Berlekamp-Massey decoding of RS code

Size: px
Start display at page:

Download "Berlekamp-Massey decoding of RS code"

Transcription

1 IERG60 Coding for Distributed Storage Systems Lecture - 05//06 Berlekamp-Massey decoding of RS code Lecturer: Kenneth Shum Scribe: Bowen Zhang Berlekamp-Massey algorithm We recall some notations from lecture Let (S, S, S 3,, S n ) be an arbitrary sequence of elements in a field K We say that this sequence is described by a linear feedback shift register (LFSR) of length L if there exists L field elements Λ, Λ,, Λ L, such that S i can be obtained as a linear function of the previous L elements, S i = Λ S i Λ S i Λ L S i L () for i = L +, L +,, n We specify the linear feedback shift register by a pair (L, Λ(Z)), where L denotes the length of the LFSR and Λ(Z) is the feedback polynomial defined as Λ(Z) := + Λ Z + Λ Z + + Λ L Z L We note that the degree of Λ(Z) is less than or equal to L, and the constant term is equal to (The degree is strictly less than L if Λ L = 0) For notational convenience, we define Λ 0 :=, so that () can be written compactly as for i = L +,, n 0 = Λ j S i j, j=0 Figure : Example of linear feedback shift register We want to find the shortest LFSR that generates (S, S, S 3,, S n ) The length of the shortest LFSR that generates (S, S, S 3,, S n ) is called the linear complexity of (S, S, S 3,, S n ) For M =,,, n, let L M be the linear complexity of the first M terms (S, S,, S M ), and let Λ M (Z) = L M j=0 ΛM j Z j be the corresponding feedback polynomial Caveat: There may be more than one LFSR that achieve the shortest length

2 We have the following chain of inequalities L L L 3 L n, () because, if (L M, Λ M (Z)) is the shortest LFSR that generates the first M terms, it also generates the first M terms The non-decreasing sequence of integers in () is usually called the linear complexity profile of (S, S, S 3,, S n ) The M-th term produced by (L M, Λ M (Z)), may not equal to the desired value S M We let M Ŝ M := Λ M j S M j j= M := S M ŜM = M j=0 Λ M j S M j, be the difference between S M and ŜM If M = 0, then the LFSR (L M, Λ M (Z)) correctly computes the M-th term S M, and we can let (L M, Λ M (Z)) = (L M, Λ M (Z)) When M 0, we have shown in lecture that Theorem Suppose that (L i, Λ i (Z)) is the shortest LFSR that produces (S, S,, S i ), for i =,,, M If M 0, then L M max(l M, M L M ) The Berlekamp-Massey algorithm computes the linear complexity profile and the corresponding feedback polynomials of a sequence of elements (S,, S n ) from a field K The algorithm computes L, L, iteratively In each step, we consider two cases If M = 0, set L M = L M and Λ M (Z) = Λ M (Z) If M 0, then the feedback polynomial Λ M (Z) is obtained by Λ M (Z) = Λ M (Z) + Λ µ (Z)Z e α, where µ M, e Z, and α K The value of µ, e and α are obtained by the following theorem Theorem Suppose (L i, Λ i (Z)) is the shortest LFSR for (S,, S i ), satisfying L i if i = 0, L i = max(l i, i L i ) if i 0, for i =,, 3,, M If µ < M, satisfying L µ < L µ = L µ+ = = L M, and µ 0, then we can find an LFSR (L M, Λ M (Z)) that generates (S,, S M ), with length L M if M = 0, L M = max(l M, M L M ) if M 0

3 Proof If M = 0, we set Λ M (Z) = Λ M (Z) and L M = L M Suppose that M 0 Set Λ M (Z) = Λ M (Z) M µ Z M µ Λ µ (Z) (3) We remark that we do not have division by zero in (3), because µ is non-zero by the assumption in the theorem Let D = deg Λ M (Z) max(l M, M µ + L µ ) be the degree of Λ M (Z) defined in (3) We check that the LFSR specified by feedback polynomial Λ M (Z) can generate (S,, S M ) By the assumptions in the theorem, we have and L µ M Λ µ i S j i = Λ M i S j i = 0 if j = L µ +, L µ +,, µ, µ if j = µ, 0 if j = L M +, L M +,, M, M if j = M With the notations Λ M i = 0 for i = L M +, L M +,, D and Λ µ i = 0 for i = L µ +, L µ +,, D, we can write the recursion as Λ M i S j i = Λ M i S j i M µ Λ µ i S j M+µ i (4) If j = M, then the two summations on the right-hand side of (4) are equal to D and Λ µ i S M M+µ i = Λ µ i S µ i = µ, ΛM i S M i = M respectively Therefore, the right-hand side of (4) is equal to zero Now suppose that j < M The first summation on the right-hand side of (4) is equal to zero for j > L M, and the second summation is equal to zero if j M + µ > L µ, By the hypothesis that µ 0, we have L µ = µ L µ Hence the second summation in (4) is equal to zero when j > M µ + L µ = M L µ = M L µ+ = = M L M We conclude that D ΛM i S j i is equal to zero for max(l M, M L M ) < j M We can set L M = max(l M, M L M ) The degree of Λ M is no more than max(l M, M µ + L µ ) = max(l M, M L M ) = L M The polynomial Λ M (Z) specifies an LFSR with length no more than L M The LFSR (L M, Λ M (Z)) generates (S, S,, S M ) 3

