Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16

Size: px
Start display at page:

Download "Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16"

Transcription

1 Solutions of Exam Coding Theory (2MMC30), 23 June 2016 (1.a) Consider the 4 4 matrices as words in F 16 2, the binary vector space of dimension 16. C is the code of all binary 4 4 matrices such that the number of ones in every row is even and the same holds for every column. Let c ij be the entry of a codeword in the i-th row and j-th column. The number of ones in the i-th row is even, that means that c i1 + c i2 + c i3 + c i4 0 mod 2 or c i1 + c i2 + c i3 + c i4 = 0 in F 2. This is homogeneous linear equation over F 2, and similarly for every column. Hence C is the solution space of 8 homogeneous linear equations over F 2. Hence C is F 2 -linear. There are 8 equations, but these equations are dependent, since if the sum of ones in every row is even, then the total number of ones is even. Therefore the sum of ones in every column is even. Hence we can define the code by 7 equations. So the dimension of C is at least 16 7 = 9. One can choose the entries of the first 3 rows and the first 3 columns arbitrary, and fill the last row and last column according to the parity check rule to get a unique codeword. Hence there are exactly 2 9 codewords and the dimension is 9. Let c be a nonzero codeword. Then there is at least one entry c ij = 1. Hence there is a i i and a j j such that c i j = 1 and c ij = 1, since the number of ones in the i-th row is even, so at least 2, and the number of ones in the j-th row is even, so at least 2. Furthermore there is a j j such that c i j = 1, since the number of ones in the i -th row is even, so at least 2. In this way we have shown that a nonzero codeword has at least weight 4. Hence the minimum distance of C is at least 4. The array with ones in positions (1, 1), (1, 2), (2, 1) and (2, 2) and zeros at all other positions is a codeword of weight 4. Hence the minimum distance of C is equal to 4. Alternative: Let D be the F 2 -linear [4, 3, 2] code generated by (1, 0, 0, 1), (0, 1, 0, 1) and (0, 0, 1, 1). Then C is equal to the product code D D. Hence C is an F 2 -linear code of length 4.4 = 16, dimension 3.3 = 9 and minimum distance 2.2 = 4. (1.b) From (1.a) it follows that a codeword has weight 4 if and only if j = j. Hence the number of codewords of weight 4 is equal to the number of ways to choose two two-sets {i, i } and {j, j } out of {1, 2, 3, 4}, which is equal to ( 4 2). ( 4 2) = 36. (1.c) Suppose that r is an array that is a received word with one error, say at position (i, j). Then the receiver will notice in row i an odd parity and an even parity for all other rows, and an odd parity in column j and an even parity in all other columns. So change the symbol 0/1 into 1/0 at position (i, j). (1.d) Suppose that r is an array of a received word with at most three erasures. If there is an erasure, then there is at least one row or column with exactly one erasure in that row or column. Suppose that there is a row with exactly one erasure. The value of the erasure in such a row is uniquely determined by the parity rule. Correct these rows according to that parity rule. Then the remaining erasures are all in one row, that means that there is 1

2 at most one erasure in every column. The value of the erasure in the columns is uniquely determined by the parity rule. Correct these columns in this way. Then all erasures are corrected. (1.e) Suppose that r is an array of a received word with one error and one erasure. There are three possibilities: (i) The error and erasure are in distinct rows and columns. Then the error is detected by a unique row i with odd parity and the erasure is not in row i, and a unique column j with odd parity and and the erasure is not in row j. Change the symbol 0/1 into 1/0 at position (i, j). (ii) The error and erasure are in one row i. Then all other rows have even parity. Furthermore the error is detected by a unique column j with odd parity and and the erasure is not in row j. Change the symbol 0/1 into 1/0 at position (i, j). (iii) The error and erasure are in one column. This case treated similarly by changing the role of columns and rows. (1.f) The first array has odd parity in the second row and the third column corrected as: The second array has in the fourth row exactly one erasure, correct it by the parity rule. Then the second and fourth column have exactly one erasure, correct these by the parity rule: correct fourth row: 1 0 corrected as: The third array has one erasure at position (2, 2). All columns that do not contain an erasure have even parity. The third row is the only row (apart from the second one that contains the erasure) with odd parity. So we are in case (iii), that means that the error is in the same column as the the erasure. Hence the error is in the third row and second column corrected as: 2

