Quantum SU(2 1) supersymmetric Calogero Moser spinning systems

Size: px
Start display at page:

Download "Quantum SU(2 1) supersymmetric Calogero Moser spinning systems"

Transcription

1 Quntum SU 1 supersymmetrc Clogero Moser spnnng systems rxv: v hep-th 9 Apr 018 SergeyFedoru, EvgenyIvnov, Olf Lechtenfeld b, StepnSdorov Bogolubov Lbortory of Theoretcl Physcs, JINR, Dubn, Moscow regon, Russ fedoru@theor.jnr.ru, evnov@theor.jnr.ru, sdorovstepn88@gml.com b Insttut für Theoretsche Phys nd Remnn Center for Geometry nd Physcs Lebnz Unverstät Hnnover, Appelstrsse, Hnnover, Germny lechtenf@tp.un-hnnover.de Abstrct SU 1 supersymmetrc mult-prtcle quntum mechncs wth ddtonl sem-dynmcl spn degrees of freedom s consdered. In prtculr, we provde n N = 4 supersymmetrzton of the quntum U spn Clogero Moser model, wth n ntrnsc mss prmeter comng from the centrlly-extended superlgebr ŝu 1. The full system dmts n SU 1 covrnt seprton nto the center-of-mss sector nd the quotent. We derve explct expressons for the clsscl nd quntum SU 1 genertors n both sectors s well s for the totl system, nd we determne the relevnt energy spectr, degenerces, nd the sets of physcl sttes. PACS: w, Pb, 1.60.Jv, Ds Keywords: supersymmetry, superfelds, deformton, supersymmetrc mechncs

2 1 Introducton The mny-prtcle Clogero-Moser systems 1,, 3, 4, 5 nd ther generlztons occupy dstngushed plce n the contemporry theoretcl nd mthemtcl physcs. Aprt from such notble mthemtcl propertes, s the clsscl nd quntum ntegrblty, these systems possess wde rnge of physcl pplctons whch re hrd to enumerte. Among these pplctons, t s worth to menton, e.g., close connecton between the lgebr of observbles n the Clogero system nd the hgher-spn lgebr, s ws ponted out n 6, 7. In the sme ppers, there ws reveled n mportnt role of Clogero-le models for descrbng prtcles wth frctonl sttstcs. Another wdely nown pplctons of the Clogero-Moser systems concern the blc hole physcs. It ws suggested 8 tht the Clogero-Moser systems cn provde mcroscopc descrpton of the extreme Ressner-Nordström blc hole n the nerhorzon lmt. It ws rgued tht, from the M-theory perspectve, n mportnt role n ths correspondence should be plyed by vrous N = 4 supersymmetrc extensons of the Clogero- Moser models. Supersymmetrc Clogero-Moser systems hve lso further pplctons n strng theory see, for exmple, 9 nd N=4 super Yng-Mlls theory 10, 11. Keepng n mnd these physcl nd mthemtcl motvtons, t seems of gret nterest to construct nd study new versons of supersymmetrc Clogero-type systems. In recent pper 1, there ws proposed the superfeld mtrx model of SU 1 supersymmetrc mechncs 1 s new N=4 extenson of d = 1 Clogero Moser mult-prtcle system. Ths mtrx model s mssve generlzton of the multprtcle N = 4 model constructed nd studed n 1,. It s nturlly formulted n d = 1 hrmonc superspce 3 nd s descrbed by the followng set of N=4 hrmonc superfelds: n commutng generl superfelds X b = X b,,b = 1,...,n combned nto n hermtn n n-mtrx superfeld X = X b whch trnsform n djont representton of Un nd represent off-shell SU 1 multplets 1, 4, 3; n commutng nlytc complex superfelds Z + formng Un spnor Z + = Z +, Z+ = Z + nd representng off-shell SU 1 multplets 4,4,0; n non-propgtng nlytc topologcl guge superfelds V ++ = V ++b, Ṽ ++b = V ++ b. The mtrx superfeld X = Xζ H s defned on the SU 1 hrmonc superspce ζ H ta,θ ±, θ ±,w ± = 1,, whle the nlytc superfelds Z +, Z+ nd V ++ on the nlytc hrmonc subspce ζ A = t A, θ +,θ +,w ± ζh. The relevnt superfeld cton s wrtten s S mtrx = 1 µ H Tr X + 1 µ A 4 V Z 0 + Z + + c µ A TrV ++, 1.1 where the nvrnt ntegrton mesures re wrtten s µ H = dwdt A d θ dθ d θ + dθ + 1+mθ + θ mθ θ+, µ A = dwdt A d θ + dθ ThsndofdeformedN=4supersymmetrcmechncswsntroducedndstudedn13,14,15,16,17,18. Some of the SU 1 models cn be derved by dmensonl reducton from N=1 Lgrngns on the curved d = 4 mnfold R S 3 19, 0. 1

3 The mss-dmenson prmeter m s encoded n the centrlly-extended superlgebr ŝu 1 s the contrcton prmeter to the flt N=4,d = 1 superlgebr. It does not explctly pper n 1.1 but comes out n the component cton from the mesure µ H nd the θ-expnson of the superfelds X s result of solvng the pproprte SU 1 covrnt constrnts for more detls, see 1, 16.The locl Un trnsformtons of the nvolved superfelds re gven by X = e λ Xe λ, Z + = e λ Z +, V ++ = e λ V ++ e λ e λ D ++ e λ. 1.3 The superfeld V 0 ζ A s prepotentl for the snglet prt TrX of the mtrx superfeld X see detls n 1. The constnt c n 1.1 s prmeter of the model. After quntzton, t specfes externl SU spns of the physcl sttes, c s+1 Z >0, whch mples tht the set of these sttes splts nto rreducble SU multplets. The mtrx d = 1 superfeld X hs the physcl component felds X = X b = X, Ψ = Ψ b nd uxlry bosonc component felds, the superfelds Z +, Z + hve the bosonc components Z = Z, Z = Z = Z nd uxlry fermonc felds. Choosng the WZ guge V ++ = θ + θ+ At A, elmntng uxlry felds nd redefnng the spnor felds s Z Z /TrX1/, we obtn from 1.1 the on-shell component cton S mtrx = S b +S f, 1.4 S b = 1 Tr dt X X m X c dttra + dt Z Z Z Z + dt S S, 1.5 4X 0 S f = 1 Tr dt Ψ Ψ Ψ Ψ +m Ψ Ψ dt Ψ 0 Ψ 0 S. 1.6 X 0 Here, X 0 := 1 n TrX, Ψ 0 := 1 n TrΨ, Ψ 0 := 1 n Tr Ψ, S := Z Z := Z Z, 1.7 nd Z Z := Z Z. The Un guge-covrnt dervtves n 1.5, 1.6 re defned by X = Ẋ +A,X, Ψ = Ψ +A,Ψ, Ψ = Ψ +A, Ψ. 1.8 Z = Ż +AZ, Z = Z Z A. 1.9 The bsc novel feture of the cton 1.4 s compred to the more conventonl ctons of supersymmetrc mechncs s the presence of the sem-dynmcl spn vrbles Z 1,3 whch hs drstc mpct on the structure of the relevnt spce of quntum sttes. These vrbles Itwsshownn17,thtthecentrllyextendedsuperlgebrŝu 1cnberepresentedssem-drectsum of su 1 nd n extr R-symmetry genertor: ŝu 1 su 1+ u1. The centrl chrge s combnton of the R-symmetry genertor nd the nternl U1 genertor of su 1. In the models under consderton the centrl chrge opertor s dentfed wth the cnoncl Hmltonn. 3 The netc term of the vrbles Z n the cton 1.5 s of the frst-order n the tme dervtves, n contrst to the dynmcl vrble X b wth the second-order netc term. Just for ths reson we cll Z, Z sem-dynmcl vrbles. In the Hmltonn see below, they pper only n the ntercton terms nd enter through the SU current S.

