Chapter 1 Graph of Functions

Size: px
Start display at page:

Download "Chapter 1 Graph of Functions"

Transcription

1 Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane into four regions, called quadrants; those are numbered as in Figure.. The point (, ) lies on quadrant I, the point (-4, -) lies on quadrant III and so on. Eamples. Plot the points (3, ), (-, -), (0, -3), (, 0), (-5, 0) and (0, ) (0,) (3,) (-5,0) (,0) (-,-) (0, -3) Figure.. Distance and Midpoint Formulas The Distance formula: Consider two points P(a, b) and Q(c, d). Then we have the following measures RUN = PR c a, and RISE = RQ d b. Using Pthagorean 0

2 Graph of Functions theorem we have the distance between P and Q is PR ( c a) ( d b ) Q P R Figure.3 The distance formula between two points A(, ) and B(, ) is given b AB ( ) ( ) RUN RISE. Find the distance between the points (5, 7) and (-3, 8) The distance d (5 3) (7 8) 65 The Midpoint Formula: The midpoint of the line segment from A(, ) and B(, ) is given b, 3. Find the midpoint of the line segment from (5, 4) to (3, 6) Solution: The midpoint is (4, 5).3 Straight Lines and Slopes The well-known general form of a straight line is a b c 0 and the standard form of a straight line is m b, also known as slope-intercept form. In the second form m is called the slope of the line. Remember that if a straight line passes through A(, ) and B(, ) the slope is RISE m RUN 4. Find the slope of the straight line which passes through the points (7, 4) and (, 3) RISE 4 3 Solution: The slope is m RUN 7 5

3 Graph of Functions 5. Find the slope of the straight line whose equation is given b Solution: we write the given equation as. 3 3 The slope is m. 3 Properties of slopes The slope of non-vertical lines is a number m that measures how steep are the lines. The following cases ma arise: When m 0, the straight line is horizontal When m, the straight line makes 45 degree angle with the ais in the positive direction Larger the absolute value of the slope steeper the straight lines For a vertical line the slope is undefined The straight lines with positive slope are increasing and make acute angles with ais in the positive direction The straight lines with negative slopes are decreasing and make obtuse angles with ais in the positive direction If m and m are the slopes of two given straight lines then the following cases ma arise When m m, the straight lines are parallel When m m, the straight lines are perpendicular 6. Plot the following straight lines and observe the slopes a) b) c).5 d) e) f).5 Solution: e) b) d) a) f) c) Figure.4 7. Show that the straight lines 0 3 and are perpendicular to each other. Solution: Observe that for 0 3 the slope is m 0 and on the other hand the slope of is m. We have m m 0 and the straight lines are perpendicular.

4 Graph of Functions 8. Show that the straight lines 0 3 and are parallel to each other. Solution: The straight line 0 3 has slope m 0 and the straight line has also the same slope m 0. The straight lines are parallel..4 Basics of Functions In everda life we encounter situations in which one item is associated with another. For instance, the growth of a plant ma depend on amount of fertilizer or the understanding of a problem ma associate with hours of stud. Relation and Function: A relation is a set of ordered pairs. A function is a relation in which no two ordered pairs have the same first coordinate. In the ordered pairs the set of all first coordinates constitutes the domain and the set of all second coordinates is the range of the relation. Formal definition of function A function is a rule that provides for ever single value of a corresponding unique value of. The domain of the function is the set of all permissible values of ; on the other hand the range of the function is the set of all possible values of. Vertical line test to determine a function A graph defines a function if an vertical line intersects the graph at no more than one point. a) Following are the graphs of functions Fig.5 Fig.6 Fig.7 b) Following are not the graphs of functions Fig.8 Fig.9 Fig.0.5 Graph of Functions 9. Plot the function f () 3

5 Graph of Functions Solution: This function is called an identit function. For ever single value of we have a unique value of equals. Thus following are the points on the graph of the function f () Table. 0. Plot the function Fig. Solution: It is a vertical straight-line at units to the right from the origin. You tr to make a plot.. Plot the function 3 5 Solution: Let us consider the following points f () Table. Fig.. Plot the quadratic function 4

