenesstheorem. Theorem 6.7 If ' X ' Y, then P X P Y. Proof. Let a and b be such that P(X a) P(X b),andthesame when X is replaced by Y.Wehave F X (b) F X (a) P(a <Xapple b) P X ((a, b]) P X ((a, b)), and the same when X is replaced by Y.Bytheinversiontheorem,P X ((a, b)) P Y ((a, b)). Now let a! along a sequence of points that are continuy points for F X and F Y. We obtain F X (b) F Y (b) ifb is a continuy point for X and Y. Since F X and F Y are right continuous, F X (x) F Y (x) forall x. The following proposion can be proved directly, but the proof using characteristic functions is much easier. Proposion 6.8 (a) If X and Y are independent, X is a normal wh mean a and variance b, and Y is a normal wh mean c and variance d, then X+Y is normal wh mean a + c and variance b + d. (b) If X and Y are independent, X is Poisson wh parameter, and Y is Poisson wh parameter, then X + Y is Poisson wh parameter +. (c) If X i are i.i.d. Cauchy, then S n /n is Cauchy.

7 6.. CONTINUITY THEOREM 53 Proof. For (a), ' X+Y (t) ' X (t)' Y (t) e iat b t / e ict c t / e i(a+c)t (b +d )t /. Now use the uniqueness theorem. Parts (b) and (c) are proved similarly. 6. Continuy theorem Lemma 6.9 Suppose ' is the characteristic function of a probabily µ. Then Proof. Note T µ([ A, A]) A T T /A /A '(t) dt. '(t) dt T e x µ(dx) dt T T T [ T,T](t)e x dt µ(dx) sin Tx Tx µ(dx). Since sin(tx) apple, then (sin(tx))/t x apple /TA if x A. Since (sin(tx))/t x apple, we then have sin Tx µ(dx) apple µ([ A, A]) + Tx [ A,A] TA µ(dx) c µ([ A, A]) + ( µ([ A, A]) TA TA + µ([ A, A]). TA Setting T /A, A /A /A Now multiply both sides by. '(t) dt apple + µ([ A, A]).

8 54 CHAPTER 6. CHARACTERISTIC FUNCTIONS Proposion 6. If µ n converges weakly to µ, then ' n converges to ' uniformly on every fine interval. Proof. Let ">andchoosem large so that µ([ M,M] c ) <". Define f to R be on [ M,M], on [ M,M +] c, and linear in between. Since fdµn! R fdµ,thenifnis large enough, ( f) dµ n apple ". We have ' n (t + h) ' n (t) apple e ihx µ n (dx) apple ( f) dµ n + h apple " + h(m +). x f(x) µ n (dx) So for n large enough and h apple"/(m +),wehave ' n (t + h) ' n (t) apple3", which implies that the ' n are equicontinuous. Therefore the convergence is uniform on fine intervals. The interesting result of this section is the converse, Lévy s continuy theorem. Theorem 6. Suppose µ n are probabilies, ' n (t) converges to a function '(t) for each t, and ' is continuous at. Then ' is the characteristic function of a probabily µ and µ n converges weakly to µ. Proof. Let ">. Since ' is continuous at, choose '(t) dt <". small so that Using the dominated convergence theorem, choose N such that ' n (t) '(t) dt < "

9 6.. CONTINUITY THEOREM 55 if n N. Soifn N, ' n (t) dt ". '(t) dt ' n (t) '(t) dt By Lemma 6.9 wh A /,forsuchn, This shows the µ n are tight. µ n [ /, / ] ( ") 4". Let n j be a subsequence such that µ nj converges weakly, say to µ. Then ' nj (t)! ' µ (t), hence '(t) ' µ (t), or ' is the characteristic function of aprobabilyµ. If µ is any subsequential weak lim point of µ n, then ' µ (t) '(t) ' µ (t); so µ must equal µ. Hence µ n converges weakly to µ. We need the following estimate on moments. Proposion 6. If E X k < for an integer k, then ' X has a continuous derivative of order k and ' (k) (t) (ix) k e x P X (dx). In particular, ' (k) () i k E X k. Proof. Wre '(t + h) h '(t) e i(t+h)x h e x P(dx). The integrand is bounded by x. Soif R x P X (dx) <, wecanusedominated convergence to obtain the desired formula for ' (t). As in the proof of Proposion 6., we see ' (t) is continuous. We do the case of general k by induction. Evaluating ' (k) at gives the particular case. Here is a converse.