4 defne extr SU symmetres wth the genertors 1.7, wth respect to whch the physcl sttes crry ddtonl spn quntum numbers nd so form the pproprte SU multplets. The dgonl su lgebr s n essentl prt of the nternl lgebr su ŝu 1. Also, note the presence of the osclltor-type terms n 1.5 nd 1.6, wth the ntrnsc prmeter m s the relevnt frequency. The smplest one-prtcle n=1 cse of the system 1.4 ws quntzed n recent pper 4. Here we consder the quntum verson of the system 1.4 for n rbtrry n. As shown n 1, t the clsscl level the system 1.4 descrbes n SU 1 supersymmetrc extenson of the U-spn Clogero Moser model 5, 6, 7, 8, 9, 30 generlzng the Clogero Moser system of refs. 1,, 3, 4, 5 to the cse wth ddtonl nternl spn degrees of freedom. Therefore, the bsc purpose of the present pper cn be formulted s constructon of new quntum mult-prtcle spnnng Clogero Moser type system wth deformed N=4,d = 1 supersymmetry. The quntzton of the Clogero-type mult-prtcle systems cn be ccomplshed by the two methods, bsclly ledng to the sme result. One method 31, 6, 7, 8, 7, 30 s bsed on the constructon of the Dunl opertors for gven system. Usng such opertors mes t possble to represent multprtcle system s n osclltor-le system for whch the Dunl opertors ply the role of generlzed momentum opertors. Another wy of quntzng multprtcle systems s bsed on consderng mtrx systems wth ddtonl guge symmetres 34, 7, 8, 35, 36, 9, 30. The elmnton of some degrees of freedom n such mtrx systems results n the stndrd mult-prtcle Clogero-type systems. Due to the osclltor nture of mtrx opertors, the quntzton of mtrx systems s smpler nd the mn ts of ths pproch conssts n fndng solutons of the constrnts genertng guge symmetres. In ths pper, we wll mnly stc to the second method. We wll present the explct expressons of the mult-prtcle opertors of deformed N = 4 supersymmetry, n the mtrx cse nd for the reduced system. The pln of the pper s s follows. In Secton we construct the Hmltonn formlsm for the mtrx system1.4 nd show tht the model ndeed descrbes SU 1 supersymmetrzton of the U-spn Clogero Moser model 5, 6, 7, 8, 9, 30. In Secton 3 we fnd, by Noether procedure, the superchrges of the underlyng ŝu 1 superlgebr, n mtrx cse nd for system wth the reduced phse vrbles spce. In the ltter cse ŝu 1 s closed up to the constrnts genertng some resdul guge nvrnces. In Secton 4 we construct quntum relzton of the deformed N = 4, d = 1 superlgebr ŝu 1 for the mult-prtcle Clogero Moser system. In the cse of the reduced system wth n bosonc poston coordntes such superlgebr s closed up to the genertors of the U1 n guge symmetry, le n the clsscl cse. Ths ŝu 1 superlgebr s represented s sum of two ŝu 1 superlgebrs. One ŝu 1 cts n the center-of-mss sector, wheres the other opertes only on the supervrbles prmetrzng the quotent over ths sector. The spn opertors re common for both these superlgebrs. In Sectons 5-7 we nlyze the energy spectrum n ll cses: for the center-of-mss subsystem, for the system wth reltve supercoordntes nd n the generl cse, when ll poston opertors re ncluded. The lst Secton 8 contns Summry nd outloo. 3

5 Hmltonn nlyss nd guge fxng The cton 1.4 yelds the cnoncl Hmltonn where H totl = H mtrx TrAG,.1 H mtrx = 1 Tr P +m X m Ψ Ψ S S + Ψ 0 Ψ 0 S.. 4X 0 X 0 The Hmltonn.1 nvolves the mtrx momentum P b X b nd nother mtrx quntty G b X,P b + Ψ,Ψ } b +Z Z b cδ b..3 The cton 1.4 lso produces the prmry constrnts P Z + Z 0, P Z Z 0,.4 P Ψ b Ψ b 0, P Ψ b Ψ b 0,.5 P A b 0..6 The constrnts.4,.5 re second clss nd so we ntroduce Drc brcets for them. As the result, we elmnte the moment P Z, P b Ψ nd ther c.c. The resdul vrbles obey the Drc brcets b X,P } d c = δ d δc, b Z, Z } l b = δ l δ, b Ψ b, Ψ } d lc = δ l δδ d c. b.7 Requrng the constrnts.6 to be preserved by the Hmltonn.1 genertes secondry constrnts G b 0..8 Despte the presence of the constnt c n.3 these constrnts re frst clss: wth respect to the Drc brcets.7 they form un lgebr, b G,G } d c = δ d G b c δb c Gd,.9 nd so produce the Un nvrnce of the cton 1.4 X = e α Xe α, Ψ = e α Ψ e α, Z = e α Z, A = e α Ae α e α t e α,.10 where α b t un re d=1 guge prmeters. In the frst-order formulton, the system 1.4 s represented by the cton S mtrx = dtl mtrx,.11 L mtrx = Tr PẊ + Ψ Tr Ψ Ψ Ψ + Z Z Z Ż H mtrx +TrAG,.1 where H mtrx ws defned n.. 4

6 Let us fx prtl guge for the trnsformtons.10. To ths end, we ntroduce the followng notton for the mtrx entres of X nd P: x := X, p := P no summton over, x b := X b, p b := P b for b, x := 0, p := 0 no summton over,.13.e., X b = x δ b +x b, P b = p δ b +p b nd X 0 = 1 n x. Note tht n =1 TrP = p p + b p b p b, TrXP = x p + b x b p b. In the notton.13 the constrnts.8 te the form for b nd G b = x x b p b p p b x b +x c p c b p c x c b +T b 0.14 G = x c p c p c x c +T c 0 no summton over.15 for the dgonl elements of G, wth T b := Z Z b + Ψ,Ψ } b..16 Provded tht the Clogero-le condtons x x b re fulflled, we cn mpose the guge x b 0, b,.17 for the constrnts.14. Then we ntroduce Drc brcets for the constrnts.14,.17 nd elmnte x b by.17 nd p b by.14: p b = T b x x b, b..18 Due to the resolved form of guge-fxng condtons, new Drc brcets for the remnng vrbles concde wth.7: x,p b } = δ b, Z, Z } l b = δ l δ, b Ψ b, Ψ lc d } = δ l δ d δ b c..19 In the guge.17, the constrnts.15 become T c := T c = Z Z + Ψ,Ψ } c 0 no summton over.0 nd they generte locl U1 n trnsformtons of Z nd Ψ b wth b. Preservton of the condtons.17, ẋ b = x b,h totl } = 0, llows one to express T b A b = p b =, b..1 x x b x x b 5

7 Insertng.17,.14 nd.1 nto., we rrve t the reduced totl Hmltonn H red = H C M A T c,. where A = A no summton over nd the generlzed Clogero Moser Hmltonn s defned s H C M = 1 p p +m x x + 1 S S + Ψ 0 Ψ 0 S. 4X 0 X 0 b T b T b x x b mtr Ψ Ψ.3 The sme fnl result cn be ttned n dfferent wy. Elmntng A b, b, by the equtons of moton A b = T b /x x b we obtn tht the cton 1.4 n the guge.17 tes the form S C M = dt 1 ẋ ẋ m x x +Tr Ψ Ψ Ψ Ψ +m Ψ Ψ 1 b Z Ż Z Z + T b T b x x b + S S Ψ 0 Ψ 0 S 4X 0 X 0 } A T c..4 The cton.4 produces the Hmltonn.3, the constrnts.0 nd the brcets.19. The mportnt ngredents of the cton.4 re blner combntons of Z nd Z wth the externl SU ndces S j := Z Z j no summton over, S j := S j..5 Wth respect to the Drc brcets.7 the objects S j for ech ndex form u lgebrs S j,s b l } = δb δ j S l δ l S j..6 The object S j forms the dgonl u lgebr n the product of bove ones S j,s l } = δ j S l δ l S j..7 The trplets of the qunttes.5 see lso 1.7 S j := Z Z j, Sj := S j.8 generte su lgebrs } S j,s l b = δb ε S jl +ε jl S,.9 6

8 S j,s l} = ε S jl +ε jl S..30 Below we wll lso use the brcets } Sj,Z = δ Z j, S j, Z } = δ Z j..31 One more mtrx present n the cton.4 s T b defned n.16. These qunttes form un lgebr.9 wth respect to the Drc brcets: T b,t c d } = δ d T c b δ b c T d..3 The odd mtrx vrbles re trnsformed by djont un representton: T b,ψ c d} = δ d Ψ c b δ b c Ψ d, } b T,Ψ 0 = 0,.33 T b, Ψ c d} = δ d Ψ c b δ b c Ψ d, b T, Ψ } 0 = These un trnsformtons commute wth u trnsformtons generted by S j : T b,s j } = Let us consder the bosonc core of the system.4 nd demonstrte tht t corresponds just to the spn Clogero Moser model. Omttng terms wth fermonc vrbles, we fnd S bose C M = 1 dt ẋ ẋ m x x Z Ż Z Z + } A ZZ c 1 TrS S b x x b + S S,.36 4X 0 where b TrS S b := S j S bj nd S j re defned n.5. The nlogous reducton of the Hmltonn.3 yelds H C M = 1 p p +m x x + 1 b.37 TrS S b x x b S S 4X The Hmltonn.38 contns potentl n the center-of-mss sector wth the coordnte X 0 the lst term n.38. Modulo ths extr potentl, the bosonc lmt of the system constructed s none other thn the U-spn Clogero Moser model whch s mssve generlzton of the U-spn Clogero model 5, 6, 8, 9, 30. Thus the system.4 wth the Hmltonn.3 descrbes SU 1 supersymmetrc extenson of the U-spn Clogero Moser model. 3 Superchrges In ths Secton we wll fnd the clsscl expressons for the genertors of the deformed N=4 supersymmetry SU 1 supersymmetry for the n-prtcle systems, both n the mtrx formulton nd n the cse of the reduced system wth n poston coordntes. 7