3 (2) Let C be a q-ary [n, k, d] code with q = 3, n = 13 and d = 5. According to the Singleton bound we have k n + 1 d = = 9. The Griesmer bound states that k 1 n d. q i Hence k 1 i=3 According to the Hamming bound we have V q (n, t) q k q n with V q (n, t) = t i=0 ( n i i=0 1 = 8 + (k 3) = 5 + k. Therefore k 8. ) t = (d 1)/2 and (q 1) i. Now q = 3, n = 13 and t = 2. So V 3 (13, 2) = ( ) = 339. Now 3 5 < 339 < 3 6. Hence 3 5+k < V 3 (13, 2) 3 k Therefore k 7. The Gilbert-Varshamov bound states that there exists a q-ary [n, k, d] code if V q (n 1, d 2) q k < q n Now V 3 (12, 3) = ( ) ( ) = 2049 and 3 6 < 2049 < 3 7. So if k 6, then V 3 (12, 3) 3 k < 3 7+k Therefore there exists a ternary [13, 6, 5] code. (3.a) The ternary cyclic code C has length n = 13 and defining set {0, 1, 2}. The cyclotomic coset of 0 is {0}. The cyclotomic coset of 1 is equal to the set of all 3 j modulo 13. That is 1, 3, 9, The cyclotomic coset of 1 is equal to {1, 3, 9}. So the cyclotomic coset of 2 is equal to the set of all 2.3 j modulo 13. That is 2, 6, 18 5, Hence the cyclotomic coset of 2 is equal to {2, 5, 6}. Hence the complete defining set of C is equal to { 0, 1, 2, 3, 5, 6, 9 }. (3.b) The size of the complete defining set of C is 7. Hence the dimension is equal to 13 7 = 6. (3.c) A field of characteristic 3 has 3 e elements and the nonzero elements form a multiplicative cyclic group of order 3 e 1. There is an element of order 13 in F 3 e if and only if 13 divides 3 e 1 if and only if 3 e 1 mod 13. We have seen in (3.a) that e = 3 is the smallest positive integer such that 3 e 1 mod 13. Therefore F 27 is the smallest field of characteristic 3 that contains an element of order 13. 3

4 (3.d) In (3.a) we showed that the complete defining set is equal to { 0, 1, 2, 3, 5, 6, 9 }. The longest sequence of consecutive integers in this complete defining set is given by 0, 1, 2, 3. It has length 4. Hence the minimum distance of C is at least 5 by the BCH bound. Suppose that a.b 1 mod 13. Then the consecutive sequence of period a in the complete defining set of {0, 1, 2} is equal to the consecutive sequence of period 1 in the complete defining set of {0, b, 2b}. If we take b {1, 3, 9} we get the complete defining set of C and the longest sequence of consecutive integers has length 4. If we take b {2, 5, 6} we get the set { 0, 2, 4, 5, 6, 10, 12 } and its longest sequence of consecutive integers has length 3. If we take b {7, 8, 11} we get the set { 0, 1, 3, 7, 8, 9, 11 } and its longest sequence of consecutive integers has length 3. Finally, if we take b {4, 10, 12} we get the set { 0, 4, 7, 8, 10, 11, 12 } and its longest sequence of consecutive integers has length 4. Hence the longest consecutive sequence of period a in the complete defining sets of I has length 4. Therefore δ BCH (C) = = 5. (4.a) The generator matrix G of the binary code C given by G = An enumeration of all 2 3 = 8 codewords with their corresponding weights is given in the following table: Counting the weights of these codewords gives A 1 = 1, A 2 = 3, A 4 = 3, A 6 = 1 and A i = 0 for all i {1, 2, 4, 6}. Hence the (homogeneous) weight enumerator of C is given by W C (X, Y ) = X 6 + 3X 4 Y 2 + 3X 2 Y 4 + Y 6. 4

5 (4.b) One checks that GG T = =. So every two rows of G have zero inner product. Hence every two codewords of C have zero inner product. Furthermore n = 6 = 2k. Therefore C is self-dual. Alternative: The generator matrix of the code has the form G = (I 3 P ) with P = I 3. Hence H = ( P T I 3 ) is a parity check matrix of the code. Now P T = I 3 over F 2. Hence G = H and C is self-dual. (4.c) By (4.b) we know that W C (X, Y ) = W C (X, Y ). We check this by using MacWilliams identity W C (X, Y ) = 2 3 W C (X + Y, X Y ) Now W C (X, Y ) = (X 2 + Y 2 ) 3. Hence W C (X, Y ) = 1 8 ((X + Y )2 + (X Y ) 2 )) 3 = 1 8 ((X2 + 2XY + Y ) + (X 2 XY + Y 2 )) 2 = 1 8 (2X2 + 2Y 2 ) 3 = (X 2 + Y 2 ) 3 = X 6 + 3X 4 Y 2 + 3X 2 Y 4 + Y 6. Therefore W C (X, Y ) = W C (X, Y ). (5.a) F 9 is the finite field with 9 elements with α F 9 such that α 2 = 1 + α. C is the F 9 -linear code Reed-Solomon code RS 3 (8, 1). Then α i = a i0 + a i1 α where the a ij F 3 are given in the following table. i α i (a i0, a i1 ) 0 α 0 (1, 0) 1 α 1 (0, 1) 2 α 2 (1, 1) 3 α 3 (1, 2) 4 α 4 (2, 0) 5 α 5 (0, 2) 6 α 6 (2, 2) 7 α 7 (2, 1) 8 α 8 (1, 0) 5