10 56 CHAPTER 6. CHARACTERISTIC FUNCTIONS Proposion 6.3 If ' is the characteristic function of a random variable X and ' () exists, then E X <. Proof. Note and ( e ihx +e ihx cos hx apple h h cos hx)/h converges to x as h!. So by Fatou s lemma, cos hx x P X (dx) apple liminf P h! h X (dx) '(h) '() + '( h) lim sup ' () <. h! h One nice application of the continuy theorem is a proof of the weak law of large numbers. Its proof is very similar to the proof of the central lim theorem, which we give in the next section. Another nice use of characteristic functions and martingales is the following. Proposion 6.4 Suppose X i is a sequence of independent r.v.s and S n converges weakly. Then S n converges almost surely. Proof. We first rule out the possibily that S n!wh posive probabily. If this happens wh posive probabily ", givenm there exists N depending on M such that if n N, thenp( S n >M) >".Thenthelim law of P Sn,say,P,willhaveP ([ M,M] c ) " for all M, acontradiction. Let N be the set of! for which S n (!)!. Suppose S n converges weakly to W. Then ' Sn (t)! ' W (t) uniformly on compact sets by Proposion 6.. Since ' W () and ' W is continuous, there exists such that ' W (t) < / if t <.Sofornlarge, ' Sn (t) /4 if t <. Note E he Sn X,...X n i e S n E [e Xn X,...,X n ]e S n ' Xn (t).

11 6.. CONTINUITY THEOREM 57 Since ' Sn (t) Q ' Xi (t), follows that e Sn /' Sn (t) isamartingale. Therefore for t < and n large, e Sn /' Sn (t) isaboundedmartingale, and hence converges almost surely. Since ' Sn (t)! ' W (t) 6,thene Sn converges almost surely if t <. Let A {(!, t) (, ) : e Sn(!) does not converge}. For each t, we have almost sure convergence, so R A (!, t) P(d!). Therefore R R A dp dt,andbyfubini, RR A dt dp. Hence almost surely, R A (!, t) dt. Thismeans,thereexistsasetN wh P(N ),andif!/ N,thene Sn(!) converges for almost every t (, ). Call the lim, when exists, L(t). Fix!/ N [ N. Suppose one subsequence of S n (!) convergestoq and another subsequence to R. Then L(a) e iar e iaq for a.e. a small, which implies that R Q. Suppose one subsequence converges to R 6 andanotherto ±. By integrating e Sn and using dominated convergence, we have a e Sn dt eiasn is n converges. We then obtain e iar ir for a.e. a small, which implies R. Finally suppose one subsequence converges to and another to ±. Since (e iasn j )/is nj! a, weobtaina fora.e.a small, which is impossible. We conclude S n must converge.

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

Characteristic Functions and the Central Limit Theorem

Characteristic Functions and the Central Limit Theorem Chapter 6 Characteristic Functions and the Central Limit Theorem 6.1 Characteristic Functions 6.1.1 Transforms and Characteristic Functions. There are several transforms or generating functions used in

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Chapter 5. Weak convergence

Chapter 5. Weak convergence Chapter 5 Weak convergence We will see later that if the X i are i.i.d. with mean zero and variance one, then S n / p n converges in the sense P(S n / p n 2 [a, b])! P(Z 2 [a, b]), where Z is a standard

More information

Measure-theoretic probability

Measure-theoretic probability Measure-theoretic probability Koltay L. VEGTMAM144B November 28, 2012 (VEGTMAM144B) Measure-theoretic probability November 28, 2012 1 / 27 The probability space De nition The (Ω, A, P) measure space is

More information

the convolution of f and g) given by

the convolution of f and g) given by 09:53 /5/2000 TOPIC Characteristic functions, cont d This lecture develops an inversion formula for recovering the density of a smooth random variable X from its characteristic function, and uses that

More information

Convergence in Distribution

Convergence in Distribution Convergence in Distribution Undergraduate version of central limit theorem: if X 1,..., X n are iid from a population with mean µ and standard deviation σ then n 1/2 ( X µ)/σ has approximately a normal