4 Given a sequence (S, S,, S N ), we find the smallest index m such that S m 0 We initialize the algorithm by L j = 0, Λ j (Z) =, for j = 0,,, m, and L m = m, Λ m (Z) = The LFSR (L i, Λ i (Z)) satisfy the conditions in Theorem with m = S m 0 The algorithm continues with repeated applications of Theorem for M = m, m +, m +,, n Example Determine the linear complexity profile of the sequence over F This sequence is ultimately periodic S = 0, S =, S 3 = 0, and S i = for i 4, Initialization The first non-zero element occurs at S = Let (L 0, Λ 0 (Z)) = (L, Λ (Z)) = (0, ), and (L, Λ (Z)) = (, ) We have = M = 3 As 3 = 0, we set L 3 = L and Λ 3 (Z) = Λ (Z) M = 4 4 = Set L 4 = max(l 3, 4 L 3 ) = max(, 4 ) =, and Λ 4 (Z) = Λ 3 (Z) + Z Λ (Z) = + Z M = 5 5 = Set L 5 = max(l 4, 5 L 4 ) = max(, 5 ) = 3, and M = 6 Because 6 = 0, (L 6, Λ 6 (Z)) = (L 5, Λ 5 (Z)) Λ 5 (Z) = Λ 4 (Z) + Z 4 Λ (Z) = + Z + Z 3 M = 7 7 = Set L 7 = max(l 6, 7 L 6 ) = max(3, 7 3) = 4, and Λ 7 (Z) = Λ 6 (Z) + Z Λ 4 (Z) = ( + Z + Z 3 ) + Z ( + Z ) = + Z 3 + Z 4 M = 8 8 = Set L 8 = max(l 7, 8 L 7 ) = max(4, 8 4) = 4, and Λ 8 (Z) = Λ 7 (Z) + ZΛ 6 (Z) = ( + Z 4 + Z 3 ) + Z( + Z + Z 3 ) = + Z M 9 M = 0, (L M, Λ M (Z)) = (L 8, Λ 8 (Z)) = (4, + Z) The calculations are summarized in the following table i S i 0 0 i L i Λ i (z) + Z + Z + Z 3 + Z + Z 3 + Z 3 + Z 4 + Z + Z The linear complexity profile is 0,,,,3,3,4,4,4, 4

5 Decoding RS Codes First we define some notations Fix n distinct elements α,, α n in F q Let g(z) := (Z α )(Z α ) (Z α n ) g i (Z) := g(z) Z α i = (Z α )(Z α ) (Z α i )(Z α i+ )(Z α i+ ) (Z α n ) We first prove the following useful lemma Lemma 3 We have Proof n i= α j i g i (α i ) = 0 if j = 0,,, n if j = n We use the notation α α α n V (α,, α n ) := = (α j α i ) α n α n αn n j>i for the determinant of a Vandermonde matrix Suppose that we replace the last row of the above Vandermonde matrix by [α j i ] i=,,n, for some j between and n, α α α n δ j := α n α n αn n α j α j αn j Expand the determinant on the last row We get δ j = n ( ) n+i α j i V (α, α,, α i,, α n ) i= n = ( ) n+i α j i V (α, α,, α n ) (α i= n α i ) (α i+ α i ) (α i α i ) (α i α ) n α j i = V (α, α,, α n ) g i (α i ) i= If j = n, then the determinant δ j is equal to V (α,, α n ), and we get n i= αn i /g i (α i ) = For j = 0,,,, n, we have δ j = 0, because there are two repeated rows in the determinant δ j Hence n i= αj i /g i(α i ) = 0 for j = 0,,,, n We consider an (n, k) Reed-Solomon codes with the following k n generator matrix α α α n G = α k α k αn k (5) 5