6 So α has order 8. Hence α generates F 9 and therefore is a primitive element of F 9. (5.b) The Reed-Solomon code RS k (n, b) is a F q -linear cyclic code with q = n + 1. It is an MDS code of length n, dimension k and minimum distance d = n + 1 k. Hence C = RS 3 (8, 1) is a code of length 8, dimension 3 and minimum distance d = = 6. (5.c) Let a j = α j 1 and b j = a n b+1 j. Let a = (a 1,..., a n ) and b = (b 1,..., b n ). Then RS k (n, b) = GRS k (a, b). In particular if b = 1 we have that b j = a n j = 1 for all j. Hence 1, a,..., a k 1 is a basis of GRS k (a, b). Therefore the generator matrix of C = RS 3 (8, 1) is given by α α 2 α 3 α 4 α 5 α 6 α 7 1 α 2 α 4 α 6 α 8 α 10 α 12 α 14 = α α 2 α 3 α 4 α 5 α 6 α 7 1 α 2 α 4 α 6 1 α 2 α 4 α 6 (5.d) C is an MDS code with parameters [8, 3, 6] by (5.b). Hence its dual is also MDS with parameters [8, 5, 4]. Therefore the minimum distance of C is 4. (5.e) D is the extended code of C. It has length = 9 and the generator matrix of D is obtained by taking a generator matrix of C and extend it with one column such that the sum of all rows is zero. If we apply this to the generator matrix obtained in (5.c) we get α α 2 α 3 α 4 α 5 α 6 α α 2 α 4 α 6 1 α 2 α 4 α 6 0 since = 9.1 = 0, 1 + α 4 = 0, α + α 5 = 0, α 2 + α 6 = 0 and α 3 + α 7 = 0 as one checks by inspecting the table. Let a = (a, 0) and let b be the all ones vector of length 9. Then D = GRS 3 (a, b ) and therefore D is MDS. (5.f) If we extend again we get a generator matrix with in the added, that is the 10-th column only zeros. Hence D ext has parameters [10, 3, 7] which is not MDS. 6

7 (6.a) For the syndrome s of r = (4, 0, 5, 6, 1, 2, 1) with respect to H holds s T = Hr T = = (6.b) It is given that the received word r has two errors at the positions 4 and 6. In order to compute the error values we have to find a linear combination of the 4-th and 6-th column of H that equals the syndrome vector. That gives the extended matrix Gaussian elimination of this matrix over F 11 gives It has (7, 1) T as unique solution. That is, the error vector e has e 4 = 7 and e 6 = 1 and e i = 0 for all i {4, 6}. Therefore the transmitted codeword is c = r e = (4, 0, 5, 10, 1, 1, 1). 7

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes S-723410 BCH and Reed-Solomon Codes 1 S-723410 BCH and Reed-Solomon Codes 3 Background The algebraic structure of linear codes and, in particular, cyclic linear codes, enables efficient encoding and decoding

More information

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes ELEC 519A Selected Topics in Digital Communications: Information Theory Hamming Codes and Bounds on Codes Single Error Correcting Codes 2 Hamming Codes (7,4,3) Hamming code 1 0 0 0 0 1 1 0 1 0 0 1 0 1

More information

Arrangements, matroids and codes

Arrangements, matroids and codes Arrangements, matroids and codes first lecture Ruud Pellikaan joint work with Relinde Jurrius ACAGM summer school Leuven Belgium, 18 July 2011 References 2/43 1. Codes, arrangements and matroids by Relinde

More information

Section 3 Error Correcting Codes (ECC): Fundamentals

Section 3 Error Correcting Codes (ECC): Fundamentals Section 3 Error Correcting Codes (ECC): Fundamentals Communication systems and channel models Definition and examples of ECCs Distance For the contents relevant to distance, Lin & Xing s book, Chapter

More information

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Linear Block Codes February 14, 2007 1. Code 1: n = 4, n k = 2 Parity Check Equations: x 1 + x 3 = 0, x 1 + x 2 + x 4 = 0 Parity Bits: x 3 = x 1,

More information

The extended coset leader weight enumerator

The extended coset leader weight enumerator The extended coset leader weight enumerator Relinde Jurrius Ruud Pellikaan Eindhoven University of Technology, The Netherlands Symposium on Information Theory in the Benelux, 2009 1/14 Outline Codes, weights

More information

Reed-Solomon codes. Chapter Linear codes over finite fields

Reed-Solomon codes. Chapter Linear codes over finite fields Chapter 8 Reed-Solomon codes In the previous chapter we discussed the properties of finite fields, and showed that there exists an essentially unique finite field F q with q = p m elements for any prime

More information

5.0 BCH and Reed-Solomon Codes 5.1 Introduction

5.0 BCH and Reed-Solomon Codes 5.1 Introduction 5.0 BCH and Reed-Solomon Codes 5.1 Introduction A. Hocquenghem (1959), Codes correcteur d erreurs; Bose and Ray-Chaudhuri (1960), Error Correcting Binary Group Codes; First general family of algebraic