6 Graph of Functions f () Table.3.6 Transformation of Functions Fig.3 In this section ou will observe when the rule of a function is algebraicall changed in certain was to get a new function, then the graph of the new function can be obtained from the graph of the original function b simple geometric transformations. Below we discuss horizontal and vertical shifting. Vertical shift Consider the original function f ( ) and its graph then compare with two other functions g( ) f ( ) and h( ) f ( ). Look at the graphs below. And notice that the graph of g() is found from the graph of f () b shifting it verticall unit downward. On the other hand the graph of h( ) f ( ) is found from the graph of f () b shifting it verticall unit upward. h( ) 6 5 f () 4 3 g( ) Fig.4 5

7 Graph of Functions Rule on vertical shift: The graph of g( ) f ( ) k is found b shifting the graph of f () verticall b k units. If k is positive then the shift is upward and if it is negative the shift is downward. Horizontal shift Consider the original function f ( ) and its graph then compare with two other functions g( ) ( ) f ( ) and h( ) ( ) f ( ). Look at the graphs below. And notice that the graph of g() is found from the graph of f () b shifting it horizontall unit to the right. On the other hand the graph of h() is found from the graph of f () b shifting it horizontall unit to the left. 6 h( ) ( ) g( ) ( ) Fig.5 Rule on horizontal shift: The graph of g( ) f ( h ) is found b shifting the graph of f () horizontall b h units. If h is positive then the shift is to the left and if it is negative the shift is on right. Reflection The graph of g( ) f ( ) is found b reflecting the graph of f () along -ais. = f() = - f() Fig.6 6

8 Graph of Functions Stretch (Elongate or epand) and Shrink (Compress or contract) The following diagram is useful to remember the stretch and shrink of a graph b a known factor c, with the following values. We consider the cases f ( c ) for horizontal stretch ( H ST ) or horizontal shrink ( H SH ) and cf () for vertical stretch ( V ST ) or vertical shrink ( V SH ).. c c H ST H SH V SH V ST Rule on vertical stretch and shrink: The graph of g( ) cf ( ) is found b Shrinking verticall the graph of f () b a factor of c when c Stretching verticall the graph of f () b a factor of c when c Note: Remember that for g( ) cf ( ), when c is negative we have horizontal reflection or reflection along -ais. Rule on horizontal stretch and shrink: The graph of g( ) f ( c ) is found b Stretching horizontall the graph of f () b a factor of / c when c Shrinking horizontall the graph of f () b a factor of / c when c Note: Remember that for some cases of g( ) f ( c ), when c is negative we have vertical reflection or reflection along -ais. a) Compare the graphs of f ( ), g( ) (0.5 ) f (0.5 ). Observe that the graph of g( ) ( ) f ( ) and f ( ) is horizontall shrunk b a factor of c = / for the coordinates (divide coordinates b or multipl b /) to get the graph of g( ) ( ) f ( ), while the graph of f ( ) is horizontall stretched b a factor of c = 0.5 for the coordinates (divide coordinates b 0.5 or multipl b /0.5 = ) to get the graph of g( ) (0.5 ) f (0.5 ). g( ) (0.5 ) f ( ) g( ) ( ) Fig.7 7

9 Graph of Functions b) Compare the graphs of f ( ), h( ) f ( ). Observe that the graph of g( ) f ( ) and f ( ) is verticall stretched b a factor of c = for the coordinates (multipl coordinate b ) to get the graph of g( ) ( ) f ( ). On the other hand the graph of f ( ) is verticall shrunk b a factor of c = 0.5 for the coordinates (multipl coordinate b 0.5) to get the graph of g( ) (0.5 ) f (0.5 ). g( ) ( ) f ( ) g( ) (0.5 ) Fig.8 Determining a function obtained from a series of transformations 4 3. Discuss the transformation of g ( ) compared to f( ) 4 Solution: We follow the following steps: Step. Get 4 f ( ), c 4, the graph is verticall stretched b a factor of 4 (multipl coordinate b 4) 4 Step. Get 4 f( ), from step, the graph moves unit horizontall to the right 4 Step 3. Get 4 f( ), from Step, the graph moves units upward. (,4) (,4) (, 5) f( ) (,) (-, -) (0, -4) F (-, -4) F F3 F4 Fig.9 We get second graph (F) multipling coordinate b 4, then move the graph horizontall b positive unit to get third graph (F3) and finall unit upward to get the fourth graph (F4), which is the final position. (0, -3) 8

