Gibbs models estimation of galaxy point processes with the ABC Shadow algorithm

Size: px
Start display at page:

Download "Gibbs models estimation of galaxy point processes with the ABC Shadow algorithm"

Transcription

1 Gibbs models estimation of galaxy point processes with the ABC Shadow algorithm Lluı s Hurtado Gil Universidad CEU San Pablo (lluis.hurtadogil@ceu.es) Radu Stoica Universite de Lorraine, IECL (radu-stefan.stoica@univlorraine.fr) Vale ncia - Cosmo21 May 24th, 2018 (San Pablo CEU) Cosmo21 1 / 19

2 Overwiew 1 Motivation: estimate local interactions for the galaxy point distribution 2 Gibbs point processes: Geyer, Area Interaction and Connected Components 3 ABC Shadow (Stoica et al., 2016): new algorithm for posterior distributions sampling and parameter estimation 4 Validation: summary statistics, residuals analysis, posterior distribution statistics 5 Results : simulated and real data 6 Conclusions and future work (San Pablo CEU) Cosmo21 2 / 19

3 Motivation Gibbs models are parametric models for galaxy distributions with two probabilistic components: 1. Intensity 2. Interaction a) Estimation of the interaction parameter of point processes is always a challenging problem take advantage of the new possibilies given by the ABC Shadow algorithm b) Inhomogeneities estimation the very next step in our study (van Lieshout 2011) c) Galaxy distribution inside filaments Necklace pattern (Tempel et al. 2014) (San Pablo CEU) Cosmo21 3 / 19

4 Gibbs point processes The probability densisty of a Pairwise Gibbs point process is n(y) f (y 1,..., y n ) = α i=1 β(y i ) i<j h(y i, y j ) β(u) and it takes into account the inhomogeneity of the process. h(y i, y j ): pairwise interaction function. Interactions are usually defined inside an interaction range r. In our models, h(y i, y j ) = γ t(y), where γ is the level of aggregation i<j (> 1 if clustered) and t(y) the number of pairs i j that interact. (San Pablo CEU) Cosmo21 4 / 19

5 Geyer saturation process n(y) f (y) = α G β n(y) G i=1 γ min(s,t(y i y)) G where s is a saturation constant that avoids uncontrolled aggregation of points t(y i y) = {(y i, y j ) : y i y j < r}, the number of points separated less than r. This model understands galaxy distribution as a distance based interaction (San Pablo CEU) Cosmo21 5 / 19

6 Connected Components process f (y) = α C β C (y) n(y) γ U(y) C where U(y) = C(y) n(y) and C(y) is the number of components of points connected by friends-of-friends. This model understands galaxy distribution as a membership based interaction. (San Pablo CEU) Cosmo21 6 / 19

7 Area Interaction process f (y) = α A β n(y) A γ B(y) A where B(y) = A(y) V (r) A(y): volume covered by spheres of radius r centered at point y i. V (r): volume of a sphere of radius r. This model understands galaxy distribution as a volume occupancy based interaction. (San Pablo CEU) Cosmo21 7 / 19

8 ABC Shadow algorithm Let y be an observed point pattern. Under the assumption of a Gibbs model, the probability density writes as p(y θ) = exp[ U(y θ)] c(θ) where U : Ω R + is the energy function. The model parameters θ are estimated by the MAP, obtained by maximising : p(θ y) = exp[ U(y θ)]p(θ) Z(y)c(θ) with Z(y) and c(θ) the normalising constants, respectively, and p(θ) the prior knowledge of the parameters. (San Pablo CEU) Cosmo21 8 / 19

9 MAP computation : usually done through Monte Carlo methodology - highly costly from a computational point of view several strategies available : PL (not Monte Carlo), MCMCML, ABC (approximate Bayesian computation) ABC Shadow : new algorithm for approximated posterior sampling that combines two ideas : ABC principles : (Grelaud et al., 2009), (Blum, 2009),(Marin et al., 2012), (Biau et al., 2015) the use of auxiliary variables : (Møller et al., 2006) technical details : (Stoica et al., 2016) Synthesis ABC Shadow : better results than PL : control the distance of the approximated posterior to the true posterior at least equivalent computational costs as MCMCML : no need for re-sampling allow statistical inference based on the posterior (San Pablo CEU) Cosmo21 9 / 19