6 where α i s are distinct nonzero elements in a finite field F q In the following, we need the assumption that all α i s are non-zero, so that α i exists in F q for all i A list of k message symbols, m to m k, are encoded to a codeword by multiplying (m,, m k ) G From Lemma 3, we can write down a parity-check matrix as H = g (α ) α g (α ) α n k g (α ) g (α ) g n (α n ) α g (α ) α n g n(α n) α n k g (α ) α n k n g n(α n) = α α α n α n k α n k αn n k We note that g i (α i ) are nonzero for all i, because the elements α,, α n are distinct The following is a syndrome-based method for decoding RS code diag( g (α ),, g n (α n ) ) Step() Calculate syndromes by multiplying the received vector Y and the transpose of parity-check matrix in (6) The syndromes are the components of yh T = (s, s,, s d ), where d = n k + is the minimum distance Step() Obtain the shortest linear feedback shift register (L, Λ(Z)) that generates the syndrome sequence s, s,, s d Step(3) If the number of errors t is less than or equal to (d ), then the feedback polynomial Λ(Z) has degree t and t distinct roots There is an error at location i if and only if Λ(α i ) = 0 In the case when Λ(Z) has no root in F q or the number distinct roots of Λ(Z) is strictly less than the degree of Λ(Z), then we can declare that there are more than errors, and stop the decoding procedure Step(4) equations Exercise (d ) After locating the errors, then error values can be calculated by solving a system of linear In the last step of the decoding procedure of RS code, we need to determine the error values Suppose that we have already determined the location of the errors, and they are i < i < < i t for some integer t less than or equal to (d ) Let e be the error vector, defined as the difference between the received vector and the transmitted codeword Let the i j -th component of e be e ij, for j =,, t Show that the error values e ij satisfy the following system of linear equations: s g i (α s = α i α i α it i ) e i g i (α i ) e i s t α t i α t i α t i t g it e (α it ) it (6) After obtaining the correct codeword, we also need to decode the message symbols m,, m k A naive method is to solve a system of k k system of linear equations Since RS code is MDS, we can arbitrarily pick k coded symbols and solve for the k message symbols This requires O(k 3 ) steps Show that the following procedure can also produce the message symbols 6

7 Input: a valid codeword c = (c, c,, c n ) in the row-space of matrix G in (5) Output: a message vector (m,, m k ) such that (m,, m k ) G = c Step 0 Let x c Step l k Step Compute the l-th message symbol m l by taking the inner product m l x ( α n l g (α ), α n l g (α ),, αn n l ) g n (α n ) Step 3 x x m l (α l, α l,, α l n ) Step 4 l l Step 5 While l, go back to step, otherwise return (m,, m k ) and stop This method computes the message symbols in the order of m k, m k,, m The while-loop is repeated k times, and we need to perform O(n) field operations in steps and 3 The overall computational complexity is O(kn) References [] J L Massey, Shift-register synthesis and BCH decoding, IEEE Trans Inf Theory, vol 5, no 7, pp, Jan 969 [] E Berlekamp, Algebraic coding theory, revised edition, World Scientific Publishing, 05 7

Binary Primitive BCH Codes. Decoding of the BCH Codes. Implementation of Galois Field Arithmetic. Implementation of Error Correction

Binary Primitive BCH Codes. Decoding of the BCH Codes. Implementation of Galois Field Arithmetic. Implementation of Error Correction BCH Codes Outline Binary Primitive BCH Codes Decoding of the BCH Codes Implementation of Galois Field Arithmetic Implementation of Error Correction Nonbinary BCH Codes and Reed-Solomon Codes Preface The

More information

Coding Theory. Ruud Pellikaan MasterMath 2MMC30. Lecture 11.1 May

Coding Theory. Ruud Pellikaan MasterMath 2MMC30. Lecture 11.1 May Coding Theory Ruud Pellikaan g.r.pellikaan@tue.nl MasterMath 2MMC30 /k Lecture 11.1 May 12-2016 Content lecture 11 2/31 In Lecture 8.2 we introduced the Key equation Now we introduce two algorithms which

More information

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding Chapter 6 Reed-Solomon Codes 6. Finite Field Algebra 6. Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding 6. Finite Field Algebra Nonbinary codes: message and codeword symbols

More information

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16 Solutions of Exam Coding Theory (2MMC30), 23 June 2016 (1.a) Consider the 4 4 matrices as words in F 16 2, the binary vector space of dimension 16. C is the code of all binary 4 4 matrices such that the

More information

4F5: Advanced Communications and Coding

4F5: Advanced Communications and Coding 4F5: Advanced Communications and Coding Coding Handout 4: Reed Solomon Codes Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk

More information

Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities

Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities Sector-Disk Codes and Partial MDS Codes with up to Three Global Parities Junyu Chen Department of Information Engineering The Chinese University of Hong Kong Email: cj0@alumniiecuhkeduhk Kenneth W Shum

More information

Chapter 6. BCH Codes

Chapter 6. BCH Codes Chapter 6 BCH Codes Description of the Codes Decoding of the BCH Codes Outline Implementation of Galois Field Arithmetic Implementation of Error Correction Nonbinary BCH Codes and Reed-Solomon Codes Weight

More information

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes S-723410 BCH and Reed-Solomon Codes 1 S-723410 BCH and Reed-Solomon Codes 3 Background The algebraic structure of linear codes and, in particular, cyclic linear codes, enables efficient encoding and decoding

More information

Reed-Solomon codes. Chapter Linear codes over finite fields

Reed-Solomon codes. Chapter Linear codes over finite fields Chapter 8 Reed-Solomon codes In the previous chapter we discussed the properties of finite fields, and showed that there exists an essentially unique finite field F q with q = p m elements for any prime

More information

ELEC3227/4247 Mid term Quiz2 Solution with explanation

ELEC3227/4247 Mid term Quiz2 Solution with explanation ELEC7/447 Mid term Quiz Solution with explanation Ang Man Shun Department of Electrical and Electronic Engineering, University of Hong Kong Document creation date : 015 1 05 This document explain the solution

More information

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes

Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes Introduction to Coding Theory CMU: Spring 010 Notes 10: List Decoding Reed-Solomon Codes and Concatenated codes April 010 Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Ali Kemal Sinop DRAFT

More information

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups.