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Product measure and Fubini s theorem

Product measure and Fubini s theorem Chapter 7 Product measure and Fubini s theorem This is based on [Billingsley, Section 18]. 1. Product spaces Suppose (Ω 1, F 1 ) and (Ω 2, F 2 ) are two probability spaces. In a product space Ω = Ω 1 Ω

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Grading: 1, 2, 3, 4, 5 (each 8 pts) e ita R. e itx dµ(x)dt = 1 2T. cos(t(x a))dt dµ(x) T (x a) 1 2T. cos(t(x a))dt =

Grading: 1, 2, 3, 4, 5 (each 8 pts) e ita R. e itx dµ(x)dt = 1 2T. cos(t(x a))dt dµ(x) T (x a) 1 2T. cos(t(x a))dt = Grading:, 2, 3, 4, 5 (each 8 pts Problem : Since e ita =, by Fubini s theorem, I T = e ita ϕ(tdt = e ita e itx dµ(xdt = e it(x a dtdµ(x. Since e it(x a = cos(t(x a + i sin(t(x a and sin(t(x a is an odd

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Probability Theory. Richard F. Bass

Probability Theory. Richard F. Bass Probability Theory Richard F. Bass ii c Copyright 2014 Richard F. Bass Contents 1 Basic notions 1 1.1 A few definitions from measure theory............. 1 1.2 Definitions............................. 2

More information

7 Convergence in R d and in Metric Spaces

7 Convergence in R d and in Metric Spaces STA 711: Probability & Measure Theory Robert L. Wolpert 7 Convergence in R d and in Metric Spaces A sequence of elements a n of R d converges to a limit a if and only if, for each ǫ > 0, the sequence a

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Section 26. Characteristic Functions. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 26. Characteristic Functions. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 26 Characteristic Functions Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3, R.O.C. Characteristic function 26- Definition (characteristic

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

PROBABILITY THEORY LECTURE 3

PROBABILITY THEORY LECTURE 3 PROBABILITY THEORY LECTURE 3 Per Sidén Division of Statistics Dept. of Computer and Information Science Linköping University PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L3 1 / 15 OVERVIEW LECTURE

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1 Chapter 2 Probability measures 1. Existence Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field Proof of Theorem 2.1. Let F 0 be

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Real Analysis Qualifying Exam May 14th 2016

Real Analysis Qualifying Exam May 14th 2016 Real Analysis Qualifying Exam May 4th 26 Solve 8 out of 2 problems. () Prove the Banach contraction principle: Let T be a mapping from a complete metric space X into itself such that d(tx,ty) apple qd(x,

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4) :23 /4/2000 TOPIC Characteristic functions This lecture begins our study of the characteristic function φ X (t) := Ee itx = E cos(tx)+ie sin(tx) (t R) of a real random variable X Characteristic functions

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm Final Examination STA 711: Probability & Measure Theory Saturday, 2017 Dec 16, 7:00 10:00 pm This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

More information

Continuous Distributions

Continuous Distributions Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function

Generating and characteristic functions. Generating and Characteristic Functions. Probability generating function. Probability generating function Generating and characteristic functions Generating and Characteristic Functions September 3, 03 Probability generating function Moment generating function Power series expansion Characteristic function

More information

If α is a probability distribution on the line, its characteristic function is defined by

If α is a probability distribution on the line, its characteristic function is defined by Chapter 2 Weak Convergence 2. Characteristic Functions If α is a probability distribution on the line, its characteristic function is defined by φ(t) = exp[ itx] dα. (2.) The above definition makes sense.

More information

Lecture 1 Measure concentration

Lecture 1 Measure concentration CSE 29: Learning Theory Fall 2006 Lecture Measure concentration Lecturer: Sanjoy Dasgupta Scribe: Nakul Verma, Aaron Arvey, and Paul Ruvolo. Concentration of measure: examples We start with some examples

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D 3 Independent Random Variables II: Examples 3.1 Some functions of independent r.v. s. Let X 1, X 2,... be independent r.v. s with the known distributions. Then, one can compute the distribution of a r.v.