10 Validation 1 Summary statistics functions: pair correlation (ξ), K-Ripley (K), empty space function (F ) and nearest neighbour distribution (G). generate samples Y 1, Y 2,..., Y n given our estimated parameters ˆθ and use the summary statistics to build envelope test for the observed real data set y. 2 Residuals (Baddeley et al., 2005) Based on the idea number of points in a region B minus number of predicted points on that region : R(B, ˆθ) = n(y B) λˆθ (u; y)du where λ is the conditional intensity function λ(u) = f ({u} y)/f (y) (Papangelou, 1974). B (San Pablo CEU) Cosmo21 10 / 19

11 Test samples In a cube W = [0, 1] 3 and interaction radius r = 0.1, we generate a sample following each one of our distributions and use ABC Shadow to estimate the true parameters: Geyer Con-Com Area-Int True log β parameters log γ Estimated log ˆβ 4.95 ± ± ± 0.14 parameters log ˆγ 0.41 ± ± ± 0.4 (San Pablo CEU) Cosmo21 11 / 19

12 Test samples - Posteriors Geyer Con. Components Area Interaction (San Pablo CEU) Cosmo21 12 / 19

13 Test samples - Validation Geyer Con. Components Area Interaction R(B, ˆθ) λˆθ Data density (San Pablo CEU) Cosmo21 13 / 19

14 Galaxy data set: data selection Our datset is a cub of side 50 h 1 Mpc from the SDSS (Tempel et al., 2014). It contains 889 galaxies with luminosity threshold M th r (0) 5 log(h) = 20 a median redshift x = (San Pablo CEU) Cosmo21 14 / 19

15 Galaxy data set: model estimation We estimate our three models for different radii: Radius Geyer ConCom AreaInt r(h 1 Mpc) log ˆβ G log ˆγ G log ˆβ C log ˆγ C log ˆβ A log ˆγ A ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.7 For radii bigger than 5h 1 Mpc (not shown) the log γ parameter is close to or smaller than 0, i.e., not clustering is found at these scales. The expected intensity for a process without interaction is log β = Geyer and ConCom show results below that level, an evidence of the interaction contribution to the distribution. Area Interaction estimates greater γ values for lower β s. The higher the interaction radius, the greater the impact of the point interaction. (San Pablo CEU) Cosmo21 15 / 19

16 Validation: Geyer r = 2.5h 1 Mpc Geyer is unable to recreate the steep profile of the sample. Presence of a cluster jeopardizes the entire distribution. (San Pablo CEU) Cosmo21 16 / 19

17 Validation: Connected Components r = 3h 1 Mpc Dependence on local structures is smaller, but still an unsatisfactory model. (San Pablo CEU) Cosmo21 17 / 19

18 Validation: Area Interaction r = 2.5h 1 Mpc Much better reconstruction of the middle and large interaction distances. Still unable to correctly describe the highly clustered regions (cluster in the center). Problems with the void function (F). (San Pablo CEU) Cosmo21 18 / 19

19 Conclusions and future work 1 two distances regimes : one single distribution with homogeneous trend might not be enough to model the patterns at both small and large scales. 2 importance of point pairwise interactions. Gibbs interaction processes can significantly contribute to the galaxy pattern description. 3 the Area Interaction model: seems to be the most effective model - less good behaviour at small scales 4 future work: introduce a non stationary trend in the model using the intensity function (β(u)) - filamentary structure (Tempel et al., 2016). 5 priors used : non-informative maximum likelihood estimation 6 perspective ABC Shadow algorithm: use priors for the interaction radius (Berthelsen et al., 2006) and mixture modelling (San Pablo CEU) Cosmo21 19 / 19