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. Binary codes Let us assume that a message to be transmitted is in binary form. That is, it is a word in the alphabet

More information

RON M. ROTH * GADIEL SEROUSSI **

RON M. ROTH * GADIEL SEROUSSI ** ENCODING AND DECODING OF BCH CODES USING LIGHT AND SHORT CODEWORDS RON M. ROTH * AND GADIEL SEROUSSI ** ABSTRACT It is shown that every q-ary primitive BCH code of designed distance δ and sufficiently

More information

Error Correction Review

Error Correction Review Error Correction Review A single overall parity-check equation detects single errors. Hamming codes used m equations to correct one error in 2 m 1 bits. We can use nonbinary equations if we create symbols

More information

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission P.Mozhiarasi, C.Gayathri, V.Deepan Master of Engineering, VLSI design, Sri Eshwar College of Engineering, Coimbatore- 641 202,

More information

5.0 BCH and Reed-Solomon Codes 5.1 Introduction

5.0 BCH and Reed-Solomon Codes 5.1 Introduction 5.0 BCH and Reed-Solomon Codes 5.1 Introduction A. Hocquenghem (1959), Codes correcteur d erreurs; Bose and Ray-Chaudhuri (1960), Error Correcting Binary Group Codes; First general family of algebraic

More information

Decoding Reed-Muller codes over product sets

Decoding Reed-Muller codes over product sets Rutgers University May 30, 2016 Overview Error-correcting codes 1 Error-correcting codes Motivation 2 Reed-Solomon codes Reed-Muller codes 3 Error-correcting codes Motivation Goal: Send a message Don t

More information

Lecture 03: Polynomial Based Codes

Lecture 03: Polynomial Based Codes Lecture 03: Polynomial Based Codes Error-Correcting Codes (Spring 016) Rutgers University Swastik Kopparty Scribes: Ross Berkowitz & Amey Bhangale 1 Reed-Solomon Codes Reed Solomon codes are large alphabet

More information

Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring

Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring Antonio Aparecido de Andrade Department of Mathematics, IBILCE, UNESP, 15054-000, São José do Rio Preto, SP, Brazil E-mail:

More information

Solutions or answers to Final exam in Error Control Coding, October 24, G eqv = ( 1+D, 1+D + D 2)

Solutions or answers to Final exam in Error Control Coding, October 24, G eqv = ( 1+D, 1+D + D 2) Solutions or answers to Final exam in Error Control Coding, October, Solution to Problem a) G(D) = ( +D, +D + D ) b) The rate R =/ and ν i = ν = m =. c) Yes, since gcd ( +D, +D + D ) =+D + D D j. d) An

More information

Lecture 12: Reed-Solomon Codes

Lecture 12: Reed-Solomon Codes Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 007) Lecture 1: Reed-Solomon Codes September 8, 007 Lecturer: Atri Rudra Scribe: Michel Kulhandjian Last lecture we saw the proof

More information

The number of message symbols encoded into a

The number of message symbols encoded into a L.R.Welch THE ORIGINAL VIEW OF REED-SOLOMON CODES THE ORIGINAL VIEW [Polynomial Codes over Certain Finite Fields, I.S.Reed and G. Solomon, Journal of SIAM, June 1960] Parameters: Let GF(2 n ) be the eld

More information

Section 3 Error Correcting Codes (ECC): Fundamentals

Section 3 Error Correcting Codes (ECC): Fundamentals Section 3 Error Correcting Codes (ECC): Fundamentals Communication systems and channel models Definition and examples of ECCs Distance For the contents relevant to distance, Lin & Xing s book, Chapter

More information

Lecture 12: November 6, 2017

Lecture 12: November 6, 2017 Information and Coding Theory Autumn 017 Lecturer: Madhur Tulsiani Lecture 1: November 6, 017 Recall: We were looking at codes of the form C : F k p F n p, where p is prime, k is the message length, and

More information

Arrangements, matroids and codes

Arrangements, matroids and codes Arrangements, matroids and codes first lecture Ruud Pellikaan joint work with Relinde Jurrius ACAGM summer school Leuven Belgium, 18 July 2011 References 2/43 1. Codes, arrangements and matroids by Relinde

More information

Lecture 3: Error Correcting Codes

Lecture 3: Error Correcting Codes CS 880: Pseudorandomness and Derandomization 1/30/2013 Lecture 3: Error Correcting Codes Instructors: Holger Dell and Dieter van Melkebeek Scribe: Xi Wu In this lecture we review some background on error