10 Graph of Functions.7 Combination of Functions, Composite Functions Combinations of Functions In this section we will discuss about addition (sum), subtraction (difference), multiplication (product) and division (quotient) of functions. We also further discuss an important operation called composition of functions. Suppose f ( ), g( ) are two functions, then their sum is the function sa h () defined as h( ) f ( ) g( ) ( f g)( ) and the difference k( ) f ( ) g( ) ( f g)( ). In the same wa the other defined functions are m( ) f ( ) g( ) ( fg)( ) is a function from multiplication and n( ) f ( )/ g( ) ( f / g)( ), g( ) 0 is a function from division. The domain of all these combinations of functions is the common domain to both the functions. If D f is the domain of f( ), and D g is the domain of g ( ), then the common domain is Df D g. Note that for f ( )/ g( ), g( ) 0, the domain is Df D g when g ( ) For the functions f ( ) and g( ) functions and their domain determine the following a) f ( ) g( ) b) g( ) f ( ) c) g( ) f ( ) d) f( ), g ( ) 0 g ( ) Solution: a) 4 f ( ) g( ), the common domain is [0, ) b) 4 g( ) f ( ), the common domain is [0, ) c) 4 g( ) f ( ) ( ), the common domain is [0, ) d) f ( ) g ( ) 4, g ( ) 0, the common domain is (0, ) Composite function or composition of functions For two given functions f ( ), g( ), the compositions are defined as f ( ) g( ) f g f ( g( )) and g( ) f ( ) g f g( f ( )) The domain of f gis defined as i) is in g ( ) and ii) g ( ) is in f() 9

11 Graph of Functions 4 5. For the functions f ( ) and g( ) functions and their domain determine the following a) f ( ) g( ) b) g( ) f ( ) Solution: a) b) has domain all 0 f ( ) g( ) f ( g( )) f ( ) g( ) f ( ) g( f ( )) g( ) 4 4 has domain all such that 4 0which is true for all real values of. Thus the domain is the entire real line. 6. For the functions f( ) and g ( ) determine the following functions and their domain a) f ( ) g( ) b) g( ) f ( ) Solution: a) f ( ) g( ) f ( g( )) f The domain is which is domain for g ( ) and also for g ( ) should be defined on f() when g( ) 0. Thus the domain is all real values of, 0 b) g( ) f ( ) g( f ( )) g The domain is which is domain for f( ) and also for f() should be defined on g ( ) when f ( ) 0. Thus the domain is all real values of, 0.8 One-to-one and Inverse Functions One-to-one function If the inverse of an function is also a function then the function must be one-t0-one. For a one-to-one function f(), each in the domain has onl one image in the range. No in the range is the image of more than one in the domain. Thus if a function f() has an inverse it is one-to-one. And when the function f() is one-to-one then for an element and in the domain of f() with we will have f ( ) f ( ). A one-to-one function can be determined b horizontal line test. 30

12 Graph of Functions Horizontal line test If ever horizontal line intersects the graph of f () in at most one point, then the function is one-to-one. Fig.0 Fig. Fig. One-to-one function One-to-one function Not one-to-one 7. Graph the following functions and determine if it is a one-to-one function a) f ( ) 9 7 b) f ( ) 9 7 c) f ( ) 7 Solution: a) b) c) Fig.3 Fig.4 Fig.5 One-to-one function Not one-to-one one-to-one In Fig.5 the horizontal line 7 seems to have infinitel man values ver close to zero, still it considered to be one-to-one. Inverse Functions Two one-to-one functions f() and gare ( ) said to be inverses to each other if f ( ) g( ) g( ) f ( ) and we write f ( f ( )). If () range D. f ( ) g ( ). Note that f has domain D and range R then its inverse ghas ( ) domain R and If gis ( ) the inverse of f(), then the graph of gis ( ) the reflection of f() in the line, known as the line of smmetr. 8. We consider a one-to-one function f ( ) 3 and few points. Also suppose that gis ( ) the inverse of f(). We have following results 0 - f( ) f() g ( ) 0 - Fig.6 g ( ) 3