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

An ABC interpretation of the multiple auxiliary variable method

An ABC interpretation of the multiple auxiliary variable method School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2016-07 27 April 2016 An ABC interpretation of the multiple auxiliary variable method by Dennis Prangle

More information

Non-parametric Bayesian inference for inhomogeneous Markov point processes Berthelsen, Kasper Klitgaaard; Møller, Jesper; Johansen, Per Michael

Non-parametric Bayesian inference for inhomogeneous Markov point processes Berthelsen, Kasper Klitgaaard; Møller, Jesper; Johansen, Per Michael Aalborg Universitet Non-parametric Bayesian inference for inhomogeneous Markov point processes Berthelsen, Kasper Klitgaaard; Møller, Jesper; Johansen, Per Michael Publication date: 2007 Document Version

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Evidence estimation for Markov random fields: a triply intractable problem

Evidence estimation for Markov random fields: a triply intractable problem Evidence estimation for Markov random fields: a triply intractable problem January 7th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers

More information

Estimating functions for inhomogeneous spatial point processes with incomplete covariate data

Estimating functions for inhomogeneous spatial point processes with incomplete covariate data Estimating functions for inhomogeneous spatial point processes with incomplete covariate data Rasmus aagepetersen Department of Mathematics Aalborg University Denmark August 15, 2007 1 / 23 Data (Barro

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Point Pattern Analysis

Point Pattern Analysis Point Pattern Analysis Nearest Neighbor Statistics Luc Anselin http://spatial.uchicago.edu principle G function F function J function Principle Terminology events and points event: observed location of

More information

Astronomy. Astrophysics. Filaments in observed and mock galaxy catalogues. R. S. Stoica 1, V. J. Martínez 2, and E. Saar 3. 1.

Astronomy. Astrophysics. Filaments in observed and mock galaxy catalogues. R. S. Stoica 1, V. J. Martínez 2, and E. Saar 3. 1. DOI: 10.1051/0004-6361/200912823 c ESO 2010 Astronomy & Astrophysics Filaments in observed and mock galaxy catalogues R. S. Stoica 1, V. J. Martínez 2, and E. Saar 3 1 Université Lille 1, Laboratoire Paul

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

CLUSTER DETECTION IN SPATIAL DATA USING MARKED POINT PROCESSES. Radu S. Stoica Emilie Gay

CLUSTER DETECTION IN SPATIAL DATA USING MARKED POINT PROCESSES. Radu S. Stoica Emilie Gay CLUSTER DETECTION IN SPATIAL DATA USING MARKED POINT PROCESSES by Radu S. Stoica Emilie Gay Research Report No. 11 July 5 Unité de Biométrie Institut National de la Recherche Agronomique Avignon, France

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Jesper Møller ) and Kateřina Helisová )

Jesper Møller ) and Kateřina Helisová ) Jesper Møller ) and ) ) Aalborg University (Denmark) ) Czech Technical University/Charles University in Prague 5 th May 2008 Outline 1. Describing model 2. Simulation 3. Power tessellation of a union of

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Daniel F. Schmidt Enes Makalic Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Likelihood Inference for Lattice Spatial Processes

Likelihood Inference for Lattice Spatial Processes Likelihood Inference for Lattice Spatial Processes Donghoh Kim November 30, 2004 Donghoh Kim 1/24 Go to 1234567891011121314151617 FULL Lattice Processes Model : The Ising Model (1925), The Potts Model

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Data Analysis Methods

Data Analysis Methods Data Analysis Methods Successes, Opportunities, and Challenges Chad M. Schafer Department of Statistics & Data Science Carnegie Mellon University cschafer@cmu.edu The Astro/Data Science Community LSST

More information

Jean-Michel Billiot, Jean-François Coeurjolly and Rémy Drouilhet

Jean-Michel Billiot, Jean-François Coeurjolly and Rémy Drouilhet Colloque International de Statistique Appliquée pour le Développement en Afrique International Conference on Applied Statistics for Development in Africa Sada 07 nn, 1?? 007) MAXIMUM PSEUDO-LIKELIHOOD