9 3.1 Mtrx system The odd SU 1 trnsformtons of the component mtrx felds enterng 1.4 re s follows 4 δψ = ǫ X +mx+ ǫ js j δx = ǫ Ψ + ǫ Ψ, X 0 1, δ Ψ = ǫ X mx+ ǫj S j X 0 1, 3.1 wheres the supertrnsltons of the spn felds re represented by the SU rottons wth the composte prmeters δz = ω j Z j, δ Z = ω j Zj 3. ω j = ǫ Ψ j 0 + ǫ Ψj 0. X 0 Under the trnsformtons 3.1, 3. nd δa = 0 the cton 1.4 trnsforms s δs mtrx = dt Λ 1, Λ 1 = ǫ Tr X +mxψ + ǫ Tr X mx Ψ ωj S j. 3.3 Usng 3.1, 3. nd 3.3 we obtn the followng expressons for Noether superchrges: Q = Tr P mx Ψ + Sj Ψ 0j, X 0 Q = Tr P +mx Ψ S Ψ j j 0, X 0 where P = X. The genertors 3.4 consttute n ŝu 1 superlgebr wth respect to the Drc brcets.7 Q, Q } = δ H m I δ F, Q,Q } = 0, Q, Q } = Here, H = H mtrx, where H mtrx ws defned n., nd lso the su nd u1 genertors re present: I = ε j S j +Tr Ψ Ψj, 3.6 F = 1 Tr Ψ Ψ. 3.7 The Hmltonn H commutes wth ll other genertors nd so cn be dentfed wth the centrl chrge opertor of ŝu 1. The rest of Drc brcets mong the genertors., 3.4, 3.6, 3.7 s gven by the reltons } H,Q } = H, Q = } H,I = H,F} = 0, These trnsformtons re sum of the ntl lner supertrnsltons plus extr compenstng guge trnsformtons 1.3 wth λ = θ+ ǫ θ + ǫ A whch re requred for preservng WZ guge for V ++. 8

10 F,Q } = Q, F, Q } = Q, F,I } = 0, 3.9 I,Q j} = δ j Q +ε j Q, I, Q } j = δ j Q +ε j Q, 3.10 } I,I j l = δ l I j δj I l Note tht the frst-order cton.11 s nvrnt, up to the surfce term δs mtrx = dt Λ 1 wth the substtuton X = P n Λ 1, under the trnsformtons 3.1, 3., δa = 0 nd δp = m ǫ Ψ + ǫ Ψ ǫ S j Ψ 0j + ǫ S j Ψj 0 X It s worth pontng out tht δh = 0 nd δg b = 0 under these trnsformtons. 3. Reduced system n the stndrd Clogero Moser representton Let us compute the ŝu 1 chrges for the reduced system.4 whch follows from the mtrx formulton fter mposng the guge.17. On the pttern of.13, we ntroduce the followng notton for the entres of Ψ nd Ψ : ψ := Ψ, ψ := Ψ no summton over, ψ b := Ψ b, ψ b := Ψ b for b Note tht TrPΨ = p ψ + p b ψ b nd Ψ 0 = 1 n ψ b n, Ψ 0 = 1 n ψ =1 n. =1 In the guge.17, supertrnsltons re sum of the trnsformtons 3.1, 3. nd the ddtonl compenstng guge trnsformtons.10 wth the composte prmeters α b = ǫ ψ b ǫ ψ b x x b for b, α b = 0 for = b These trnsformtons preserve the condtons.17 nd hve the followng explct form δx = ǫ ψ + ǫ ψ, 3.15 δψ = ǫ ẋ +mx + ǫ js j + b α ψ b ψ b α b, X 0 b δ ψ = ǫ ẋ mx + ǫj S j + α b ψb X ψ b α b, 0 b δψ b = ǫ b T α b ψ x x ψ b + c α ψ c b ψ c α b c, b δ ψ b = ǫ T b x x b α b ψ ψ b + δz = ωj Z j + b α b Z b, c c α c ψc b ψ c α c b, δ Z = ω j Z j b Z b α b,

11 δa = b α b T b +T b α b x x b An mportnt property s tht the constrnts.0 re nvrnt wth respect to these supersymmetry trnsformtons, δt = 0. Also, δ A T c = 0. The vrton of the cton.4 under the supersymmetry trnsformtons reds δs C M = dt Λ, where Λ = ǫ ẋ +mx ψ + ǫ ẋ mx ψ + 1 α b T b ωj S j.3.0 b The correspondng Noether superchrges re found to be Q = Q = p mx ψ + b p +mx ψ + b T b ψ b x x b + Sj Ψ 0j X 0, T b ψb x x b S j Ψ j 0 X 0, 3.1 where p = ẋ. These expressons cn be lso obtned by nsertng.17,.18 nto 3.4 nd turnng to the nottons.13, Wth respect to the Drc brcets.19, the genertors 3.1 form, up to the resdul U1 n guge trnsformtons generted by.0, the followng ŝu 1 superlgebr Q, Q } = δ H mi δ F+ b Q,Q } = b Q, Q } = b ψ b ψ b x x b T T b, ψ b ψb x x b T T b. ψ b ψb x x b T T b, 3. Here we used tht the lst relton n.19, beng cst n the notton.13, 3.13, mounts to the reltons ψ, ψ } b = δ δ b, ψ b, ψ } d c = δ δd δb c, In 3., H = H C M, wth H C M defned by.3, nd the genertors I, F were defned n 3.6, 3.7. The Hmltonn.3 commutes wth the superchrges 3.1 modulo the frst-clss constrnts.0: Q,H } = b T b ψ b x x b 3 T T b, Q,H } = b T b ψb x x b 3 T T b. 3.3 The genertors I, F stsfy the sme Drc brcets s n 3.8, 3.9, 3.10, nd

12 4 Quntum mult-prtcle ŝu 1 superlgebr Quntum su 1 superlgebr obtned by quntzng the Drc brcets 3.5, 3.8, 3.9, 3.10, 3.11, s formed by the followng non-vnshng ntcommuttors : Q, Q } = δ H+m I δ F, F,Q = 1 1 Q, F, Q = Q, I,Q j = 1 δ j Q +ε j Q, I, Q 1 j = δ j Q +ε j Q, I,I j l = δ j I l δli j. 4.1 The second- nd thrd-order Csmr opertors of su 1 re defned by the expressons 18 C = C 3 = 1 m H F 1 I I + 1 Q, 4m Q, 4. C m H F Q δ j 8m m H F I} j, Q j. 4.3 In ths Secton we wll present the explct form of ths deformed N =4 supersymmetry lgebr for multprtcle system constructed n the prevous Sectons. We wll do t for the mtrx formulton of ths system nd for the reduced system wth n poston coordntes. 4.1 Mtrx formulton Superchrges of the ŝu 1 superlgebr In the mtrx formulton, the n-prtcle system s descrbed by quntum opertors X b, P b ; Ψ b, Ψ b ; Z, Z b whch stsfy the quntum counterprt of the Drc brcets lgebr.7: X b,p c d = δ d δ b c, Z, Z b j = δ j δ, b Ψ b, Ψ jc d } = δ jδ d δ b c. 4.4 The quntum superchrges re unquely restored by the clsscl expressons 3.4: Q = Tr P mxψ + Sj Ψ 0j, X 0 Q = Tr P+mX Ψ S Ψ j j 0, X where the su genertors re S = Z Z. 4.6 These genertors form the quntum lgebr of the correspondng dgonl externl lgebr.30. The closure of the genertors 4.5 s the full ŝu 1 superlgebr 4.1 wth the 11

13 followng even genertors H = H bose +H ferm, 4.7 H bose = 1 Tr P +m X ns S 4X 0, 4.8 H ferm = m Tr Ψ, Ψ Ψ + 0 Ψ 0 S, X I = ε j S j +Tr Ψ Ψj, 4.10 F = 1 4 Tr Ψ, Ψ The set of physcl sttes of the mtrx system s sngled out by the n constrnts G b = X,P b + Ψ,Ψ } b +Z Z b q +1 δ b 0, 4.1 whch re quntum counterprts of the clsscl constrnts.8 the subscrpt W denotes Weyl-orderng nd should be mposed on the wve functons. The constnt q + 1 present n 4.1 dffers from the clsscl constnt c due to orderng mbgutes. The opertors 4.1 form un lgebr G b,g c d = δ c b G d δ d G c b It s mportnt tht ll constnts pperng n the dgonl prt of G b,.e. t =b, re equl to q +1. A corollry of 4.1 s tht u1 genertor G = Z Z nq ncludes spn Z-opertors only. As we wll see below, the un constrnts 4.1 hve trnsprent menng: The physcl sttes re sun snglets. The constrnt 4.14 fxes the homogenety degree of the physcl sttes wth respect to spn vrbles, whence q Z > Seprton of the center-of-mss sector Let us splt the mtrx qunttes s wth X b = 1 n δ b X 0 + ˆX b, P b = 1 n δ b P 0 + ˆP b, Ψ b = 1 n δ b Ψ 0 + ˆΨ b, Ψ b = 1 n δ b Ψ 0 + ˆ Ψ b, 4.15 X 0 = 1 X, P 0 = 1 P, Ψ n n 0 = 1 Ψ, Ψ0 = 1 n n W Ψ