More information

Product-matrix Construction

Product-matrix Construction IERG60 Coding for Distributed Storage Systems Lecture 0-9//06 Lecturer: Kenneth Shum Product-matrix Construction Scribe: Xishi Wang In previous lectures, we have discussed about the minimum storage regenerating

More information

Implementation of Galois Field Arithmetic. Nonbinary BCH Codes and Reed-Solomon Codes

Implementation of Galois Field Arithmetic. Nonbinary BCH Codes and Reed-Solomon Codes BCH Codes Wireless Information Transmission System Lab Institute of Communications Engineering g National Sun Yat-sen University Outline Binary Primitive BCH Codes Decoding of the BCH Codes Implementation

More information

Fast Decoding Of Alternant Codes Using A Divison-Free Analog Of An Accelerated Berlekamp-Massey Algorithm

Fast Decoding Of Alternant Codes Using A Divison-Free Analog Of An Accelerated Berlekamp-Massey Algorithm Fast Decoding Of Alternant Codes Using A Divison-Free Analog Of An Accelerated Berlekamp-Massey Algorithm MARC A. ARMAND WEE SIEW YEN Department of Electrical & Computer Engineering National University

More information

Lecture 10-11: General attacks on LFSR based stream ciphers

Lecture 10-11: General attacks on LFSR based stream ciphers Lecture 10-11: General attacks on LFSR based stream ciphers Thomas Johansson T. Johansson (Lund University) 1 / 23 Introduction z = z 1, z 2,..., z N is a known keystream sequence find a distinguishing

More information

An Interpolation Algorithm for List Decoding of Reed-Solomon Codes

An Interpolation Algorithm for List Decoding of Reed-Solomon Codes An Interpolation Algorithm for List Decoding of Reed-Solomon Codes Kwankyu Lee Department of Mathematics San Diego State University San Diego, USA Email: kwankyu@sogangackr Michael E O Sullivan Department

More information

: Error Correcting Codes. October 2017 Lecture 1

: Error Correcting Codes. October 2017 Lecture 1 03683072: Error Correcting Codes. October 2017 Lecture 1 First Definitions and Basic Codes Amnon Ta-Shma and Dean Doron 1 Error Correcting Codes Basics Definition 1. An (n, K, d) q code is a subset of

More information

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 4, 01 Lecturer: Elena Grigorescu Lecture 14 Scribe: Selvakumaran Vadivelmurugan 1 Introduction We introduced error-correcting codes and linear codes in

More information

Information redundancy

Information redundancy Information redundancy Information redundancy add information to date to tolerate faults error detecting codes error correcting codes data applications communication memory p. 2 - Design of Fault Tolerant

More information

1 Vandermonde matrices

1 Vandermonde matrices ECE 771 Lecture 6 BCH and RS codes: Designer cyclic codes Objective: We will begin with a result from linear algebra regarding Vandermonde matrices This result is used to prove the BCH distance properties,

More information

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction

Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction K V Rashmi, Nihar B Shah, and P Vijay Kumar, Fellow, IEEE Abstract Regenerating codes

More information

4.3 General attacks on LFSR based stream ciphers

4.3 General attacks on LFSR based stream ciphers 67 4.3 General attacks on LFSR based stream ciphers Recalling our initial discussion on possible attack scenarios, we now assume that z = z 1,z 2,...,z N is a known keystream sequence from a generator

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communications II Lecture 9: Error Correction Coding Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Outline Introduction Linear block codes Decoding Hamming

More information

New Algebraic Decoding of (17,9,5) Quadratic Residue Code by using Inverse Free Berlekamp-Massey Algorithm (IFBM)

New Algebraic Decoding of (17,9,5) Quadratic Residue Code by using Inverse Free Berlekamp-Massey Algorithm (IFBM) International Journal of Computational Intelligence Research (IJCIR). ISSN: 097-87 Volume, Number 8 (207), pp. 205 2027 Research India Publications http://www.ripublication.com/ijcir.htm New Algebraic

More information

Lecture 28: Generalized Minimum Distance Decoding

Lecture 28: Generalized Minimum Distance Decoding Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 007) Lecture 8: Generalized Minimum Distance Decoding November 5, 007 Lecturer: Atri Rudra Scribe: Sandipan Kundu & Atri Rudra 1

More information

Cyclic codes: overview

Cyclic codes: overview Cyclic codes: overview EE 387, Notes 14, Handout #22 A linear block code is cyclic if the cyclic shift of a codeword is a codeword. Cyclic codes have many advantages. Elegant algebraic descriptions: c(x)

More information

for some error exponent E( R) as a function R,

for some error exponent E( R) as a function R, . Capacity-achieving codes via Forney concatenation Shannon s Noisy Channel Theorem assures us the existence of capacity-achieving codes. However, exhaustive search for the code has double-exponential

More information

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem IITM-CS6845: Theory Toolkit February 08, 2012 Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem Lecturer: Jayalal Sarma Scribe: Dinesh K Theme: Error correcting codes In the previous lecture,