More information

ICT12 8. Linear codes. The Gilbert-Varshamov lower bound and the MacWilliams identities SXD

ICT12 8. Linear codes. The Gilbert-Varshamov lower bound and the MacWilliams identities SXD 1 ICT12 8. Linear codes. The Gilbert-Varshamov lower bound and the MacWilliams identities 19.10.2012 SXD 8.1. The Gilbert Varshamov existence condition 8.2. The MacWilliams identities 2 8.1. The Gilbert

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Spring 2009 Instructor : Stefaan Delcroix Chapter 1 Introduction to Error-Correcting Codes It happens quite often that a message becomes corrupt

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Fall 2011 Instructor : Stefaan Delcroix Contents 1 Introduction to Error-Correcting Codes 3 2 Basic Concepts and Properties 6 2.1 Definitions....................................

More information

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013 Coding Theory and Applications Solved Exercises and Problems of Cyclic Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved

More information

1 Vandermonde matrices

1 Vandermonde matrices ECE 771 Lecture 6 BCH and RS codes: Designer cyclic codes Objective: We will begin with a result from linear algebra regarding Vandermonde matrices This result is used to prove the BCH distance properties,

More information

Chapter 6 Lagrange Codes

Chapter 6 Lagrange Codes Chapter 6 Lagrange Codes 6. Introduction Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [] credited with minimum degree polynomial interpolation amongst his many other achievements.

More information

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x].

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x]. The second exam will be on Friday, October 28, 2. It will cover Sections.7,.8, 3., 3.2, 3.4 (except 3.4.), 4. and 4.2 plus the handout on calculation of high powers of an integer modulo n via successive

More information

Proof: Let the check matrix be

Proof: Let the check matrix be Review/Outline Recall: Looking for good codes High info rate vs. high min distance Want simple description, too Linear, even cyclic, plausible Gilbert-Varshamov bound for linear codes Check matrix criterion

More information

: Error Correcting Codes. October 2017 Lecture 1

: Error Correcting Codes. October 2017 Lecture 1 03683072: Error Correcting Codes. October 2017 Lecture 1 First Definitions and Basic Codes Amnon Ta-Shma and Dean Doron 1 Error Correcting Codes Basics Definition 1. An (n, K, d) q code is a subset of

More information

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups.

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. Binary codes Let us assume that a message to be transmitted is in binary form. That is, it is a word in the alphabet

More information

Orthogonal Arrays & Codes

Orthogonal Arrays & Codes Orthogonal Arrays & Codes Orthogonal Arrays - Redux An orthogonal array of strength t, a t-(v,k,λ)-oa, is a λv t x k array of v symbols, such that in any t columns of the array every one of the possible

More information

} has dimension = k rank A > 0 over F. For any vector b!

} has dimension = k rank A > 0 over F. For any vector b! FINAL EXAM Math 115B, UCSB, Winter 2009 - SOLUTIONS Due in SH6518 or as an email attachment at 12:00pm, March 16, 2009. You are to work on your own, and may only consult your notes, text and the class

More information

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane 2301532 : Coding Theory Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, 2006 http://pioneer.chula.ac.th/ upattane Chapter 1 Error detection, correction and decoding 1.1 Basic definitions and

More information

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding Chapter 6 Reed-Solomon Codes 6. Finite Field Algebra 6. Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding 6. Finite Field Algebra Nonbinary codes: message and codeword symbols

More information

CONSTRUCTION OF QUASI-CYCLIC CODES

CONSTRUCTION OF QUASI-CYCLIC CODES CONSTRUCTION OF QUASI-CYCLIC CODES by Thomas Aaron Gulliver B.Sc., 1982 and M.Sc., 1984 University of New Brunswick A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

PAijpam.eu CONVOLUTIONAL CODES DERIVED FROM MELAS CODES

PAijpam.eu CONVOLUTIONAL CODES DERIVED FROM MELAS CODES International Journal of Pure and Applied Mathematics Volume 85 No. 6 013, 1001-1008 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.173/ijpam.v85i6.3

More information

ELEC-E7240 Coding Methods L (5 cr)

ELEC-E7240 Coding Methods L (5 cr) Introduction ELEC-E7240 Coding Methods L (5 cr) Patric Östergård Department of Communications and Networking Aalto University School of Electrical Engineering Spring 2017 Patric Östergård (Aalto) ELEC-E7240

More information

Vector spaces. EE 387, Notes 8, Handout #12

Vector spaces. EE 387, Notes 8, Handout #12 Vector spaces EE 387, Notes 8, Handout #12 A vector space V of vectors over a field F of scalars is a set with a binary operator + on V and a scalar-vector product satisfying these axioms: 1. (V, +) is

More information

G Solution (10 points) Using elementary row operations, we transform the original generator matrix as follows.