14 beng the center-of-mss opertors nd ˆX b = X b 1 n δ b X 0, ˆP b = P b 1 n δ b P 0, ˆΨ b = Ψ b 1 n δ b Ψ 0, ˆ Ψ b = Ψ b 1 n δ b Ψ the trceless prts of mtrx opertors. In terms of the vrbles 4.16, 4.17 the superchrges 4.5 re represented s where Q = Q 0 + ˆQ, Q = Q 0 + ˆ Q, 4.18 Q 0 = P 0 mx 0 Ψ 0 + Sj Ψ 0j X 0, Q0 = P 0 +mx 0 Ψ 0 S j Ψ j 0 X nvolve only the center-of-mss opertors 4.16 nd spn vrbles, wheres ˆQ = TrˆP m ˆX ˆΨ, ˆ Q = TrˆP+m ˆX ˆ Ψ 4.0 depend on the trceless prts The even opertors 4.7, 4.8, 4.9, 4.10, 4.11 dmt smlr splttng Here, H = H 0 +Ĥ, I = I 0 +Î, F = F 0 + ˆF. 4.1 H 0 = 1 P0 +m X 0 + m I 0 = ε j S j +Ψ 0 Ψ 0, Ψ 0 S S 4X 0 + S Ψ 0 Ψ 0 X 0, 4. j Ψ 0, 4.3 F 0 = 1 4 Ψ 0, Ψ 0, 4.4 nd Ĥ = 1 ˆP Tr +m + ˆX m ˆΨ Tr, ˆ Ψ, 4.5 Î = ε j Tr ˆΨˆ Ψj, 4.6 ˆF = 1 ˆΨ 4 Tr, ˆ Ψ. 4.7 The sets Q 0, Q0, H 0, I 0, F 0 nd ˆQ, ˆ Q, Ĥ, Î, ˆF form ŝu 1 superlgebrs 4.1 on ther own, wth the vnshng mutul ntcommuttors: Q 0, ˆQ } = Q 0, } ˆ Q = 0, etc. Thus, we hve sngled out the center-of-mss sector from the totl system. Note tht the ŝu 1 genertors ˆQ, ˆ Q, Ĥ, Î, ˆF hve no cton on the spn opertors Z whch n fct remn n the center-of-mss sector. 13

15 It s of mportnce tht the constrnts 4.1 nvolve n fct only the trceless prts 4.17 of the mtrx opertors prt from the spn vrble opertors. Indeed, they cn be rewrtten n the form G b = ˆX, ˆP b + ˆ Ψ, ˆΨ } b +Z Z b q +n 1 δ b n However, due to the presence of the sme spn vrbles n the center-of-mss sector, these constrnts re pplcble lso to the correspondng quntum sttes nd so ccomplsh ln between the two sectors. 4. Quntum lgebr for SU 1 spnnng Clogero Moser system 4..1 ŝu 1 superlgebr wth n dynmcl bosons The quntum counterprt of the multprtcle system from Sect. 3. s descrbed by the quntum opertors x, p ; ψ, ψ ; ψ b, ψ b, b; Z, Z whch stsfy the lgebr x,p b = δ b, Z, Z b j = δ j δ b, ψ, ψ } jb = δ j δ b, ψ b, ψ } d jc = δj δd δb c b,c d. 4.9 Performng the Weyl-orderng n the quntum counterprt of 3.1, we obtn the quntum superchrges: where Q = Q = T b = Z Z b + ψ ψ b p mx ψ + Sj Ψ 0j ψ ψ b + X 0 x x b b b ψ ψ b p +mx ψ S j Ψ j 0 X 0 b x x b ψ b + ψ ψ b ψ b + re quntum counterprts of.16 t b nd X 0 = 1 x, Ψ n 0 = 1 n c, c b + b T b ψ b x x b, T b ψb x x b, 4.30 ψ c ψc b + ψ c ψ c b 4.31 ψ, Ψ0 = 1 n Computng the ntcommuttors of the superchrges 4.30, ψ. 4.3 Q, Q } = δ H n +m I δf ψ b ψb x b x b T T b, 4.33 Q,Q } = ψ b ψ b x b x b T T b, 4.34 Q, Q } b ψ ψb = x x b T T b 4.35 b 14

16 we fnd the explct form of the quntum even genertors H = 1 p p +m x x + m ψ, ψ + m ψ b, ψ b S S 4X 0 + S Ψ 0 Ψ 0 X T b T b x b x b, 4.36 I = ε j S j + ψ ψ j + ψ b ψj b, 4.37 b b F = 1 4 ψ, ψ ψ b, ψ b b The commuttors of the genertor H wth odd genertors Q, Q re quntum generlzton of 3.3. The remnng genertors I, F obey the sme commutton reltons s n 4.1. From the ntcommuttors obtned we observe tht the genertors 4.30, 4.36, 4.37, 4.38 form the ŝu 1 superlgebr 4.1 up to the dfferences T T b. However, recllng the constrnts.0, ths reduced system s specfed lso by the condtons T q n 1 = Z Z + c ψ c ψc ψ c ψ c q 0, 4.39 whch must be supermposed on the physcl sttes. Therefore, the dfferences T T b re vnshng on the physcl sttes, nd the physcl sector of the relevnt Hlbert spce s closed under ŜU 1 symmetry. It s mportnt tht the quntum constrnts 4.39 commute wth the ŝu 1 genertors: T,Q = T, Q = In ddton, the qunttes 4.31 stsfy the lgebr T b,t c d = δ b c T d δ d T c b, 4.41 where T = T t fxed. It s nstructve to be convnced tht the numertor n the lst term n 4.36 s ndeed reduced to tht for U spn Clogero Moser system 30, when ppled to the bosonc wve functons Φ bos defned by the condtons It s esy to chec tht n ths cse ψ Φ bos = ψ b Φ bos = 0. nd the constrnt 4.39 s reduced to T b Z Z b +n 1δ b Z Z q 0. 15

17 Now, tng nto ccount tht n the numertor n 4.36 b, t s esy to chec tht 1 T b T b 1 Sj S bj +qq +1, b, 4.4 where S j = Z Z j no summton over. The opertors S j re just the quntum verson defned n.8. Foe ech vlue of the ndex they generte su lgebrs nd of S j commute wth ech other for b. The expresson 4.4 concdes wth tht pperng n the rtonl U spn Clogero Moser model, wth q beng the prwse spn couplng constnt Dvson nto subsystems Usng the smple dentty K M = 1 n K b M b + 1 n K K b M M b b whch s vld for rbtrry n-vector opertors K, M, = 1,...,n, nd ntroducng the center-of-mss qunttes 4.3 nd we cn represent the chrges 4.30 s the sums P 0 = 1 p, 4.43 n Q = Q 0 + Q, Q = Q 0 + Q The frst tems Q 0, Q 0 n these sums were defned n 4.19, nd they nvolve only the centrlof-mss supercoordntes, wheres the second tems Q, Q depend only on the dfferences of the supercoordntes: Q = 1 n b ψ p p b mx x b ψ b ψ ψ b + T b ψ b, x x b x x b b b Q = 1 p p b +mx x b ψ n ψ b b ψ ψ b + b T ψb. x x b x x b b b 4.45 Snce S j,t b = 0, Q 0, Q 0 ntcommute wth second Q, Q : Q 0, Q j} = Q 0, Q j } = Q0, Q j} = Q0, Q j } = Followng 30, ths model cn be referred to s the reduced mtrx U spn Clogero Moser model, wth q Z >0. There exsts nother type of Us spn models, the so-clled exchnge-opertor models 31, 3, 30, 33, for whch the spn couplng constnt s n rbtrry number. Our SU 1 supersymmetrc mult-prtcle system yelds just the frst type of U spn models n the bosonc sector. 16

18 Ths mples tht the bosonc genertors 4.36, 4.37, 4.38 cn lso be represented s smlr sums, H = H 0 + H, I = I 0 + I, F = F 0 + F, 4.47 where H 0,I 0 nd F 0 re gven by eqs. 4., 4.3, 4.4 nd so nvolve only the center-ofmss coordntes, whle the rest of opertors s defned by the expressons H = 1 p p b +m x x b + 1 T b T b 4n x b b x b + m ψ ψ b, ψ 4n ψ m b + ψ b, ψ b, 4.48 b b I 1 = ε j ψ ψ ψj b n ψ b j + ψ b ψj b, 4.49 b b F = 1 ψ ψ b, ψ 8n ψ 1 b + ψ b, 4 ψ b b The sets of the genertors Q 0, Q 0, H 0, I 0, F 0 nd Q, Q, H, I, F form two seprte mutully ntcommutng ŝu 1 superlgebrs. Note tht second set genertes n ŝu 1 superlgebr up to the constrnts, s n 4.33, 4.34, Also, note tht the nternl SU genertors 4.49 pperng n the ntcommuttor of superchrges ct on the ndces,j of the fermonc opertors ψ ψ b, ψ ψ b, ψ b, ψ b, b, whle the ndces,j of the spn opertors Z, Z re subject to the cton of the externl SU genertors Subsystems of N =4 supersymmetrc Clogero Moser model We hve found tht the N =4 supersymmetrc n-prtcle Clogero Moser system s drect sum of two subsystems wth dfferent relztons of the ŝu 1 genertors. The genertors Q 0, Q 0, H 0, I 0, F 0 ct n the sector of the center-of-mss opertors X 0, P 0, Ψ 0, Ψ0 nd the spn opertors Z, Z. The second set of the ŝu 1 genertors ˆQ, ˆ Q, Ĥ, Î, ˆF ct, n the mtrx formulton, wthn the sector of the trceless opertors ˆX, ˆP, ˆΨ, ˆ Ψ. Physcl sttes n ths subsystem re specfed lso by the spn opertors Z, Z whch re present n the un constrnts 4.8. These constrnts lso specfy physcl sttes n the center-of-mss sector nvolvng the sme spn opertors. In the reduced formulton, the genertors Q, Q, H, I, F re spnned by the set of opertors x x b, p p b, ψ ψ b, ψ ψ b, ψ b, ψ b, b; Z, Z. It should be ponted out tht the spn opertors Z, Z hve non-zero cton on the physcl sttes wth q 0 for ll subsystems defned bove nd lsted below. The just descrbed structure of the consdered system suggests tht we cn consder three subsystems: I The center-of-mss sector spnned by the quntum opertors X 0, P 0, Ψ 0, Ψ 0, Z, Z nd the symmetry opertors Q 0, Q 0, H 0, I 0, F 0 ; II The pure Clogero Moser mult-prtcle sector wth the center-of-mss sector seprted. It s spnned by the quntum opertors ˆX, ˆP, ˆΨ, ˆ Ψ n the mtrx formulton or by 17 b

