Learning the hyper-parameters. Luca Martino

Size: px
Start display at page:

Download "Learning the hyper-parameters. Luca Martino"

Transcription

1 Learning the hyper-parameters Luca Martino / 28

2 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters For instance, do you recall λ (bandwidth of the kernel/basis) and σ e (std of the noise)? where e N (e; 0, σ e 2 ). ψ(x x n ) = exp ( x x n 2 ) 2λ 2, y = f (x) + e, 2 / 28

3 Cross Validation (CV) Split the dataset D = {x i, y i } N i=1 in two sets D train = {x (TR) i, y (TR) i } N TR i=1, and D test = {x (V ) i, y (V ) i } N V i=1, (or D validation ) so that D = D train D test. Then: 1. Given some values of the hyper-parameters θ = [λ, σ e ], compute the estimator f (x θ) using D train. 2. Validate how good is the solution f (x θ) using D test. For instance, we can try to minimize the MSE in prediction θ = arg min θ Θ N (V ) n=1 ( y (V ) n f (x (V ) θ)) 2. 3 / 28

4 Cross Validation (CV) Note that the previous procedure is equivalent to θ = arg max θ Θ exp N (V ) n=1 ( y n (V ) f ) 2 (x (V ) θ). However, we can also try to minimize or maximize other cost or pay-off functions. (not only the error in prediction)...or using other estimators θ, considering the mean of the median, instead of the maximum... 4 / 28

5 Other estimators for CV Denoting as p(y (V ) θ) exp N (V ) n=1 ( y n (V ) f ) 2 (x (V ) θ). the CV-Error in Prediction likelihood, and Denoting as p(θ) the prior over the hyper-parameters θ, and p(θ y (V ) ) the corresponding posterior, then we can also define other estimators, for instance, Minimum Mean Square Error (MMSE) estimator, θ MMSE = θp(θ y)dθ. (1) instead of using the maximum θ MAP. Θ 5 / 28

6 K-fold CV Split the dataset D = {x i, y i } N i=1 in K sets D(K). For k = 1,..., K : 1. Given some hyper-parameters θ = [λ, σ e ], and using D (k) as training set, compute the estimator f k (x θ). 2. Obtain θ (k) considering the rest of K 1 sets as validation sets. Finally, compute θ = 1 K K θ (k). k=1 6 / 28

7 Leave-one-Out and All-in Leave-One-Out : In this case, we consider exactly K = N sets each one formed by N 1 data and only one out. All-in : all for training...it is not CV (K = 1 with N data)... let see the marginal likelihood approach to clarify this point... 7 / 28

8 Alternative to the Error in Prediction: Marginal Likelihood Given the studied models, the marginal likelihood has the form (or similar) p(y θ) = N (y 0, Ψ + σ 2 ei N ), where λ affects the construction of Ψ!! (recall that θ = [λ, σ e ]). We can try to maximize the marginal likelihood, θ = arg max θ Θ p(y θ). It can be used with (inside) or without ( All-in ) CV... 8 / 28

9 Marginal Likelihood Recall that log[p(y θ)] = y (K + σ 2 I N ) 1 y log [ det(k + σ 2 I N ) ] + const. With a uniform prior density p(θ) = I(θ), the posterior density p(θ, y) p(y θ)p(θ) = p(y θ)i(θ), (2) where I(θ) = 1 if θ Θ, I(θ) = 0 otherwise, if θ / Θ. Maximum a Posteriori (MAP) estimator, θ MAP = arg max p(θ y), (3) Minimum Mean Square Error (MMSE) estimator, θ MMSE = θp(θ y)dθ. (4) Θ 9 / 28

10 Global View In general, the elements that must be analyzed/chosen are: 1. Different cost or pay-off functions (including Cross Validation (CV) and mini-batches approaches) 2. Different estimators (MAP, MMSE, median etc.) 3. Choice of the prior pdfs (in a Bayesian framework) 4. Computational algorithms (for approximating the estimators) Several possible combinations Different conclusions for different Machine Learning algorithms Compare methods: complexity, number of parameters/hyperparameters 10 / 28

11 SECOND PART: given a posterior, approximation of the estimators by MONTE CARLO 11 / 28

12 Inference using Monte Carlo Given a posterior π(θ) = p(θ y), we desire to obtain maximum, expected value (mean) (h(θ) = θ; see below), median, covariance matrix and other moments... such as I = h(θ) π(θ)dθ. but it cannot be done analytically, in general. It is impossible analytically: we will do it numerically. Deterministic methods fails in high dimensions, cannot be applied easily... Θ 12 / 28

13 Inference using Monte Carlo Let us consider that we are able to evaluate point-wise π(θ) = p(y θ)p(θ), then π(θ) = p(θ y) = 1 Z π(θ), where Z = Θ π(θ)dθ, is the marginal likelihood Z = p(y). 13 / 28