G Solution (10 points) Using elementary row operations, we transform the original generator matrix as follows. EE 387 October 28, 2015 Algebraic Error-Control Codes Homework #4 Solutions Handout #24 1. LBC over GF(5). Let G be a nonsystematic generator matrix for a linear block code over GF(5). 2 4 2 2 4 4 G =

More information

Binary Primitive BCH Codes. Decoding of the BCH Codes. Implementation of Galois Field Arithmetic. Implementation of Error Correction

Binary Primitive BCH Codes. Decoding of the BCH Codes. Implementation of Galois Field Arithmetic. Implementation of Error Correction BCH Codes Outline Binary Primitive BCH Codes Decoding of the BCH Codes Implementation of Galois Field Arithmetic Implementation of Error Correction Nonbinary BCH Codes and Reed-Solomon Codes Preface The

More information

Codes over Subfields. Chapter Basics

Codes over Subfields. Chapter Basics Chapter 7 Codes over Subfields In Chapter 6 we looked at various general methods for constructing new codes from old codes. Here we concentrate on two more specialized techniques that result from writing

More information

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 Notation: We will use the notations x 1 x 2 x n and also (x 1, x 2,, x n ) to denote a vector x F n where F is a finite field. 1. [20=6+5+9]

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Anna Dovzhik 1 Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Sharing data across channels, such as satellite, television, or compact disc, often

More information

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1)

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1) Cyclic codes: review EE 387, Notes 15, Handout #26 A cyclic code is a LBC such that every cyclic shift of a codeword is a codeword. A cyclic code has generator polynomial g(x) that is a divisor of every

More information

Chapter 6. BCH Codes

Chapter 6. BCH Codes Chapter 6 BCH Codes Description of the Codes Decoding of the BCH Codes Outline Implementation of Galois Field Arithmetic Implementation of Error Correction Nonbinary BCH Codes and Reed-Solomon Codes Weight

More information

Berlekamp-Massey decoding of RS code

Berlekamp-Massey decoding of RS code IERG60 Coding for Distributed Storage Systems Lecture - 05//06 Berlekamp-Massey decoding of RS code Lecturer: Kenneth Shum Scribe: Bowen Zhang Berlekamp-Massey algorithm We recall some notations from lecture

More information

Cyclic codes: overview

Cyclic codes: overview Cyclic codes: overview EE 387, Notes 14, Handout #22 A linear block code is cyclic if the cyclic shift of a codeword is a codeword. Cyclic codes have many advantages. Elegant algebraic descriptions: c(x)

More information

EE512: Error Control Coding

EE512: Error Control Coding EE51: Error Control Coding Solution for Assignment on BCH and RS Codes March, 007 1. To determine the dimension and generator polynomial of all narrow sense binary BCH codes of length n = 31, we have to

More information

New algebraic decoding method for the (41, 21,9) quadratic residue code

New algebraic decoding method for the (41, 21,9) quadratic residue code New algebraic decoding method for the (41, 21,9) quadratic residue code Mohammed M. Al-Ashker a, Ramez Al.Shorbassi b a Department of Mathematics Islamic University of Gaza, Palestine b Ministry of education,

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 229B ERROR CONTROL CODING Spring 2005 Solutions for Homework 1 1. Is there room? Prove or disprove : There is a (12,7) binary linear code with d min = 5. If there were a (12,7) binary linear code with

More information

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9 Problem Set 1 These questions are based on the material in Section 1: Introduction to coding theory. You do not need to submit your answers to any of these questions. 1. The following ISBN was received

More information

7.1 Definitions and Generator Polynomials

7.1 Definitions and Generator Polynomials Chapter 7 Cyclic Codes Lecture 21, March 29, 2011 7.1 Definitions and Generator Polynomials Cyclic codes are an important class of linear codes for which the encoding and decoding can be efficiently implemented

More information

The Golay code. Robert A. Wilson. 01/12/08, QMUL, Pure Mathematics Seminar

The Golay code. Robert A. Wilson. 01/12/08, QMUL, Pure Mathematics Seminar The Golay code Robert A. Wilson 01/12/08, QMUL, Pure Mathematics Seminar 1 Introduction This is the third talk in a projected series of five. It is more-or-less independent of the first two talks in the

More information

A 2-error Correcting Code

A 2-error Correcting Code A 2-error Correcting Code Basic Idea We will now try to generalize the idea used in Hamming decoding to obtain a linear code that is 2-error correcting. In the Hamming decoding scheme, the parity check

More information

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005 Chapter 7 Error Control Coding Mikael Olofsson 2005 We have seen in Chapters 4 through 6 how digital modulation can be used to control error probabilities. This gives us a digital channel that in each

More information

ERROR CORRECTING CODES

ERROR CORRECTING CODES ERROR CORRECTING CODES To send a message of 0 s and 1 s from my computer on Earth to Mr. Spock s computer on the planet Vulcan we use codes which include redundancy to correct errors. n q Definition. A