19 x x b, p p b, ψ ψ b, ψ ψ b, ψ b, ψ b, b n the reduced formulton. In both formultons, ths subsystem lso nvolves the spn opertors Z, Z. The SU 1 symmetry genertors re ˆQ, ˆ Q, Ĥ, Î, ˆF or Q, Q, H, I, F; III The full Clogero Moser mult-prtcle system whch contns the center-of-mss sector nd so s spnned by the set of ll quntum opertors. The ŜU 1 symmetry genertors re sums of the ŜU 1 genertors ctng n the two prevously defned sectors. Now we re prepred to determne the energy spectrum of ll these systems. 5 Center-of-mss subsystem wth n sets of spn vrbles In ths secton we consder the subsystem I whch descrbes the center-of-mss sector wth the Hmltonn H The center-of-mss supercoordntes 4.3, 4.43 stsfy the followng ntcommutton reltons X 0,P 0 =, Ψ 0, Ψ } 0 = δ, 5.1 whle those for the spn vrbles red Z, Z b = δ δ. b 5. We wll use the followng relzton of the opertor reltons 5.1, 5. X 0 = x 0, P 0 = x 0, Ψ 0 = ψ0, Ψ0 =, 5.3 ψ0 Z = z, Z =, 5.4 z where x 0 s rel commutng vrble, z re complex commutng vrbles nd ψ 0 re complex Grssmnn vrbles. In ths relzton the Hmltonn 4. tes the form H 0 = 1 x +m x 0 +m ψ ψ0 x 0 4 S S +S ψ 0, 5.5 ψ0 where S j = z. Wve functon Φ q x z j 0,z,ψ 0 s subject to the n constrnts orgntng from 4.8: G Φ q = q Φ q = 0, = 1,...,n. 5.6 z z The soluton of eqs. 5.6 s functon whch s homogeneous of degree q wth respect to ech set of spn vrbles z. So the number q tng postve nteger nd hlf-nteger vlues cn be treted s spn ssocted wth every SU group generted by the quntum genertors S j = z, no summton over. 5.7 z j 18

20 The number s wll be ssocted wth the dgonl SU group generted by S j = n =1 S j, 5.8 nd, n wht follows, wll be referred to s SU spn s. Snce Φ q s trnsformed n the drectproductofnspnqsurepresenttons, themxmlexternlsuspnsjusts = nq. It wll be convenent to expnd Φ q nto rreducble multplets of the dgonl SU, wth spns runnng n the ntervls 0,1...nq for nq even or 1/,3/...nq for nq odd. As n llustrton, we dwell on two lower-n cses. n = In ths cse the wve functon Φ 0 x 0,z1,z,ψ 0 s subject to two constrnts T 1 qφ q 0 = z1 q Φ q 0 = 0, T qφ q 0 = z q Φ q 0 = Ther generl soluton s z 1 Φ q 0 = z 1 z q φ+ q s=1 z z 1 z q s z z s 1 z s+1...z s Φ 1... s, 5.10 where z 1 z := z 1 z. The component wve functons φ, Φ 1... s n the expnson 5.10re functons of x 0, ψ 0. They form rreducble SU multplets wth spns s = 0,1,...q. Ther expnsons wth respect to ψ 0 re φ = + +ψ 0 b +ψ 0, 5.11 Φ 1... s = A s +ψ 01 B... s +ψ j 0 C j 1... s +ψ 0 A 1... s. 5.1 All components n these expnsons re functons of x 0 only. In the bosonc wve functon Φ q 0, the felds ±, A ±1... s re bosonc, wheres b, B... s, C j1... s re fermonc. The SU spns of the component wve functons re counted wth respect to the nternl SU wth the genertors 4.3 whch contn, besdes the prt ctng on the bosonc spn vrbles, lso the one ctng on the fermonc vrbles. Let us determne the egenvlues of the Hmltonn 5.5 on the wve functon 5.10,.e. solve the sttonry Schrödnger equton As prerequste, we dduce the followng egenvlue reltons H 0 Φ q,l 0 = E s,l Φ q,l Sj S j z zp 1 z p+1...z s A 1... s = ss+1z zp 1 z p+1...z s A 1... s, 5.14 S j z 1 z = 0, S j S j ψ0 z = S j ψ 0 ψ j ψ0 z = 3 ψ 0 z,

21 S j ψ 0 ψ j ψ0 n z zp 1 z p+1...z s A n 1... s = 0 = sψ0 n z zp 1 z p+1...z s A n1... s S j ψ 0 ψ j z zp 1 z p+1...z s ψ 0 1 A... s = = s+1z zp 1 z p+1...z s ψ 01 A... s. They cn be esly checed nd shown to be vld for n rbtrry p s. Due to these reltons, ll the component felds n the expnsons 5.11, 5.1 of the wve functon 5.10 re egensttes of the center-of-mss Hmltonn 5.5 wth the spn s of the dgonl SU group gven by S j. The equton 5.13 mounts to the followng equtons for the component wve functons x x 0 x 0 +m x 0 + ss+1 x 0 +m x x 0 + s+1s+ x 0 0 x 0 +m x 0 + ss 1 x 0 +m x 0 l ± = E 0,l ±m l ±, +m x 0 b l = E 0,l b l, 5.18 A l ± 1... s = E s,l ±ma l ± 1... s, B l 1... s 1 = E s,lb l 1... s 1, C l 1... s+1 = E s,lc l 1... s+1, 5.19 where 5.18 corresponds to s = 0, whle n 5.19 s runs over q 1 vlues, s = 1,...,q. The equtons 5.18 for the felds l ± nd b l hve the form 1 +m x x0 0 f l x 0 = E l f l x nd descrbe the excttons of osclltors. The stndrd solutons of the equton 5.0 re gven v Hermte polynomls H l s f l x 0 = H l x 0 exp mx 0 /, l = 0,1,,..., 5.1 nd hve the energes Thus, the energy spectrum reds E l = ml+1/. 5. E 0,l = m l It s worth pontng out tht the soluton for N = 4 supersymmetrc hrmonc osclltor 5.18 ws orgnlly gven n 13. The equtons 5.19 for the felds A ±1... s, B 1... s 1 nd C 1... s+1 hve the generc form 1 x 0 +m x 0 + γγ 1 x 0 0 f l x 0 = E l fl x 0, 5.4

22 where γ s constnt. It s the well-nown equton descrbng quntum sttes of non-reltvstc prtcle movng n sum of the one-dmensonl osclltor nd conforml nverse-squre potentls, nd t hs the followng generl soluton see, e.g., 1, 3, 37 f l l! x 0 = Γl+γ +1/ x 0 γ L γ 1/ l mx 0 exp mx 0 /, l = 0,1,,..., 5.5 where L γ 1/ l s generlzed Lguerre polynoml. The correspondng energy levels re E γ,l = m l+γ The generl soluton 5.5 ws used n ref. 4 to revel the energy spectrum of the oneprtcle system wth one set of the spn vrbles. Ech equton n the set 5.19 hs the form of 5.4, the prmeter γ beng s+1, s+ nd s, respectvely. Thus, the energy of the sttes of spns s nd s+1/ descrbed by the wve functons A s nd C 1... s+1, s equl to E s,l = ml+s+1/, l = 0,1,,..., s = 1,...,q. The energy of the sttes A 1... s of spn s nd the sttes B 1... s 1 of spn s+1/ s gven only for excted sttes by the sme expresson E s,l = ml+s+1/, l = 1,,3,..., s = 1,...,q. The lowest energy for these sttes corresponds to s = 1, l = 0 nd equls E mn = 3m. 5.7 At q = 1/ we hve the pcture drwn n the Fgure 1. The q = 1 cse encompsses the sme sttes s for q = 1/ s = 1 depcted n Fg. 1, but lso ddtonl sttes wth hgher spns nd hgher energes. The smlr pctures persst t lger q. Summrzng the bove dscusson, we observe the bsc dstncton between the one-prtcle system of ref. 4 nd the center-of-mss sector of n-prtcle system consdered here. In the former cse, the energy spectrum rses s soluton of the egenvlue problems of the type 5.4, wth the Hmltonns nvolvng sum of the osclltor nd the nverse squre potentls. In the ltter cse, the energy spectrum contns s well pure osclltor excttons due to the presence of the egenvlue problems of the type 5.0. n = 3 In ths cse there re three constrnts of the type 5.6 nd for nteger q they led to the followng dependence of the wve functon on the spn vrbles Φ q 0 = z z b z z c z b z c q φ+ z z b q 1 z z c z b z c q z z b Φ b +... b, c,b c +z z q 1 z j 1...z j q z z q 3 Φ 1... q j 1...j q 1... q

23 H 0 11m 9m 7m 5m 3m m m + b A +j B C j A j Fgure 1: The degenercy of energy levels of H 0 for n= nd q=1/. Crcles nd crosses represent bosonc nd fermonc sttes, respectvely. On the left from the dotted vertcl lne the degenercy correspondng to hrmonc osclltor 13, 16 s shown. On the rght sde there s shown sum of SU 1 representtons specfed by ther spn vlues s nd concdng wth those found n 4 for the relevnt spn. For the consdered smplest cse of q = 1/, spn s tes only one vlue, s = 1. The component wve functons n the expnson 5.8 re functons of x 0 nd ψ0, nd they dsply the dependence on ψ0 smlr to tht n 5.1. In the three-spnor cse, the reltons nlogous to 5.14, 5.15, 5.16, 5.17 re lso vld, the dfference s tht now n ddtonl spn vrble z3 ppers n the products. As result, n the energy spectrum we fnd the sme sttes s n the n = cse, though wth bgger multplcty due to extr ndces b n 5.8, s well s the sttes of hgher spns due to the presence of the ddtonl spn vrble z3. In the cse of hlf-nteger q, the n = 3 wve functon hs n expnson n whch the component wve functons crry odd numbers of spnor ndces, s opposed to the expnson 5.8. For exmple, for q = 1/ wve functon s Φ 1 0 = z z 3 z 1 Φ 1 +z 1 z 3 z Φ +z 1 z z 3 Φ The superwve functons Φ x 0,ψ 0 dsply the energy spectrum of the one-prtcle system of ref. 4, ths tme wth the three-fold degenercy. The pctures for hgher n re smlr to those for n = nd n = 3, such tht the number of sttes nd the vlues of dmssble spns re ncresng t ncresng n.