14 Monte Carlo approximation Our problem is to compute numerically integrals of type I = h(θ) π(θ)dθ, (5) Θ = 1 h(θ)π(θ)dθ. (6) Z Θ Monte Carlo approximation: I = h(θ) π(θ)dθ, (7) Θ 1 T T h(θ t ) (8) t=1 where θ t π(θ). 14 / 28

15 Monte Carlo approximation: Sampling methods Then the problem is to generate random vectors from π(θ). Sampling Methods: procedures to generate random vectors from a generic density. Sampling Methods: NO RELATED to Nyquist and Signal Processing sampling procedures... to sample from..., to draw from... mean to generate random vectors/numbers... Figure with other notation (θ = x = [x 1, x 2]) x x x x / 28

16 proposal density and target density Proposal density: q(θ), easy to sample from (we can draw easily random samples from q). Target density: the posterior π(θ). Sampling Method: converts samples from q(θ) to samples distributed according to π(θ). A sampling Method can be considered a filter, that filters random vectors/numbers distributed according to q(θ) and convert these random vectors into vectors distributed according to π(θ). 16 / 28

17 proposal density and target density (2) Samples from proposal q(θ) = Sampling Method = Samples from target π(θ) SAMPLING METHOD (Monte Carlo) / 28

18 Evaluating versus Sampling a density IMPORTANT!! it is mandatory to distinguish between: Evaluating a density (or a function): given an x, obtain the output y = π(x). Ex: z = ( ) 1 exp (x µ)2 2πσ 2 2σ 2. Sampling (or draw) from a density: generate vectors/numbers x according to π(x). Namely, if we generate several samples x, x... the histogram of these samples approximates the shape of π(x). Ex: x = randn(1,1). 18 / 28

19 Classification of sampling methods MAIN FAMILIES: Direct methods: based on random variable transformation. independent samples. (the best, almost) computational effort: lowest. applicability: low. Rejection sampling independent samples. (the best, almost) computational effort: higher (depending on the acceptance rate). applicability: wider of direct methods, but in general low. Importance sampling (IS) weighted samples. computational effort: low. applicability: always. Markov Chain Monte Carlo (MCMC) positive-correlated samples. computational effort: low. applicability: always. 19 / 28

20 Markov Chain Monte Carlo (MCMC) MCMC: we generate a Markov Chain that has the posterior density π(θ) as an invariant/stationary density. θ 0 θ 1 θ 2... θ t after a burn-in period (with length t b ), we have Problem: we do not know t b... θ t π(θ), for t t b. (we will use all the samples without discarding some of them, hoping that T is enough great...) 20 / 28

21 Metropolis-Hastings (MH) algorithm The Metropolis-Hastings (MH) sampler: 1. Choose θ For t = 1,..., T : 2.1 Generate θ q(θ θ t 1 ). 2.2 Set θ t = θ with probability α = min [ 1, π(θ )q(θ t 1 θ ) π(θ t 1 )q(θ θ t 1 ) ], otherwise set θ t = θ t 1 (with probability 1 α). 3. Outputs: {θ 1,..., θ T } 21 / 28

22 From MH to Gibbs In MH, we propose directly vectors/samples θ = [θ 1,..., θ L ] RL directly on the space with dimension L. There are also component-wise strategies that work component by component in order to construct a complete sample/vector θ = [θ 1,..., θ L ]. 22 / 28

23 Bidimensional Gibbs Sampling (L = 2) Consider π(θ 1, θ 2 ), and note that π 1 (θ 1 θ 2 ) π(θ 1, θ 2 ), π 2 (θ 2 θ 1 ) π(θ 2 θ 1 ). Assume that we are able to draw from the conditionals π 1 and π 2. (strong assumption) The Bidimensional Gibbs sampler: 1. Choose θ 0 = [θ 1,0, θ 2,0 ]. 2. For t = 1,..., T : 2.1 Draw θ 1,t π 1 (θ 1 θ 2,t 1 ). 2.2 Draw θ 2,t π 2 (θ 2 θ 1,t ). 2.3 Set θ t = [θ 1,t, θ 2,t ]. 3. Outputs: {θ 1,..., θ T } 23 / 28

24 Bidimensional Gibbs Sampling (L = 2) Figure with other notation (θ = x = [x 1, x 2 ]) x x 1 24 / 28

25 Bidimensional Gibbs Sampling (L = 2) Figure with other notation (θ = x = [x 1, x 2 ]) x 2 1 x x x 1 25 / 28

26 Gibbs Sampling Assume that we are able to draw from the full-conditionals π l, l = 1,..., L. (strong assumption) The Gibbs sampler: 1. Choose θ 0 = [θ 1,0, θ 2,0,..., θ l,0,..., θ L,0 ]. 2. For t = 1,..., T : 2.1 For l = 1,..., L: Draw θ l,t π l (θ l θ 1:l 1,t, θ l+1:l,t 1 ) 2.2 Set θ t = [θ 1,t, θ 2,t,..., θ l,t,..., θ L,t ]. 3. Outputs: {θ 1,..., θ T } 26 / 28