13 Graph of Functions Determining the inverse of a one-to-one function f() Set f () Interchange the variables and so that the domain of inverse of f() is represented b numbers on the -ais. Solve for and replace b f ( ) 9. Find the inverse of f ( ) 3 f ( ) 3 Solution: f ( ) f ( ) 3 0. Find the inverse of f( ) 3 Solution: We write, domain is all and range is all 3 Replace b and b to get Solve for : 3 3 ( ) 3 3 f ( ) has domain with all and range with all. 3 f ( ). Find the inverse of f ( ) Solution: We write, domain is all 0 and range is Replace b and b to get Solve for : f() f ( ) f ( ) 3

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus Math 0-03-RE - Calculus I Functions Page of 0 Definition of a function f() : Topics of Functions used in Calculus A function = f() is a relation between variables and such that for ever value onl one value.

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0 PRINCIPLES OF MATHEMATICS 11 Chapter Quadratic Functions Lesson 1 Graphs of Quadratic Functions (.1) Date A. QUADRATIC FUNCTIONS A quadratic function is an equation that can be written in the following

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

2.1 The Rectangular Coordinate System

2.1 The Rectangular Coordinate System . The Rectangular Coordinate Sstem In this section ou will learn to: plot points in a rectangular coordinate sstem understand basic functions of the graphing calculator graph equations b generating a table

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Unit 3 Notes Mathematical Methods

Unit 3 Notes Mathematical Methods Unit 3 Notes Mathematical Methods Foundational Knowledge Created b Triumph Tutoring Copright info Copright Triumph Tutoring 07 Triumph Tutoring Pt Ltd ABN 60 607 0 507 First published in 07 All rights

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

CHAPTER 1 Functions and Their Graphs

CHAPTER 1 Functions and Their Graphs PART I CHAPTER Functions and Their Graphs Section. Lines in the Plane....................... Section. Functions........................... Section. Graphs of Functions..................... Section. Shifting,

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

c) domain {x R, x 3}, range {y R}

c) domain {x R, x 3}, range {y R} Answers Chapter 1 Functions 1.1 Functions, Domain, and Range 1. a) Yes, no vertical line will pass through more than one point. b) No, an vertical line between = 6 and = 6 will pass through two points..

More information

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint. Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 =

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 = Section 4 3: Slope Introduction We use the term Slope to describe how steep a line is as ou move between an two points on the line. The slope or steepness is a ratio of the vertical change in (rise) compared

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus CHAPTER P Preparation for Calculus Section P. Graphs and Models...................... Section P. Linear Models and Rates of Change............ Section P. Functions and Their Graphs................. Section

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

Linear Equation Theory - 2

Linear Equation Theory - 2 Algebra Module A46 Linear Equation Theor - Copright This publication The Northern Alberta Institute of Technolog 00. All Rights Reserved. LAST REVISED June., 009 Linear Equation Theor - Statement of Prerequisite

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

What Did You Learn? Key Terms. Key Concepts. 158 Chapter 1 Functions and Their Graphs

What Did You Learn? Key Terms. Key Concepts. 158 Chapter 1 Functions and Their Graphs 333371_010R.qxp 12/27/0 10:37 AM Page 158 158 Chapter 1 Functions and Their Graphs Ke Terms What Did You Learn? equation, p. 77 solution point, p. 77 intercepts, p. 78 slope, p. 88 point-slope form, p.