More information

MATH32031: Coding Theory Part 15: Summary

MATH32031: Coding Theory Part 15: Summary MATH32031: Coding Theory Part 15: Summary 1 The initial problem The main goal of coding theory is to develop techniques which permit the detection of errors in the transmission of information and, if necessary,

More information

Alternant and BCH codes over certain rings

Alternant and BCH codes over certain rings Computational and Applied Mathematics Vol. 22, N. 2, pp. 233 247, 2003 Copyright 2003 SBMAC Alternant and BCH codes over certain rings A.A. ANDRADE 1, J.C. INTERLANDO 1 and R. PALAZZO JR. 2 1 Department

More information

Error Correction Methods

Error Correction Methods Technologies and Services on igital Broadcasting (7) Error Correction Methods "Technologies and Services of igital Broadcasting" (in Japanese, ISBN4-339-06-) is published by CORONA publishing co., Ltd.

More information

Counting Functions for the k-error Linear Complexity of 2 n -Periodic Binary Sequences

Counting Functions for the k-error Linear Complexity of 2 n -Periodic Binary Sequences Counting Functions for the k-error inear Complexity of 2 n -Periodic Binary Sequences amakanth Kavuluru and Andrew Klapper Department of Computer Science, University of Kentucky, exington, KY 40506. Abstract

More information

Reverse Berlekamp-Massey Decoding

Reverse Berlekamp-Massey Decoding Reverse Berlekamp-Massey Decoding Jiun-Hung Yu and Hans-Andrea Loeliger Department of Information Technology and Electrical Engineering ETH Zurich, Switzerland Email: {yu, loeliger}@isi.ee.ethz.ch arxiv:1301.736v

More information

Algebra for error control codes

Algebra for error control codes Algebra for error control codes EE 387, Notes 5, Handout #7 EE 387 concentrates on block codes that are linear: Codewords components are linear combinations of message symbols. g 11 g 12 g 1n g 21 g 22

More information

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Item Type text; Proceedings Authors Jagiello, Kristin M. Publisher International Foundation for Telemetering Journal International Telemetering

More information

REED-SOLOMON codes are powerful techniques for

REED-SOLOMON codes are powerful techniques for 1 Efficient algorithms for decoding Reed-Solomon codes with erasures Todd Mateer Abstract In this paper, we present a new algorithm for decoding Reed-Solomon codes with both errors and erasures. The algorithm

More information

Regenerating Codes and Locally Recoverable. Codes for Distributed Storage Systems

Regenerating Codes and Locally Recoverable. Codes for Distributed Storage Systems Regenerating Codes and Locally Recoverable 1 Codes for Distributed Storage Systems Yongjune Kim and Yaoqing Yang Abstract We survey the recent results on applying error control coding to distributed storage

More information

Error Detection and Correction: Hamming Code; Reed-Muller Code

Error Detection and Correction: Hamming Code; Reed-Muller Code Error Detection and Correction: Hamming Code; Reed-Muller Code Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Hamming Code: Motivation

More information

Lecture B04 : Linear codes and singleton bound

Lecture B04 : Linear codes and singleton bound IITM-CS6845: Theory Toolkit February 1, 2012 Lecture B04 : Linear codes and singleton bound Lecturer: Jayalal Sarma Scribe: T Devanathan We start by proving a generalization of Hamming Bound, which we

More information

Ma/CS 6b Class 25: Error Correcting Codes 2

Ma/CS 6b Class 25: Error Correcting Codes 2 Ma/CS 6b Class 25: Error Correcting Codes 2 By Adam Sheffer Recall: Codes V n the set of binary sequences of length n. For example, V 3 = 000,001,010,011,100,101,110,111. Codes of length n are subsets

More information

Characterization of 2 n -Periodic Binary Sequences with Fixed 2-error or 3-error Linear Complexity

Characterization of 2 n -Periodic Binary Sequences with Fixed 2-error or 3-error Linear Complexity Characterization of n -Periodic Binary Sequences with Fixed -error or 3-error Linear Complexity Ramakanth Kavuluru Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA. Abstract

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Polynomials, Lagrange, and Error-correction Lecture 23 (November 10, 2009) P(X) = X 3 X 2 + + X 1 + Definition: Recall: Fields A field F is a set together

More information

Lecture 4: Codes based on Concatenation

Lecture 4: Codes based on Concatenation Lecture 4: Codes based on Concatenation Error-Correcting Codes (Spring 206) Rutgers University Swastik Kopparty Scribe: Aditya Potukuchi and Meng-Tsung Tsai Overview In the last lecture, we studied codes

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

Decoding Interleaved Gabidulin Codes using Alekhnovich s Algorithm 1

Decoding Interleaved Gabidulin Codes using Alekhnovich s Algorithm 1 Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory June 18-24, 2016, Albena, Bulgaria pp. 255 260 Decoding Interleaved Gabidulin Codes using Alekhnovich s Algorithm 1 Sven Puchinger