More information

MATH32031: Coding Theory Part 15: Summary

MATH32031: Coding Theory Part 15: Summary MATH32031: Coding Theory Part 15: Summary 1 The initial problem The main goal of coding theory is to develop techniques which permit the detection of errors in the transmission of information and, if necessary,

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

Math 512 Syllabus Spring 2017, LIU Post

Math 512 Syllabus Spring 2017, LIU Post Week Class Date Material Math 512 Syllabus Spring 2017, LIU Post 1 1/23 ISBN, error-detecting codes HW: Exercises 1.1, 1.3, 1.5, 1.8, 1.14, 1.15 If x, y satisfy ISBN-10 check, then so does x + y. 2 1/30

More information

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

Answers and Solutions to (Even Numbered) Suggested Exercises in Sections of Grimaldi s Discrete and Combinatorial Mathematics

Answers and Solutions to (Even Numbered) Suggested Exercises in Sections of Grimaldi s Discrete and Combinatorial Mathematics Answers and Solutions to (Even Numbered) Suggested Exercises in Sections 6.5-6.9 of Grimaldi s Discrete and Combinatorial Mathematics Section 6.5 6.5.2. a. r = = + = c + e. So the error pattern is e =.

More information

Combinatória e Teoria de Códigos Exercises from the notes. Chapter 1

Combinatória e Teoria de Códigos Exercises from the notes. Chapter 1 Combinatória e Teoria de Códigos Exercises from the notes Chapter 1 1.1. The following binary word 01111000000?001110000?00110011001010111000000000?01110 encodes a date. The encoding method used consisted

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 9B ERROR CONTROL CODING Spring 005 Solutions for Homework 1. (Weights of codewords in a cyclic code) Let g(x) be the generator polynomial of a binary cyclic code of length n. (a) Show that if g(x) has

More information

Linear Codes and Syndrome Decoding

Linear Codes and Syndrome Decoding Linear Codes and Syndrome Decoding These notes are intended to be used as supplementary reading to Sections 6.7 9 of Grimaldi s Discrete and Combinatorial Mathematics. The proofs of the theorems are left

More information

Self-Dual Cyclic Codes

Self-Dual Cyclic Codes Self-Dual Cyclic Codes Bas Heijne November 29, 2007 Definitions Definition Let F be the finite field with two elements and n a positive integer. An [n, k] (block)-code C is a k dimensional linear subspace

More information

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2009 Homework Due Monday March 23, 2009 in class You can collaborate in groups of up to 3. However, the write-ups must be done

More information

Error Correction Review

Error Correction Review Error Correction Review A single overall parity-check equation detects single errors. Hamming codes used m equations to correct one error in 2 m 1 bits. We can use nonbinary equations if we create symbols

More information

Hamming codes and simplex codes ( )

Hamming codes and simplex codes ( ) Chapter 6 Hamming codes and simplex codes (2018-03-17) Synopsis. Hamming codes are essentially the first non-trivial family of codes that we shall meet. We start by proving the Distance Theorem for linear

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x),

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x), Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 + + a n 1 x n 1 + a n x n, where the coefficients a 1, a 2,, a n are

More information

Error-correcting Pairs for a Public-key Cryptosystem

Error-correcting Pairs for a Public-key Cryptosystem Error-correcting Pairs for a Public-key Cryptosystem Ruud Pellikaan g.r.pellikaan@tue.nl joint work with Irene Márquez-Corbella Code-based Cryptography Workshop 2012 Lyngby, 9 May 2012 Introduction and

More information

Open Questions in Coding Theory

Open Questions in Coding Theory Open Questions in Coding Theory Steven T. Dougherty July 4, 2013 Open Questions The following questions were posed by: S.T. Dougherty J.L. Kim P. Solé J. Wood Hilbert Style Problems Hilbert Style Problems

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

Cyclotomic Cosets, Codes and Secret Sharing

Cyclotomic Cosets, Codes and Secret Sharing Malaysian Journal of Mathematical Sciences 11(S) August: 59-73 (017) Special Issue: The 5th International Cryptology and Information Security Conference (New Ideas in Cryptology) MALAYSIAN JOURNAL OF MATHEMATICAL

More information

On the Construction and Decoding of Cyclic LDPC Codes

On the Construction and Decoding of Cyclic LDPC Codes On the Construction and Decoding of Cyclic LDPC Codes Chao Chen Joint work with Prof. Baoming Bai from Xidian University April 30, 2014 Outline 1. Introduction 2. Construction based on Idempotents and

More information

General error locator polynomials for binary cyclic codes with t 2 and n < 63

General error locator polynomials for binary cyclic codes with t 2 and n < 63 General error locator polynomials for binary cyclic codes with t 2 and n < 63 April 22, 2005 Teo Mora (theomora@disi.unige.it) Department of Mathematics, University of Genoa, Italy. Emmanuela Orsini (orsini@posso.dm.unipi.it)