More information

Bayesian Inference by Density Ratio Estimation

Bayesian Inference by Density Ratio Estimation Bayesian Inference by Density Ratio Estimation Michael Gutmann https://sites.google.com/site/michaelgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

More information

A THREE DIMENSIONAL OBJECT POINT PROCESS FOR DETECTION OF COSMIC FILAMENTS. Radu S. Stoica Vicent J. Martinez Enn Saar

A THREE DIMENSIONAL OBJECT POINT PROCESS FOR DETECTION OF COSMIC FILAMENTS. Radu S. Stoica Vicent J. Martinez Enn Saar A THREE DIMENSIONAL OBJECT POINT PROCESS FOR DETECTION OF COSMIC FILAMENTS by Radu S. Stoica Vicent J. Martinez Enn Saar Research Report No. 17 January 06 Unité de Biométrie Institut National de la Recherche

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Machine Learning. Probabilistic KNN.

Machine Learning. Probabilistic KNN. Machine Learning. Mark Girolami girolami@dcs.gla.ac.uk Department of Computing Science University of Glasgow June 21, 2007 p. 1/3 KNN is a remarkably simple algorithm with proven error-rates June 21, 2007

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Gibbs point processes : modelling and inference

Gibbs point processes : modelling and inference Gibbs point processes : modelling and inference J.-F. Coeurjolly (Grenoble University) et J.-M Billiot, D. Dereudre, R. Drouilhet, F. Lavancier 03/09/2010 J.-F. Coeurjolly () Gibbs models 03/09/2010 1

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

Spatial point processes: Theory and practice illustrated with R

Spatial point processes: Theory and practice illustrated with R Spatial point processes: Theory and practice illustrated with R Department of Mathematical Sciences Aalborg University Lecture IV, February 24, 2011 1/28 Contents of lecture IV Papangelou conditional intensity.

More information

A Spatio-Temporal Point Process Model for Firemen Demand in Twente

A Spatio-Temporal Point Process Model for Firemen Demand in Twente University of Twente A Spatio-Temporal Point Process Model for Firemen Demand in Twente Bachelor Thesis Author: Mike Wendels Supervisor: prof. dr. M.N.M. van Lieshout Stochastic Operations Research Applied

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

The motion of emptiness

The motion of emptiness The motion of emptiness Dynamics and evolution of cosmic voids Laura Ceccarelli IATE, Observatorio Astronómico de Córdoba Large scale structure and galaxy flows Quy Nhon, July 2016 Motivations Universe

More information

Spatial point processes

Spatial point processes Mathematical sciences Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden June 25, 2014 Definition A point process N is a stochastic mechanism or rule to produce point patterns

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Cross-Validation, Information Criteria, Expected Utilities and the Effective Number of Parameters Aki Vehtari and Jouko Lampinen Laboratory of Computational Engineering Introduction Expected utility -

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Bayesian Modeling of Inhomogeneous Marked Spatial Point Patterns with Location Dependent Mark Distributions

Bayesian Modeling of Inhomogeneous Marked Spatial Point Patterns with Location Dependent Mark Distributions Inhomogeneous with Location Dependent Mark Distributions Matt Bognar Department of Statistics and Actuarial Science University of Iowa December 4, 2014 A spatial point pattern describes the spatial location

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Research Report no. 1 January 2004

Research Report no. 1 January 2004 MaPhySto The Danish National Research Foundation: Network in Mathematical Physics and Stochastics Research Report no. 1 January 2004 Jesper Møller, A. N. Pettitt, K. K. Berthelsen and R. W. Reeves: An

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 5 Solving an NLP Problem When modelling a new problem in NLP, need to

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

Statistical Tools and Techniques for Solar Astronomers

Statistical Tools and Techniques for Solar Astronomers Statistical Tools and Techniques for Solar Astronomers Alexander W Blocker Nathan Stein SolarStat 2012 Outline Outline 1 Introduction & Objectives 2 Statistical issues with astronomical data 3 Example:

More information

Handbook of Spatial Statistics. Jesper Møller

Handbook of Spatial Statistics. Jesper Møller Handbook of Spatial Statistics Jesper Møller May 7, 2008 ii Contents 1 1 2 3 3 5 4 Parametric methods 7 4.1 Introduction.............................. 7 4.2 Setting and notation.........................