24 6 Clogero Moser system wthout center-of-mss sector As ws mentoned n Introducton, there re two methods of fndng the quntum energy spectrum of multprtcle Clogero-type systems: ether by consderng mtrx models whch produce physclly equvlent Clogero-type systems fter guge-fxng nd the correspondng reducton of phse spce, or through ntroducng Dunl opertors nd pssng to generlzed osclltor system. In ths secton we pply the frst method to quntze the N =4 spn Clogero Moser model under consderton n the mtrx formulton, wth the center-of-mss sector detched Sect The cse of the reduced-phse spce s brefly ddressed n Sect Quntzton n mtrx formulton We consder the quntzton of the mtrx subsystem n whch ŝu 1 superlgebr s formed by the genertors ˆQ, ˆ Q, Ĥ, Î, ˆF defned n 4.0, 4.5, 4.6 nd 4.7. The bsc opertors of ths system re spn opertors Z, Z nd trceless mtrx opertors ˆX b, ˆP b, ˆΨ b, ˆ Ψ b subject to the constrnts 4.8 s usul, ppled to the physcl sttes. Introducng creton nd nnhlton even opertors A b = 1 ˆP b b mˆx, A + b = 1 ˆP b b +mˆx, 6.1 m m TrA = Tr A + = 0, we rewrte the Hmltonn 4.5 n the form Ĥ = m Tr A +,A } + m Tr ˆΨ, ˆ Ψ. 6. In ths notton, the superchrges 4.0 re rewrtten s ˆQ = mtr AˆΨ, ˆ Q = mtr A +ˆ Ψ, 6.3 where quntum ntcommuttors of the nvolved opertors re b A,A + d c = δ d δ b c 1 n δ b δ d c, ˆΨ b, d} ˆ Ψjc = δ d δ b c 1 n δ b d δ c δj. 6.4 The constrnts 4.8 te the form G b = A +,A b + ˆ Ψ, ˆΨ } b +Z Z b q+n 1 δ b n They nvolve the spn opertors, wth the non-vnshng commuttor Z, Z b = δ δ b. 6.6 The opertors Z, A+ b, ˆΨ b form full set of creton opertors. Therefore, the generl structure of the physcl sttes s s follows Z Z 1 1 A + b 1 c 1...A + b c ˆΨj 1d1 e 1... ˆΨ j 3 d 3 e

25 In the holomorphc relzton, Z = z, A + b Z =, z c = â + c b = + c b 1 n δc b + d d, ˆΨ b c = ˆΨ b c = Ψ b c 1 n δc bψ d d, A b c = â + c b = + c b 1 n δc b + d d, ˆ Ψb c = ˆΨ = c b Ψ 1 c b n δ b c Ψ, 6.8 d d we del wth the trceless objects â + nd ˆΨ. Then the physcl sttes 6.7 re rewrtten s z z 1 1 â + b 1 c 1...â + b c ˆΨj 1d1 e 1... ˆΨ j 3 d 3 e The constrnt 6.5 ndctes tht ll physcl sttes re snglets of SUn see 34, 36, 35, 30. Ths s lso drect consequence of vnshng of ll Csmr opertors on the sttes 6.7: G b G b c...g e On the other hnd, the sttes 6.7 belong to rreducble representtons of the group SU wth the genertors S j defned n 4.6 nd the group SU U1 wth the genertors 4.6, 4.7 ctng only on fermonc felds. Egenvlues of the Hmltonn 6. on the sttes 6.7 re specfed by the numbers N A nd N Ψ of the opertors A + b c nd ˆΨ b c : E = m N A +N Ψ n Here we wll bsclly lmt our consderton to the pure bosonc cse, wthout odd opertors ˆΨ b c, ˆ Ψjb c. The set of fermonc sttes cn be generted by cton of the superchrges on the subset of bosonc sttes. Exmples of fermonc sttes wll be constructed below for few smple prtculr cses. The trce prt of the constrnts 6.5 leds to homogenety of the physcl sttes of degree qn wth respect to the spn opertors Z. In ddton, the property tht physcl sttes re the SUn snglets mples the followng structure for them 34, 36, 35, 30 Φ q,s,l Tr A + p Tr A + 3 p 3... Tr A + n pn q 1 r=0 ε 1... n A + l nr+1 Z nr+1 A... + l nr+n Z nr+n 1 n } 0, 6.1 where p,p 3...,p n re rbtrry ntegers nd 0 l nr+1 l nr+...l nr+n < n. The wve functon Φ q,s,l n 6.1 s gven up to the coeffcents C 1... s, where the number s nq cn be nterpreted s SU spn, wth s beng the number of symmetrzed SU ndces of spn vrbles. It s worth pontng out tht for l r < n/ the concdent degrees, l r = l p, re permtted. Besdes, such degree cnnot pper more thn once n the products of monomls ε 1... n A + l nr+1 Z nr+1 A... + l nr+n Z nr+n 1 n 4 }, r = 0,1...q

26 For the hghest spn s = nq, the degrees re gven by l nr+1 = 0, l nr+ = 1,... l nr+n = n 1, r = 0,1...q Degenercy nlyss of bosonc wve functons for the quntum spn Clogero model ws consdered n 33, where t ws notced tht some of possble spn sttes my vnsh. Here we consder the mtrx constructon for the system wth the center-of-mss sector detched, 6 where some of these spn sttes my lso vnsh. Lstng ll dmssble degree numbers l nr+1,l nr+...,l nr+n s rther complcted ts. On the sttes 6.1 the energy 6.11 te the vlues n qn E = m p + l n = The energy s mxml for the choce 6.14: n E s=nq = m p +n 1nq n = The mnml energy corresponds to the choce p = p 3...p n = 0 nd l nr+1 = l nr+ = 0, l nr+3 = l nr+4 = 1, l nr+5 = l nr+6 =, etc: n E mn = m n 1 q n 1, for even n, n 1 q E mn = m n 1, for odd n > The fermonc sttes re constructed wth the help of the opertors ˆΨ b c, on the pttern of 6.1. Such physcl sttes hve ddtonl contrbutons mn Ψ to the energy vlue As ws lredy mentoned, full wve functons cn be generted from the bosonc sttes 6.7 by ctng on them by the superchrges 6.3. Csmr opertors 4., 4. te the followng vlues on the sttes 6.7 nd those produced from 6.7 by SU 1 supersymmetry trnsformton: =1 m C = E + n 1m m 3 C 3 = E + n m E + n 3m, C Csmrs cn te zero egenvlues only for n = t rbtrry q nd for n = 3 t q = 1/ we consder q > 0 n ths pper. The correspondng sets of the quntum sttes belong to typcl representtons of SU 1. For llustrton, we wll consder here these two cses n some detl. n = 6 The constructon of 33 mples reducton to the ngulr spn Clogero model by seprtng the rdl coordnte, whch corresponds n the quntum cse to settng p = 0 n

27 In ths cse the Hmltonn s wrtten s Ĥ = mtr A + A +mtr ˆΨ ˆ Ψ 3m Bosonc wve functons, from whch the full set of the wve functons cn be produced by the superchrges 6.4, re gven by Φ q,s,l = Tr A + l εj ε b Z Z j b q sz 1 1 Z...Z s s s ε b A + s+ b C 1... s 0, 6.0 where C 1... s re coeffcents wth s symmetrc ndces. The wve functons Φ q,s,l re egenfunctons of the Hmltonn 6.19, =1 ĤΦ q,s,l = E s,l Φ q,s,l, s = 0,1...q, 6.1 wth the energy egenvlues E s,l = m l+s The wve functons on whch Csmrs te zero vlues,.e., those belongng to typcl representtons of SU 1, correspond to the choce s = 0, l = 0: Φ q,0,0 = ε j ε b Z Zj b q 0, 6.3 Ths ground stte wve functon s SU 1 snglet, snce t s nnhlted by both superchrges. There s stll nother typcl non-snglet bosonc stte correspondng to s = 1, l = 0: Φ q,1,0 = ε 1 ε c 1c Z 1 c 1 Z q 1ε c b Z 1 Z d A+ d b 0, 6.4 whch gves rse to the fundmentl SU 1 representton. The other two components of ths representton re generted from 6.4 by SU 1 superchrges: ˆQ j Φ q,1,0 = m ε 1 ε c 1c Z 1 c 1 Z q 1ε c b Z 1 Z d ˆΨ j b d 0, etc. 6.5 n = 3, q = 1/ The n = 3 Hmltonn reds Ĥ = m Tr A +,A } + m ˆΨ Tr, ˆ Ψ = mtr A + A +mtr ˆΨ ˆ Ψ 4m. 6.6 For q = 1/, the bosonc wve functons Φ q,s,l s egenfunctons of ths Hmltonn re constructed s Φ 1,1/,l = Tr A + p Tr A + 3 p 3ε 1 3 ε j Z 1 Z j A + Z 3 C 0, Φ 1,1/,l = Tr A + p Tr A + 3 p 3ε 1 3 ε j A + Z 1 A + Z j Z 3 C 0, Φ 1,3/,l = Tr A + p Tr A + 3 p 3ε 1 3 Z 1 A + Z j A + Z C j 0,