More information

y = f(x + 4) a) Example: A repeating X by using two linear equations y = ±x. b) Example: y = f(x - 3). The translation is

y = f(x + 4) a) Example: A repeating X by using two linear equations y = ±x. b) Example: y = f(x - 3). The translation is Answers Chapter Function Transformations. Horizontal and Vertical Translations, pages to. a h, k h, k - c h -, k d h 7, k - e h -, k. a A (-,, B (-,, C (-,, D (,, E (, A (-, -, B (-,, C (,, D (, -, E (,

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART II CHAPTER P Preparation for Calculus Section P. Graphs and Models..................... 8 Section P. Linear Models and Rates of Change............ 87 Section P. Functions and Their Graphs................

More information

Diagnostic Tests. (c) (sa sb )(sa sb ) Diagnostic Test: Algebra

Diagnostic Tests. (c) (sa sb )(sa sb ) Diagnostic Test: Algebra Diagnostic Tests Success in calculus depends to a large etent on knowledge of the mathematics that precedes calculus: algebra, analtic geometr, functions, and trigonometr. The following tests are intended

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile.

c) Words: The cost of a taxicab is $2.00 for the first 1/4 of a mile and $1.00 for each additional 1/8 of a mile. Functions Definition: A function f, defined from a set A to a set B, is a rule that associates with each element of the set A one, and onl one, element of the set B. Eamples: a) Graphs: b) Tables: 0 50

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

DIAGNOSTIC TESTS. (c) (sa sb )(sa sb )

DIAGNOSTIC TESTS. (c) (sa sb )(sa sb ) DIAGNOSTIC TESTS Success in calculus depends to a large etent on knowledge of the mathematics that precedes calculus: algebra, analtic geometr, functions, and trigonometr. The following tests are intended

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Section 7.1 Quadratic Functions 31 7.1 Quadratic Functions Mt. Douglas Secondar Quadratic functions are found in everda situations, not just in our math classroom. Tossing a ball

More information

Answers for the problems can be found at the end of this packet starting on Page 12.

Answers for the problems can be found at the end of this packet starting on Page 12. MAC 0 Review for Final Eam The eam will consists of problems similar to the ones below. When preparing, focus on understanding and general procedures (when available) rather than specific question. Answers

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

QUADRATIC FUNCTION REVIEW

QUADRATIC FUNCTION REVIEW Name: Date: QUADRATIC FUNCTION REVIEW Linear and eponential functions are used throughout mathematics and science due to their simplicit and applicabilit. Quadratic functions comprise another ver important

More information

ANALYTICAL GEOMETRY Revision of Grade 10 Analytical Geometry

ANALYTICAL GEOMETRY Revision of Grade 10 Analytical Geometry ANALYTICAL GEOMETRY Revision of Grade 10 Analtical Geometr Let s quickl have a look at the analtical geometr ou learnt in Grade 10. 8 LESSON Midpoint formula (_ + 1 ;_ + 1 The midpoint formula is used

More information

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line. MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

Math 115: Review for Chapter 2

Math 115: Review for Chapter 2 Math 5: Review for Chapter Can ou determine algebraicall whether an equation is smmetric with respect to the - ais, the -ais, or the origin?. Algebraicall determine whether each equation below is smmetric

More information

CHAPTER 3 Graphs and Functions

CHAPTER 3 Graphs and Functions CHAPTER Graphs and Functions Section. The Rectangular Coordinate Sstem............ Section. Graphs of Equations..................... 7 Section. Slope and Graphs of Linear Equations........... 7 Section.

More information

SUMMARY OF FUNCTION TRANSFORMATIONS

SUMMARY OF FUNCTION TRANSFORMATIONS SUMMARY OF FUNCTION TRANSFORMATIONS The graph of = Af(B(t +h))+k is a transformation of the graph of = f(t). The transformations are done in the following order: B: The function stretches or compresses

More information

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient.

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient. CHAPTER 6 Vocabular The table contains important vocabular terms from Chapter 6. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. Term Page Definition Clarifing

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2.