More information

Hierarchical Bayesian Modeling

Hierarchical Bayesian Modeling Hierarchical Bayesian Modeling Making scientific inferences about a population based on many individuals Angie Wolfgang NSF Postdoctoral Fellow, Penn State Astronomical Populations Once we discover an

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Normalising constants and maximum likelihood inference

Normalising constants and maximum likelihood inference Normalising constants and maximum likelihood inference Jakob G. Rasmussen Department of Mathematics Aalborg University Denmark March 9, 2011 1/14 Today Normalising constants Approximation of normalising

More information

The Generalized Likelihood Uncertainty Estimation methodology

The Generalized Likelihood Uncertainty Estimation methodology CHAPTER 4 The Generalized Likelihood Uncertainty Estimation methodology Calibration and uncertainty estimation based upon a statistical framework is aimed at finding an optimal set of models, parameters

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES

ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES ESTIMATING FUNCTIONS FOR INHOMOGENEOUS COX PROCESSES Rasmus Waagepetersen Department of Mathematics, Aalborg University, Fredrik Bajersvej 7G, DK-9220 Aalborg, Denmark (rw@math.aau.dk) Abstract. Estimation

More information

The SDSS is Two Surveys

The SDSS is Two Surveys The SDSS is Two Surveys The Fuzzy Blob Survey The Squiggly Line Survey The Site The telescope 2.5 m mirror Digital Cameras 1.3 MegaPixels $150 4.3 Megapixels $850 100 GigaPixels $10,000,000 CCDs CCDs:

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Lecture 3: Machine learning, classification, and generative models

Lecture 3: Machine learning, classification, and generative models EE E6820: Speech & Audio Processing & Recognition Lecture 3: Machine learning, classification, and generative models 1 Classification 2 Generative models 3 Gaussian models Michael Mandel

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Hmms with variable dimension structures and extensions

Hmms with variable dimension structures and extensions Hmm days/enst/january 21, 2002 1 Hmms with variable dimension structures and extensions Christian P. Robert Université Paris Dauphine www.ceremade.dauphine.fr/ xian Hmm days/enst/january 21, 2002 2 1 Estimating

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers. May 2012

Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers. May 2012 Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers Tomáš Mrkvička, Milan Muška, Jan Kubečka May 2012 Motivation Study of the influence of covariates on the occurrence

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes

Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes arxiv:1604.07027v2 [stat.co] 26 Aug 2016 Shinichiro Shirota Department of Statistical Science, Duke University,

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Inexact approximations for doubly and triply intractable problems

Inexact approximations for doubly and triply intractable problems Inexact approximations for doubly and triply intractable problems March 27th, 2014 Markov random fields Interacting objects Markov random fields (MRFs) are used for modelling (often large numbers of) interacting

More information

Clustering bi-partite networks using collapsed latent block models

Clustering bi-partite networks using collapsed latent block models Clustering bi-partite networks using collapsed latent block models Jason Wyse, Nial Friel & Pierre Latouche Insight at UCD Laboratoire SAMM, Université Paris 1 Mail: jason.wyse@ucd.ie Insight Latent Space

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Bayes via forward simulation. Approximate Bayesian Computation

Bayes via forward simulation. Approximate Bayesian Computation : Approximate Bayesian Computation Jessi Cisewski Carnegie Mellon University June 2014 What is Approximate Bayesian Computing? Likelihood-free approach Works by simulating from the forward process What

More information

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Nicholas Lewis Independent climate scientist CliMathNet 5 July 2016 Main areas to be discussed

More information