More information

Error Detection & Correction

Error Detection & Correction Error Detection & Correction Error detection & correction noisy channels techniques in networking error detection error detection capability retransmition error correction reconstruction checksums redundancy

More information

IN this paper, we will introduce a new class of codes,

IN this paper, we will introduce a new class of codes, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 44, NO 5, SEPTEMBER 1998 1861 Subspace Subcodes of Reed Solomon Codes Masayuki Hattori, Member, IEEE, Robert J McEliece, Fellow, IEEE, and Gustave Solomon,

More information

Lecture 2 Linear Codes

Lecture 2 Linear Codes Lecture 2 Linear Codes 2.1. Linear Codes From now on we want to identify the alphabet Σ with a finite field F q. For general codes, introduced in the last section, the description is hard. For a code of

More information

Decoding linear codes via systems solving: complexity issues and generalized Newton identities

Decoding linear codes via systems solving: complexity issues and generalized Newton identities Decoding linear codes via systems solving: complexity issues and generalized Newton identities Stanislav Bulygin (joint work with Ruud Pellikaan) University of Valladolid Valladolid, Spain March 14, 2008

More information

Galois geometries contributing to coding theory

Galois geometries contributing to coding theory Ghent University Dept. of Mathematics Krijgslaan 281 - S22 9000 Ghent Belgium Opatija, 2010 OUTLINE 1 CODING THEORY 2 GRIESMER BOUND AND MINIHYPERS 3 COVERING RADIUS AND SATURATING SETS 4 LINEAR MDS CODES

More information

Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes

Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes Bin Chen, Shu-Tao Xia, Jie Hao, and Fang-Wei Fu Member, IEEE 1 arxiv:160901136v1 [csit] 5 Sep 016 Abstract A code is said to be a r-local

More information

Chapter 3 Linear Block Codes

Chapter 3 Linear Block Codes Wireless Information Transmission System Lab. Chapter 3 Linear Block Codes Institute of Communications Engineering National Sun Yat-sen University Outlines Introduction to linear block codes Syndrome and

More information

Matrix characterization of linear codes with arbitrary Hamming weight hierarchy

Matrix characterization of linear codes with arbitrary Hamming weight hierarchy Linear Algebra and its Applications 412 (2006) 396 407 www.elsevier.com/locate/laa Matrix characterization of linear codes with arbitrary Hamming weight hierarchy G. Viswanath, B. Sundar Rajan Department

More information

MTAT : Introduction to Coding Theory. Lecture 1

MTAT : Introduction to Coding Theory. Lecture 1 MTAT05082: Introduction to Coding Theory Instructor: Dr Vitaly Skachek Lecture 1 University of Tartu Scribe: Saad Usman Khan Introduction Information theory studies reliable information transmission over

More information

ELEC 405/ELEC 511 Error Control Coding and Sequences. Hamming Codes and the Hamming Bound

ELEC 405/ELEC 511 Error Control Coding and Sequences. Hamming Codes and the Hamming Bound ELEC 45/ELEC 5 Error Control Coding and Sequences Hamming Codes and the Hamming Bound Single Error Correcting Codes ELEC 45 2 Hamming Codes One form of the (7,4,3) Hamming code is generated by This is

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

Open problems on cyclic codes

Open problems on cyclic codes Open problems on cyclic codes Pascale Charpin Contents 1 Introduction 3 2 Different kinds of cyclic codes. 4 2.1 Notation.............................. 5 2.2 Definitions............................. 6

More information

Hamming Codes 11/17/04

Hamming Codes 11/17/04 Hamming Codes 11/17/04 History In the late 1940 s Richard Hamming recognized that the further evolution of computers required greater reliability, in particular the ability to not only detect errors, but

More information

Mathematics Department

Mathematics Department Mathematics Department Matthew Pressland Room 7.355 V57 WT 27/8 Advanced Higher Mathematics for INFOTECH Exercise Sheet 2. Let C F 6 3 be the linear code defined by the generator matrix G = 2 2 (a) Find

More information

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Maximality of Hamming code Lemma Let C be a code with distance 3, then: C 2n n + 1 Codes that meet this bound: Perfect codes Hamming code is a perfect

More information

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise 9 THEORY OF CODES Chapter 9 Theory of Codes After studying this chapter you should understand what is meant by noise, error detection and correction; be able to find and use the Hamming distance for a

More information

The Hamming Codes and Delsarte s Linear Programming Bound

The Hamming Codes and Delsarte s Linear Programming Bound The Hamming Codes and Delsarte s Linear Programming Bound by Sky McKinley Under the Astute Tutelage of Professor John S. Caughman, IV A thesis submitted in partial fulfillment of the requirements for the