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2. - Quadratic Functions and Transformations Content Standards F.BF. Identif the effect on the graph of replacing f() b f() k, k f(), f(k), and f( k) for specific values of k (both positive and negative)

More information

7-1. Basic Trigonometric Identities

7-1. Basic Trigonometric Identities 7- BJECTIVE Identif and use reciprocal identities, quotient identities, Pthagorean identities, smmetr identities, and opposite-angle identities. Basic Trigonometric Identities PTICS Man sunglasses have

More information

C H A P T E R 3 Polynomial Functions

C H A P T E R 3 Polynomial Functions C H A P T E R Polnomial Functions Section. Quadratic Functions and Models............. 9 Section. Polnomial Functions of Higher Degree......... Section. Polnomial and Snthetic Division............ 8 Section.

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D. 1.2 Functions and Their Properties PreCalculus 1.2 FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1.2 1. Determine whether a set of numbers or a graph is a function 2. Find the domain of a function

More information

CHAPTER 1 Functions, Graphs, and Limits

CHAPTER 1 Functions, Graphs, and Limits CHAPTER Functions, Graphs, and Limits Section. The Cartesian Plane and the Distance Formula.......... Section. Graphs of Equations........................ 8 Section. Lines in the Plane and Slope....................

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15)

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) Date: Chapter Goals: Identif solutions to an equation. Solve an equation for one variable in terms of another. What is a function? Understand

More information

MA123, Chapter 1: Equations, functions, and graphs (pp. 1-15, Gootman)

MA123, Chapter 1: Equations, functions, and graphs (pp. 1-15, Gootman) MA123, Chapter 1: Equations, functions, and graphs (pp. 1-15, Gootman) Chapter Goals: Solve an equation for one variable in terms of another. What is a function? Find inverse functions. What is a graph?

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates

10.5. Polar Coordinates. 714 Chapter 10: Conic Sections and Polar Coordinates. Definition of Polar Coordinates 71 Chapter 1: Conic Sections and Polar Coordinates 1.5 Polar Coordinates rigin (pole) r P(r, ) Initial ra FIGURE 1.5 To define polar coordinates for the plane, we start with an origin, called the pole,

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

4 Linear Functions 45

4 Linear Functions 45 4 Linear Functions 45 4 Linear Functions Essential questions 1. If a function f() has a constant rate of change, what does the graph of f() look like? 2. What does the slope of a line describe? 3. What

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs Sample Questions to the Final Eam in Math 1111 Chapter Section.1: Basics of Functions and Their Graphs 1. Find the range of the function: y 16. a.[-4,4] b.(, 4],[4, ) c.[0, ) d.(, ) e.. Find the domain

More information

EOC Review. Algebra I

EOC Review. Algebra I EOC Review Algebra I Order of Operations PEMDAS Parentheses, Eponents, Multiplication/Division, Add/Subtract from left to right. A. Simplif each epression using appropriate Order of Operations.. 5 6 +.

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

National 5 Learning Checklist - Relationships

National 5 Learning Checklist - Relationships National 5 Learning Checklist - Relationships Topic Skills Extra Stud / Notes Straight Line Gradient Represented b m Measure of steepness of slope Positive gradient the line is increasing Negative gradient

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Performing well in calculus is impossible without a solid algebra foundation. Many calculus Chapter Algebra Review Performing well in calculus is impossible without a solid algebra foundation. Many calculus problems that you encounter involve a calculus concept but then require many, many steps

More information

Name Period Date. Practice FINAL EXAM Intro to Calculus (50 points) Show all work on separate sheet of paper for full credit!

Name Period Date. Practice FINAL EXAM Intro to Calculus (50 points) Show all work on separate sheet of paper for full credit! Name Period Date Practice FINAL EXAM Intro to Calculus (0 points) Show all work on separate sheet of paper for full credit! ) Evaluate the algebraic epression for the given value or values of the variable(s).