28 wth the coeffcents C, C, C j. They hve the followng energy vlues E 1/,l = ml 3, E 1/,l = ml, E 3/,l = ml 1, 6.8 where l = p +3p 3. The mnml energy s cheved on the stte nd t s equl to Φ 1,1/,0 = ε 1 3 ε j Z 1 1 Z A + Z E 1/,0 = 3m Csmr opertors te zero vlues on ths stte. The cton of the SU 1 superchrge, ˆQ j Φ 1,1/,0 = ε 1 3 ε 1 Z 1 1 Z ˆΨj Z 3 0, 6.31 produces n ddtonl fermonc stte whch, together wth 6.9 nd one more bosonc stte generted by further cton of superchrges on 6.31, consttute n typcl fundmentl SU 1 supermultplet. 6. Quntzton of the reduced spnnng Clogero Moser system We brefly dscuss quntzton of the reduced spnnng Clogero Moser mult-prtcle system wthout center-of-mss defned n Sect More explctly, we consder the two-prtcle cse n=. Introducng the holomorphc relzton Z := z, ψ = ψ, Z :=, p z := =, x ψ =, ψ ψ b c = ψ b c, ψb c = ψ, 6.3 c b the dfferentl relzton of Hmltonn 4.48 on physcl sttes s gven by 1 b +m x x b g b + n x x b +const <b Here g b re egenvlues of the quntum opertors 1 T b,t b } < b, nd they correspond to spn couplngs of two nterctng prtcles x nd x b. As ws shown n Sect. 4., one cn represent g b on bosonc sttes v 5.7 s g b = S j S bj +qq +1, < b Ths model s restrcted to postve nteger vlues of q nd s referred to s mtrx model n 30. Arbtrry vlues of q cn be cheved by pplyng the exchnge opertor formlsm nvolvng Dunl opertors see, e.g., 3. As ws lredy mentoned, our SU 1 supersymmetrc system yelds just the U spn mtrx model s ts bosonc core. 7

29 In the smpler cse g b =ϑϑ 1, quntzton ws gven n 31, 6, 7 v Dunl opertors defned s D = + b ϑ x x b 1 K b, 6.35 where K b s permutton opertor, K b x b =x K b. Below we consder the smplest cse n=, where g 1 = ss+1 nd the opertor K 1 becomes Klen-type opertor ctng on the reltve coordnte x 1 x s K 1 x 1 x = x x 1 K 1 = x 1 x K 1, K 1 = Let us consder n detls the two-prtcle system n =. It s descrbed by the lgebr of quntum opertors x,p =, ψ, ψ } j = δ j, Z 1, Z 1 j = Z, Z j = δ j, ψ 1, ψ } 1 j = ψ 1, ψ } j1 = δj, 6.37 where x = 1 x 1 x, p = 1 p 1 p, 6.38 ψ = 1 ψ 1 ψ, ψ = 1 ψ1 ψ Below we use the followng relzton for them x = x, p = x, Z 1 = z 1, Z = z, ψ 1 = ψ 1, ψ 1 = ψ 1, ψ = ψ, ψ = ψ, Z1 j =, Z j =, z j 1 z j ψ1 = ψ 1, ψ 1 = ψ Herex, z ndψ, ψ b, = 1,recomplexcommutngndfermoncntcommutngvrbles, respectvely. The Hmltonn 4.48 wthout center of mss tes the form H = 1 where x +m x +m T 1 T 1 ψ = z 1 = z ψ +ψ 1 ψ 1 +ψ 1 ψ 3 1 z z 1 + T 1,T 1 } 4x ψ ψ ψ 1 1 ψ, ψ ψ + ψ 1 1 ψ. 6.4 The opertors 6.4 ct n the followng wy on the vrbles enterng the wve functon T 1 : z z 1, ψ ψ 1, ψ 1 ψ ; T 1 : z 1 z, ψ ψ 1, ψ 1 ψ

30 nd gve zero, whle ctng on other vrbles. Thus, the opertors T 1 T 1 nd T 1 T 1 trnsform ll components n the expnson of the wve functon nto themselves, wth some coeffcents ncludng the vnshng ones. Therefore, on ll components the Hmltonn 6.41 hs the stndrd form wth the osclltor nd conforml potentls. As the result, we cn fnd ts energy spectrum. Ths system s smlr to the one we hve consdered n Sect. 5, but t hs wder set of fermonc felds. The spn s s ssocted wth the dgonl externl SU group 4.6. In contrst to 4.3, the SU subgroup 4.49 of SU 1 cts only on fermonc felds, whch gves dfferent degenercy pcture for the supergroup SU 1. Let us consder pure bosonc wve functons. They re gven by Ω q = q Ω q,s,l, l s=0 Ω q,s,l x,z1,zj = z q sz 1 z 1 1 z 1...z s 1 z s+1...z s As,l 1... s x, 6.44 nd re subject to the constrnts T 1 Ω q = T Ω q = qω q, q = 1,,3..., T 1 = z1 +ψ z1 1 ψ 1 ψ 1 ψ, 1 T = z ψ 1 ψ 1 +ψ 1 ψ z The egenvlue problem for the Hmltonn 6.41 mounts to the equton 1 x +m x + ss+1 6m A s,l x x 1... s = E s,la s,l 1... s, 6.46 whch s solved s 7 A s,l x 1... s = C 1... s x s+1 L s+1/ l mx exp mx /, l = 0,1,,..., E s,l = m l+s The energy spectrum s consstent wth the energy spectrum 6. clculted n the mtrx formulton. An lterntve constructon of wve functons cn be gven v creton nd nnhlton opertors 31, 6, 7. To solve the equton 6.46, we te the nstz: A s,l 1... s = C 1... s x s+1 Φ s,l +, 6.48 where Φ s,l + s n even functon of x. Introducng the Klen opertor K:=K stsfyng K = 1, Kx = xk, K x = x K, KΦ s,l + = Φ s,l +, As ws dscussed n 4, the equton 6.46 hs n ddtonl soluton whch ws thrown wy for s > 0 due to the presence of sngulrtes t x = 0. Here ths ddtonl soluton must be thrown wy even for the cse s = 0, pplyng the sme resonng to the fermonc expnson of the full wve functon. 9

31 we defne the creton nd nnhlton opertors ± through the Dunl opertor D: ± = D +mx, D = x + s+1 x 1 K, K ± = ± K Then eq s rewrtten s where 1 x +m x + ss+1 6m x A s,l = x s+1 H + Φ s,l +, 6.51 H + = m sk +K 5, H+, ± = ±m ±. 6.5 Tng nto ccount tht KΦ s,l + = Φ s,l +, the functon Φ s,l + s expressed s nd the ssocte energy spectrum s Φ s,l + = + l Φ s,0 +, Φ s,0 + = 0, 6.53 H + Φ s,l + = E s,l Φ s,l +, E s,l = m One cn lso choose n lterntve nstz stsfyng l+s 3, l = 0,1,, A s,l = x s Φ s,l, 6.55 KΦ s,l = Φ s,l The constructon of wve functons v the creton nd nnhlton opertors wll gve the sme soluton for the energy spectrum s We sp detls of ths constructon whch s smlr to the prevous one. 7 Quntzton of the full system center-of-mss plus reltve-coordnte sectors The energy spectrum of theunfed system, whch s sum ofthe center-of-mss sector of Sect.5 nd the reltve coordnte system of Sect.6, cn be found s tensorl product of the spectr of these two subsystems. In the unguged mtrx formulton, the bosonc wve functons re generlzton of 6.1 n the holomorphc relzton 6.8: Φ q,s,l f j1...j s x 0 Tr â + p Tr â + 3 p 3... â+ n pn Tr q 1 r=0 â+ ε 1... n l nr+1 â+ z nr+1... l nr+n z nr+n 1 n Ther generl structure s qute specfed by the three requrements: 30 }