More information

Preliminary Exam 2018 Solutions to Morning Exam

Preliminary Exam 2018 Solutions to Morning Exam Preliminary Exam 28 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem. Consider the series n 2 (n log n) and n 2 (n(log n)2 ). Show that one converges and one diverges

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 Math 736-1 Homework Fall 27 1* (1 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 and let Y be a standard normal random variable. Assume that X and Y are independent. Find the distribution

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

We introduce methods that are useful in:

We introduce methods that are useful in: Instructor: Shengyu Zhang Content Derived Distributions Covariance and Correlation Conditional Expectation and Variance Revisited Transforms Sum of a Random Number of Independent Random Variables more

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information

Midterm Examination. STA 205: Probability and Measure Theory. Thursday, 2010 Oct 21, 11:40-12:55 pm

Midterm Examination. STA 205: Probability and Measure Theory. Thursday, 2010 Oct 21, 11:40-12:55 pm Midterm Examination STA 205: Probability and Measure Theory Thursday, 2010 Oct 21, 11:40-12:55 pm This is a closed-book examination. You may use a single sheet of prepared notes, if you wish, but you may

More information

The main results about probability measures are the following two facts:

The main results about probability measures are the following two facts: Chapter 2 Probability measures The main results about probability measures are the following two facts: Theorem 2.1 (extension). If P is a (continuous) probability measure on a field F 0 then it has a

More information

SOLUTIONS OF SELECTED PROBLEMS

SOLUTIONS OF SELECTED PROBLEMS SOLUTIONS OF SELECTED PROBLEMS Problem 36, p. 63 If µ(e n < and χ En f in L, then f is a.e. equal to a characteristic function of a measurable set. Solution: By Corollary.3, there esists a subsequence

More information

Chapter 5 Joint Probability Distributions

Chapter 5 Joint Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 5 Joint Probability Distributions 5 Joint Probability Distributions CHAPTER OUTLINE 5-1 Two

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

2017 HSC Mathematics Extension 1 Marking Guidelines

2017 HSC Mathematics Extension 1 Marking Guidelines 07 HSC Mathematics Extension Marking Guidelines Section I Multiple-choice Answer Key Question Answer A B 3 B 4 C 5 D 6 D 7 A 8 C 9 C 0 B NESA 07 HSC Mathematics Extension Marking Guidelines Section II

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

Conditional distributions (discrete case)

Conditional distributions (discrete case) Conditional distributions (discrete case) The basic idea behind conditional distributions is simple: Suppose (XY) is a jointly-distributed random vector with a discrete joint distribution. Then we can

More information

LAURENTIAN UNIVERSITY UNIVERSITÉ LAURENTIENNE

LAURENTIAN UNIVERSITY UNIVERSITÉ LAURENTIENNE Page 1 of 15 LAURENTIAN UNIVERSITY UNIVERSITÉ LAURENTIENNE Friday, December 14 th Course and No. 2007 MATH 2066 EL Date................................... Cours et no........................... Total no.

More information

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet. 2016 Booklet No. Test Code : PSA Forenoon Questions : 30 Time : 2 hours Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

4 Moment generating functions

4 Moment generating functions 4 Moment generating functions Moment generating functions (mgf) are a very powerful computational tool. They make certain computations much shorter. However, they are only a computational tool. The mgf

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 8: Expectation in Action Relevant textboo passages: Pitman [6]: Chapters 3 and 5; Section 6.4

More information

STAT 7032 Probability Spring Wlodek Bryc

STAT 7032 Probability Spring Wlodek Bryc STAT 7032 Probability Spring 2018 Wlodek Bryc Created: Friday, Jan 2, 2014 Revised for Spring 2018 Printed: January 9, 2018 File: Grad-Prob-2018.TEX Department of Mathematical Sciences, University of Cincinnati,

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

Lecture 19: Properties of Expectation

Lecture 19: Properties of Expectation Lecture 19: Properties of Expectation Dan Sloughter Furman University Mathematics 37 February 11, 4 19.1 The unconscious statistician, revisited The following is a generalization of the law of the unconscious

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

The Lindeberg central limit theorem

The Lindeberg central limit theorem The Lindeberg central limit theorem Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto May 29, 205 Convergence in distribution We denote by P d the collection of Borel probability

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information