More information

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

ERROR CORRECTING CODES

ERROR CORRECTING CODES ERROR CORRECTING CODES To send a message of 0 s and 1 s from my computer on Earth to Mr. Spock s computer on the planet Vulcan we use codes which include redundancy to correct errors. n q Definition. A

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding. 1 Review - Concatenated codes and Zyablov s tradeoff

Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding. 1 Review - Concatenated codes and Zyablov s tradeoff Introduction to Coding Theory CMU: Spring 2010 Notes 7: Justesen codes, Reed-Solomon and concatenated codes decoding March 2010 Lecturer: V. Guruswami Scribe: Venkat Guruswami & Balakrishnan Narayanaswamy

More information

Secure RAID Schemes from EVENODD and STAR Codes

Secure RAID Schemes from EVENODD and STAR Codes Secure RAID Schemes from EVENODD and STAR Codes Wentao Huang and Jehoshua Bruck California Institute of Technology, Pasadena, USA {whuang,bruck}@caltechedu Abstract We study secure RAID, ie, low-complexity

More information

Chapter 9: BCH, Reed-Solomon, and Related Codes

Chapter 9: BCH, Reed-Solomon, and Related Codes Chapter 9: BCH, Reed-Solomon, and Related Codes Draft of February 23, 2001 9.1 Introduction. In Chapter 7 we gave one useful generalization of the (7, 4) Hamming code of the Introduction: the family of

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Fall 2011 Instructor : Stefaan Delcroix Contents 1 Introduction to Error-Correcting Codes 3 2 Basic Concepts and Properties 6 2.1 Definitions....................................

More information

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Shu Lin, Shumei Song, Lan Lan, Lingqi Zeng and Ying Y Tai Department of Electrical & Computer Engineering University of California,

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 229B ERROR CONTROL CODING Spring 2005 Solutions for Homework 1 1. Is there room? Prove or disprove : There is a (12,7) binary linear code with d min = 5. If there were a (12,7) binary linear code with

More information

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding.

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding. Linear December 2, 2011 References Linear Main Source: Stichtenoth, Henning. Function Fields and. Springer, 2009. Other Sources: Høholdt, Lint and Pellikaan. geometry codes. Handbook of Coding Theory,

More information

Simplification of Procedure for Decoding Reed- Solomon Codes Using Various Algorithms: An Introductory Survey

Simplification of Procedure for Decoding Reed- Solomon Codes Using Various Algorithms: An Introductory Survey 2014 IJEDR Volume 2, Issue 1 ISSN: 2321-9939 Simplification of Procedure for Decoding Reed- Solomon Codes Using Various Algorithms: An Introductory Survey 1 Vivek Tilavat, 2 Dr.Yagnesh Shukla 1 PG Student,

More information

Lecture 2 Linear Codes

Lecture 2 Linear Codes Lecture 2 Linear Codes 2.1. Linear Codes From now on we want to identify the alphabet Σ with a finite field F q. For general codes, introduced in the last section, the description is hard. For a code of

More information

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013 Coding Theory and Applications Solved Exercises and Problems of Cyclic Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved

More information

Low-complexity error correction in LDPC codes with constituent RS codes 1

Low-complexity error correction in LDPC codes with constituent RS codes 1 Eleventh International Workshop on Algebraic and Combinatorial Coding Theory June 16-22, 2008, Pamporovo, Bulgaria pp. 348-353 Low-complexity error correction in LDPC codes with constituent RS codes 1

More information

Decoding of the Five-Error-Correcting Binary Quadratic Residue Codes

Decoding of the Five-Error-Correcting Binary Quadratic Residue Codes American Journal of Mathematical and Computer Modelling 2017; 2(1): 6-12 http://www.sciencepublishinggroup.com//amcm doi: 10.1168/.amcm.20170201.12 Decoding of the Five-Error-Correcting Binary Quadratic

More information

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory 6895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 3: Coding Theory Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz 1 Motivation In the course we will make heavy use of

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

Decoding linear codes via systems solving: complexity issues and generalized Newton identities

Decoding linear codes via systems solving: complexity issues and generalized Newton identities Decoding linear codes via systems solving: complexity issues and generalized Newton identities Stanislav Bulygin (joint work with Ruud Pellikaan) University of Valladolid Valladolid, Spain March 14, 2008

More information

Making Error Correcting Codes Work for Flash Memory

Making Error Correcting Codes Work for Flash Memory Making Error Correcting Codes Work for Flash Memory Part I: Primer on ECC, basics of BCH and LDPC codes Lara Dolecek Laboratory for Robust Information Systems (LORIS) Center on Development of Emerging

More information

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes.