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Diagnostic Tests Study Guide

Diagnostic Tests Study Guide California State Universit, Sacramento Department of Mathematics and Statistics Diagnostic Tests Stud Guide Descriptions Stud Guides Sample Tests & Answers Table of Contents: Introduction Elementar Algebra

More information

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2 78 Chapter Sstems of Linear Equations Section. Concepts. Solutions to Sstems of Linear Equations. Dependent and Inconsistent Sstems of Linear Equations. Solving Sstems of Linear Equations b Graphing Solving

More information

MHF4U1 ASSIGNMENT CHAPTER 1

MHF4U1 ASSIGNMENT CHAPTER 1 K: /39 I: /35 A: /6 Multiple Choice [K: 1 mark each = 33 total marks] Identif the choice that best completes the statement or answers the question. 1. An equation representing a function that etends from

More information

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs 0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I APPENDIXES A Numbers, Inequalities, and Absolute Values B Coordinate Geometr and Lines C Graphs of Second-Degree Equations D Trigonometr E F Sigma Notation Proofs of Theorems G The Logarithm Defined as

More information

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name

FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name FINAL EXAM REVIEW ITEMS Math 0312: Intermediate Algebra Name 1) Find the SUM of the solutions of the equation. 82 + 0 = 16 Use the quadratic formula to solve the equation. (All solutions are real numbers.)

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

4Cubic. polynomials UNCORRECTED PAGE PROOFS

4Cubic. polynomials UNCORRECTED PAGE PROOFS 4Cubic polnomials 4.1 Kick off with CAS 4. Polnomials 4.3 The remainder and factor theorems 4.4 Graphs of cubic polnomials 4.5 Equations of cubic polnomials 4.6 Cubic models and applications 4.7 Review

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information

MATH 60 Review Problems for Final Exam

MATH 60 Review Problems for Final Exam MATH 60 Review Problems for Final Eam Scientific Calculators Onl - Graphing Calculators Not Allowed NO CLASS NOTES PERMITTED Evaluate the epression for the given values. m 1) m + 3 for m = 3 2) m 2 - n2

More information

Graphing Review Part 1: Circles, Ellipses and Lines

Graphing Review Part 1: Circles, Ellipses and Lines Graphing Review Part : Circles, Ellipses and Lines Definition The graph of an equation is the set of ordered pairs, (, y), that satisfy the equation We can represent the graph of a function by sketching

More information

10.2 INTRODUCTION TO CONICS: PARABOLAS

10.2 INTRODUCTION TO CONICS: PARABOLAS Section 0.2 Introduction to Conics: Parabolas 733 0.2 INTRODUCTION TO CONICS: PARABOLAS What ou should learn Recognize a conic as the intersection of a plane a double-napped cone. Write equations of parabolas

More information

Formulas and Concepts Study Guide MAT 101: College Algebra

Formulas and Concepts Study Guide MAT 101: College Algebra Formulas and Concepts Stud Guide MAT 101: College Algebra Preparing for Tests: The formulas and concepts here ma not be inclusive. You should first take our practice test with no notes or help to see what

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1.

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1. 8.4 An Introduction to Functions: Linear Functions, Applications, and Models We often describe one quantit in terms of another; for eample, the growth of a plant is related to the amount of light it receives,

More information

Quadratics in Vertex Form Unit 1

Quadratics in Vertex Form Unit 1 1 U n i t 1 11C Date: Name: Tentative TEST date Quadratics in Verte Form Unit 1 Reflect previous TEST mark, Overall mark now. Looking back, what can ou improve upon? Learning Goals/Success Criteria Use

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions This section reviews radian measure and the basic trigonometric functions. C ' θ r s ' ngles ngles are measured in degrees or radians. The number of radians in the central angle

More information

Equations for Some Hyperbolas

Equations for Some Hyperbolas Lesson 1-6 Lesson 1-6 BIG IDEA From the geometric defi nition of a hperbola, an equation for an hperbola smmetric to the - and -aes can be found. The edges of the silhouettes of each of the towers pictured

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

Ready To Go On? Skills Intervention 6-1 Polynomials

Ready To Go On? Skills Intervention 6-1 Polynomials 6A Read To Go On? Skills Intervention 6- Polnomials Find these vocabular words in Lesson 6- and the Multilingual Glossar. Vocabular monomial polnomial degree of a monomial degree of a polnomial leading

More information

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator,

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator, GRADE PRE-CALCULUS UNIT C: QUADRATIC FUNCTIONS CLASS NOTES FRAME. After linear functions, = m + b, and their graph the Quadratic Functions are the net most important equation or function. The Quadratic

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information