27 MH-within-Gibbs If we are not able to draw from the full-conditionals, what do we do? we use another MCMC inside the Gibbs sampler, e.g., a MH method inside Gibbs. The MH-within-Gibbs sampler: 1. Choose θ 0 = [θ 1,0, θ 2,0,..., θ l,0,..., θ L,0 ]. 2. For t = 1,..., T : 2.1 For l = 1,..., L: Draw θ l,t from π l (θ l θ 1:l 1,t, θ l+1:l,t 1 ) using a MH algorithm (for instance, other T steps of MH). 2.2 Set θ t = [θ 1,t, θ 2,t,..., θ l,t,..., θ L,t ]. 3. Outputs: {θ 1,..., θ T } 27 / 28

28 Questions? THANKS! References: [1] L. Martino, V. Elvira. Metropolis Sampling, Wiley StatsRef: Statistics Reference Online, arxiv: [2] L. Martino, V. Elvira, G. Camps-Valls, The Recycling Gibbs Sampler for Efficient Learning, (to appear) Digital Signal Processing, arxiv: , 28 / 28

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

The Recycling Gibbs Sampler for Efficient Learning

The Recycling Gibbs Sampler for Efficient Learning The Recycling Gibbs Sampler for Efficient Learning L. Martino, V. Elvira, G. Camps-Valls Universidade de São Paulo, São Carlos (Brazil). Télécom ParisTech, Université Paris-Saclay. (France), Universidad

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

The Recycling Gibbs Sampler for Efficient Learning

The Recycling Gibbs Sampler for Efficient Learning The Recycling Gibbs Sampler for Efficient Learning Luca Martino, Victor Elvira, Gustau Camps-Valls Image Processing Laboratory, Universitat de València (Spain). Department of Signal Processing, Universidad

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Machine Learning. Probabilistic KNN.

Machine Learning. Probabilistic KNN. Machine Learning. Mark Girolami girolami@dcs.gla.ac.uk Department of Computing Science University of Glasgow June 21, 2007 p. 1/3 KNN is a remarkably simple algorithm with proven error-rates June 21, 2007

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

MONTE CARLO METHODS. Hedibert Freitas Lopes

MONTE CARLO METHODS. Hedibert Freitas Lopes MONTE CARLO METHODS Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

A = {(x, u) : 0 u f(x)},

A = {(x, u) : 0 u f(x)}, Draw x uniformly from the region {x : f(x) u }. Markov Chain Monte Carlo Lecture 5 Slice sampler: Suppose that one is interested in sampling from a density f(x), x X. Recall that sampling x f(x) is equivalent

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Faming Liang Texas A& University Sooyoung Cheon Korea University Spatial Model Introduction

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 5. Bayesian Computation Historically, the computational "cost" of Bayesian methods greatly limited their application. For instance, by Bayes' Theorem: p(θ y) = p(θ)p(y

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Karl Oskar Ekvall Galin L. Jones University of Minnesota March 12, 2019 Abstract Practically relevant statistical models often give rise to probability distributions that are analytically

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Hierarchical Modeling for Spatial Data

Hierarchical Modeling for Spatial Data Bayesian Spatial Modelling Spatial model specifications: P(y X, θ). Prior specifications: P(θ). Posterior inference of model parameters: P(θ y). Predictions at new locations: P(y 0 y). Model comparisons.

More information

Nested Sampling. Brendon J. Brewer. brewer/ Department of Statistics The University of Auckland

Nested Sampling. Brendon J. Brewer.   brewer/ Department of Statistics The University of Auckland Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ is a Monte Carlo method (not necessarily MCMC) that was introduced by John Skilling in 2004. It is very popular

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors RicardoS.Ehlers Laboratório de Estatística e Geoinformação- UFPR http://leg.ufpr.br/ ehlers ehlers@leg.ufpr.br II Workshop on Statistical

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J.

Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox Richard A. Norton, J. Deblurring Jupiter (sampling in GLIP faster than regularized inversion) Colin Fox fox@physics.otago.ac.nz Richard A. Norton, J. Andrés Christen Topics... Backstory (?) Sampling in linear-gaussian hierarchical

More information

On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data On Markov chain Monte Carlo methods for tall data Remi Bardenet, Arnaud Doucet, Chris Holmes Paper review by: David Carlson October 29, 2016 Introduction Many data sets in machine learning and computational

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C.

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Spall John Wiley and Sons, Inc., 2003 Preface... xiii 1. Stochastic Search

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information