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes. B. Cyclic Codes A cyclic code is a linear block code with the further property that a shift of a codeword results in another codeword. These are based on polynomials whose elements are coefficients from

More information

Decoding Algorithm and Architecture for BCH Codes under the Lee Metric

Decoding Algorithm and Architecture for BCH Codes under the Lee Metric Decoding Algorithm and Architecture for BCH Codes under the Lee Metric Yingquan Wu and Christoforos N. Hadjicostis Coordinated Science Laboratory and Department of Electrical and Computer Engineering University

More information

Lecture 4: Proof of Shannon s theorem and an explicit code

Lecture 4: Proof of Shannon s theorem and an explicit code CSE 533: Error-Correcting Codes (Autumn 006 Lecture 4: Proof of Shannon s theorem and an explicit code October 11, 006 Lecturer: Venkatesan Guruswami Scribe: Atri Rudra 1 Overview Last lecture we stated

More information

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005 Chapter 7 Error Control Coding Mikael Olofsson 2005 We have seen in Chapters 4 through 6 how digital modulation can be used to control error probabilities. This gives us a digital channel that in each

More information

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2009 Homework Due Monday March 23, 2009 in class You can collaborate in groups of up to 3. However, the write-ups must be done

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

New Steganographic scheme based of Reed- Solomon codes

New Steganographic scheme based of Reed- Solomon codes New Steganographic scheme based of Reed- Solomon codes I. DIOP; S.M FARSSI ;O. KHOUMA ; H. B DIOUF ; K.TALL ; K.SYLLA Ecole Supérieure Polytechnique de l Université Dakar Sénégal Email: idydiop@yahoo.fr;

More information

exercise in the previous class (1)

exercise in the previous class (1) exercise in the previous class () Consider an odd parity check code C whose codewords are (x,, x k, p) with p = x + +x k +. Is C a linear code? No. x =, x 2 =x =...=x k = p =, and... is a codeword x 2

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Spring 2009 Instructor : Stefaan Delcroix Chapter 1 Introduction to Error-Correcting Codes It happens quite often that a message becomes corrupt

More information

New algebraic decoding method for the (41, 21,9) quadratic residue code

New algebraic decoding method for the (41, 21,9) quadratic residue code New algebraic decoding method for the (41, 21,9) quadratic residue code Mohammed M. Al-Ashker a, Ramez Al.Shorbassi b a Department of Mathematics Islamic University of Gaza, Palestine b Ministry of education,

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

On Irreducible Polynomial Remainder Codes

On Irreducible Polynomial Remainder Codes 2011 IEEE International Symposium on Information Theory Proceedings On Irreducible Polynomial Remainder Codes Jiun-Hung Yu and Hans-Andrea Loeliger Department of Information Technology and Electrical Engineering

More information

Coding Schemes for Crisscross Error Patterns

Coding Schemes for Crisscross Error Patterns Wireless Pers Commun DOI.7/s277-7-9389-6 Coding Schemes for Crisscross Error Patterns Simon Plass Gerd Richter A. J. Han Vinck Springer Science+Business Media, LLC. 27 Abstract This paper addresses two

More information

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1)

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1) Cyclic codes: review EE 387, Notes 15, Handout #26 A cyclic code is a LBC such that every cyclic shift of a codeword is a codeword. A cyclic code has generator polynomial g(x) that is a divisor of every

More information

Algebraic Feedback Shift Registers Based on Function Fields

Algebraic Feedback Shift Registers Based on Function Fields Algebraic Feedback Shift Registers Based on Function Fields Andrew Klapper 1 University of Kentucky Department of Computer Science, 779 A Anderson Hall Lexington, KY 40506-0046, USA klapper@cs.uky.edu

More information

Chapter 3 Linear Block Codes

Chapter 3 Linear Block Codes Wireless Information Transmission System Lab. Chapter 3 Linear Block Codes Institute of Communications Engineering National Sun Yat-sen University Outlines Introduction to linear block codes Syndrome and

More information

Chapter 6 Lagrange Codes

Chapter 6 Lagrange Codes Chapter 6 Lagrange Codes 6. Introduction Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [] credited with minimum degree polynomial interpolation amongst his many other achievements.

More information

An algorithm for computing minimal bidirectional linear recurrence relations

An algorithm for computing minimal bidirectional linear recurrence relations Loughborough University Institutional Repository An algorithm for computing minimal bidirectional linear recurrence relations This item was submitted to Loughborough University's Institutional Repository

More information

Coding Techniques for Data Storage Systems

Coding Techniques for Data Storage Systems Coding Techniques for Data Storage Systems Thomas Mittelholzer IBM Zurich Research Laboratory /8 Göttingen Agenda. Channel Coding and Practical Coding Constraints. Linear Codes 3. Weight Enumerators and

More information

ERROR CORRECTION BEYOND THE CONVENTIONAL ERROR BOUND FOR REED SOLOMON CODES

ERROR CORRECTION BEYOND THE CONVENTIONAL ERROR BOUND FOR REED SOLOMON CODES Journal of ELECTRICAL ENGINEERING, VOL. 54, NO. -2, 2003, 305 30 ERROR CORRECTION BEYOND THE CONVENTIONAL ERROR BOUND FOR REED SOLOMON CODES Sergey Egorov Garik Markarian A modification of Blahut procedure

More information