More information

ELEC 405/ELEC 511 Error Control Coding. Hamming Codes and Bounds on Codes

ELEC 405/ELEC 511 Error Control Coding. Hamming Codes and Bounds on Codes ELEC 405/ELEC 511 Error Control Coding Hamming Codes and Bounds on Codes Single Error Correcting Codes (3,1,3) code (5,2,3) code (6,3,3) code G = rate R=1/3 n-k=2 [ 1 1 1] rate R=2/5 n-k=3 1 0 1 1 0 G

More information

exercise in the previous class (1)

exercise in the previous class (1) exercise in the previous class () Consider an odd parity check code C whose codewords are (x,, x k, p) with p = x + +x k +. Is C a linear code? No. x =, x 2 =x =...=x k = p =, and... is a codeword x 2

More information

4F5: Advanced Communications and Coding

4F5: Advanced Communications and Coding 4F5: Advanced Communications and Coding Coding Handout 4: Reed Solomon Codes Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk

More information

An Extremal Doubly Even Self-Dual Code of Length 112

An Extremal Doubly Even Self-Dual Code of Length 112 An Extremal Doubly Even Self-Dual Code of Length 112 Masaaki Harada Department of Mathematical Sciences Yamagata University Yamagata 990 8560, Japan mharada@sci.kj.yamagata-u.ac.jp Submitted: Dec 29, 2007;

More information

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012

Lecture Introduction. 2 Linear codes. CS CTT Current Topics in Theoretical CS Oct 4, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 4, 01 Lecturer: Elena Grigorescu Lecture 14 Scribe: Selvakumaran Vadivelmurugan 1 Introduction We introduced error-correcting codes and linear codes in

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

The Stopping Redundancy Hierarchy of Cyclic Codes

The Stopping Redundancy Hierarchy of Cyclic Codes The Stopping Redundancy Hierarchy of Cyclic Codes Thorsten Hehn, Stefan Laendner, Olgica Milenkovic, and Johannes B. Huber Institute for Information Transmission University of Erlangen-Nuremberg Erlangen,

More information

Lecture Notes on Channel Coding

Lecture Notes on Channel Coding Lecture Notes on Channel Coding arxiv:1607.00974v1 [cs.it] 4 Jul 2016 Georg Böcherer Institute for Communications Engineering Technical University of Munich, Germany georg.boecherer@tum.de July 5, 2016

More information

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Shu Lin, Shumei Song, Lan Lan, Lingqi Zeng and Ying Y Tai Department of Electrical & Computer Engineering University of California,

More information

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Cyclic Codes March 22, 2007 1. A cyclic code, C, is an ideal genarated by its minimal degree polynomial, g(x). C = < g(x) >, = {m(x)g(x) : m(x) is

More information

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding.

Algebraic Geometry Codes. Shelly Manber. Linear Codes. Algebraic Geometry Codes. Example: Hermitian. Shelly Manber. Codes. Decoding. Linear December 2, 2011 References Linear Main Source: Stichtenoth, Henning. Function Fields and. Springer, 2009. Other Sources: Høholdt, Lint and Pellikaan. geometry codes. Handbook of Coding Theory,

More information

The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes

The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes C Designs, Codes and Cryptography, 24, 313 326, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes NUH AYDIN Department

More information

The Golay codes. Mario de Boer and Ruud Pellikaan

The Golay codes. Mario de Boer and Ruud Pellikaan The Golay codes Mario de Boer and Ruud Pellikaan Appeared in Some tapas of computer algebra (A.M. Cohen, H. Cuypers and H. Sterk eds.), Project 7, The Golay codes, pp. 338-347, Springer, Berlin 1999, after

More information

Some error-correcting codes and their applications

Some error-correcting codes and their applications Chapter 14 Some error-correcting codes and their applications J. D. Key 1 14.1 Introduction In this chapter we describe three types of error-correcting linear codes that have been used in major applications,

More information

Error Correcting Codes Questions Pool

Error Correcting Codes Questions Pool Error Correcting Codes Questions Pool Amnon Ta-Shma and Dean Doron January 3, 018 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to

More information

Some codes related to BCH-codes of low dimension

Some codes related to BCH-codes of low dimension Discrete Mathematics 205 (1999) 57 64 www.elsevier.com/locate/disc Some codes related to BCH-codes of low dimension Yves Edel a,jurgen Bierbrauer b; a Mathematisches Institut der Universitat, Im Neuenheimer

More information

Optimum Soft Decision Decoding of Linear Block Codes

Optimum Soft Decision Decoding of Linear Block Codes Optimum Soft Decision Decoding of Linear Block Codes {m i } Channel encoder C=(C n-1,,c 0 ) BPSK S(t) (n,k,d) linear modulator block code Optimal receiver AWGN Assume that [n,k,d] linear block code C is

More information

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1.

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1. Cyclic Codes II Generator Matrix We would now like to consider how the ideas we have previously discussed for linear codes are interpreted in this polynomial version of cyclic codes. Theorem 6: If the

More information