32 The wve functons should be Un nvrnt s consequence of the constrnt 4.1 or ts equvlent form 4.8. Ths mens tht ll Un ndces should be contrcted wth the pproprte nvrnt tensors; They should be of degree qn wth respect to the whole set of spn vrbles n vrtue of the constrnt 4.14; All free SU ndces of the spn vrbles should be symmetrzed nd contrcted wth the ndces of f 1... s x 0. The energy spectrum of dmssble spns of these functons extends from s = 0 to nq for nq even nd from s = 1/ to nq for nq odd. All the fermonc wve functons cn be obtned by cton of the totl superchrges on7.1. The bsc dstnctons of the totl system from the mult-prtcle system of Sect. 6 concern the relztons of the SU symmetry pperng n the nt-commuttors of the superchrges s n nternl subgroup of SU 1. In the system wth the center-of-mss sector detched consdered n Sect.6, ths SU symmetry s gven by 4.49, cts only on the fermonc opertors nd gves rse just to degenercy of the energy spectrum. In the totl system, the nternl SU symmetry cts on the ndces,j,... of ll components of the wve functons 7.1 nd ther fermonc completon. Tng nto ccount the nlyss of the prevous secton, we see tht the problem of descrpton of ll sttes n the unfed cse the opton III n Sect. 4.3 for n rbtrry n s rther complcted. At the sme tme, we cn drectly determne, for ll possble cses, the full energy spectrum smply by pplyng the methods of the prevous sectons. Let us brefly descrbe the energy spectrum for the choce of n =. In ths smplest cse the mtrx system s descrbed by the Hmltonn H = 1 x 0 +m x 0 1 +mψ ψ0 x 0 4 S S +S ψ 0 ψ0 +mtr A + A +mtr Ψ Ψ m. 7. The trceless prt of the generl constrnts 6.5, G b = n X 0,P 0 δ b + A +,A b + Ψ,Ψ } b +Z Z b q +nδ b 0, 7.3 requres wve functons to be SUn sclrs, whle ts trce prt fxes the degree of homogenety wth respect to spn vrbles: G = 0 Z Z 4q = The bosonc wve functons re constructed s Φ q,0,l,l 0 = H l0 x 0 e mx 0 Tr A + l εj ε b Z q b Zj 0, 7.5 Φ q,s,l,l 0 = A l s x 0 Tr A + l q sz εj ε b Z b Zj 1 1 Z...Z s s s ε b A + s+ b 0, s = 1,...q, 7.6 =1 31

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Symmetries and Conservation Laws in Classical Mechanics

Symmetries and Conservation Laws in Classical Mechanics Symmetres nd Conservton Lws n Clsscl Mechncs Wllm Andrew Astll September 30, 0 Abstrct Ths pper wll provde detled explorton nd explnton of symmetres n clsscl mechncs nd how these symmetres relte to conservton

More information

Strong Gravity and the BKL Conjecture

Strong Gravity and the BKL Conjecture Introducton Strong Grvty nd the BKL Conecture Dvd Slon Penn Stte October 16, 2007 Dvd Slon Strong Grvty nd the BKL Conecture Introducton Outlne The BKL Conecture Ashtekr Vrbles Ksner Sngulrty 1 Introducton

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

On Hypercomplex Extensions of Quantum Theory

On Hypercomplex Extensions of Quantum Theory Journl of Modern Physcs, 5, 6, 698-79 Publshed Onlne Aprl 5 n ScRes. http://www.scrp.org/ournl/mp http://dx.do.org/.436/mp.5.6575 On Hypercomplex Extensons of Quntum Theory Dnel Sepunru RQE Reserch enter

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD AMION-JACOBI REAMEN OF AGRANGIAN WI FERMIONIC AND SCAAR FIED W. I. ESRAIM 1, N. I. FARAA Dertment of Physcs, Islmc Unversty of Gz, P.O. Box 18, Gz, Plestne 1 wbrhm 7@hotml.com nfrht@ugz.edu.s Receved November,

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

CANONICAL QUANTIZATION OF N=1 SUPERGRAVITY WITH SUPERMATTER: THE GENERAL CASE AND A FRW MODEL

CANONICAL QUANTIZATION OF N=1 SUPERGRAVITY WITH SUPERMATTER: THE GENERAL CASE AND A FRW MODEL Grvtton & Cosmology, Vol. 995, No., pp. c 995 Russn Grvttonl Socety CNONICL QUNTIZTION OF N= SUPERGRVITY WITH SUPERMTTER: THE GENERL CSE ND FRW MODEL.D.Y.Cheng, P.D.D Eth nd P.R.L.V.Monz Deprtment of ppled

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Duality Anomaly Cancellation, Minimal String Unication and the Eective Low-Energy Lagrangian of 4-D Strings

Duality Anomaly Cancellation, Minimal String Unication and the Eective Low-Energy Lagrangian of 4-D Strings CERN-TH.68/9 Dulty Anomly Cncellton, nml Strng Uncton nd the Eectve Low-Energy Lgrngn of 4-D Strngs Lus E. Ib~nez nd? Deter Lust CERN, Genev, Swtzerlnd Abstrct We present systemtc study of the constrnts

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Inelastic electron tunneling through a vibrational modulated barrier in STM

Inelastic electron tunneling through a vibrational modulated barrier in STM Romnn Reports n Physcs, olume 55, Numer 4, P. 47 58, 3 Inelstc electron tunnelng through vrtonl modulted rrer n SM P. udu culty of Physcs, Unversty of uchrest, PO ox MG, Mgurele, Romn strct: Usng mny ody

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Investigation phase in case of Bragg coupling

Investigation phase in case of Bragg coupling Journl of Th-Qr Unversty No.3 Vol.4 December/008 Investgton phse n cse of Brgg couplng Hder K. Mouhmd Deprtment of Physcs, College of Scence, Th-Qr, Unv. Mouhmd H. Abdullh Deprtment of Physcs, College

More information

Mechanical resonance theory and applications

Mechanical resonance theory and applications Mechncl resonnce theor nd lctons Introducton In nture, resonnce occurs n vrous stutons In hscs, resonnce s the tendenc of sstem to oscllte wth greter mltude t some frequences thn t others htt://enwkedorg/wk/resonnce

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Finite-system statistical mechanics for nucleons, hadrons and partons Scott Pratt, Michigan State University

Finite-system statistical mechanics for nucleons, hadrons and partons Scott Pratt, Michigan State University Fnte-system sttstcl mechncs for nucleons hdrons nd prtons Scott Prtt RECURSIVE TECHNIQUES THE BCK ND FORTHS OF STTISTICL NUCLER PHYSICS Collbortors: S. Ds Gupt McGll W. Buer MSU S. Cheng UCSF S. Petrcon

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Irreducible Hamiltonian approach to the Freedman-Townsend model

Irreducible Hamiltonian approach to the Freedman-Townsend model rxv:hep-th/9912199v1 21 Dec 1999 Irreducble Hmltonn pproch to the Freedmn-Townsend model C. Bzdde, I. Negru nd S. O. Slu Deprtment of Physcs, Unversty of Crov 13 A. I. Cuz Str., Crov RO-1100, Romn Jnury

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

Reactor Control Division BARC Mumbai India

Reactor Control Division BARC Mumbai India A Study of Frctonl Schrödnger Equton-composed v Jumre frctonl dervtve Joydp Bnerjee 1, Uttm Ghosh, Susmt Srkr b nd Shntnu Ds 3 Uttr Bunch Kjl Hr Prmry school, Ful, Nd, West Bengl, Ind eml- joydp1955bnerjee@gml.com

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

PART 1: VECTOR & TENSOR ANALYSIS

PART 1: VECTOR & TENSOR ANALYSIS PART : VECTOR & TENSOR ANALYSIS wth LINEAR ALGEBRA Obectves Introduce the concepts, theores, nd opertonl mplementton of vectors, nd more generlly tensors, n dvnced engneerng nlyss. The emphss s on geometrc

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

Torsion, Thermal Effects and Indeterminacy

Torsion, Thermal Effects and Indeterminacy ENDS Note Set 7 F007bn orson, herml Effects nd Indetermncy Deformton n orsonlly Loded Members Ax-symmetrc cross sectons subjected to xl moment or torque wll remn plne nd undstorted. At secton, nternl torque

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Cardy condition for open-closed field algebras

Cardy condition for open-closed field algebras Crdy condton for open-closed feld lgebrs rxv:mth/0612255v5 [mth.qa] 4 Feb 2009 Lng Kong Abstrct Let V be vertex opertor lgebr stsfyng certn reductvty nd fnteness condtons such tht C V, the ctegory of V-modules,

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System

Activator-Inhibitor Model of a Dynamical System: Application to an Oscillating Chemical Reaction System Actvtor-Inhtor Model of Dynmcl System: Applcton to n Osclltng Chemcl Recton System C.G. Chrrth*P P,Denn BsuP P * Deprtment of Appled Mthemtcs Unversty of Clcutt 9, A. P. C. Rod, Kolt-79 # Deprtment of

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

PROBLEM SET #2 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #2 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIOS by Robert A. DStso Jr. Q. -prtcle densty mtrces nd dempotency. () A mtrx M s sd to be dempotent f M M. Show from the bsc defnton tht the HF densty mtrx s dempotent when expressed n

More information

Srednicki Chapter 34

Srednicki Chapter 34 Srednck Chapter 3 QFT Problems & Solutons A. George January 0, 203 Srednck 3.. Verfy that equaton 3.6 follows from equaton 3.. We take Λ = + δω: U + δω ψu + δω = + δωψ[ + δω] x Next we use equaton 3.3,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

References: 1. Introduction to Solid State Physics, Kittel 2. Solid State Physics, Ashcroft and Mermin

References: 1. Introduction to Solid State Physics, Kittel 2. Solid State Physics, Ashcroft and Mermin Lecture 12 Bn Gp Toy: 1. Seres solutons to the cosne potentl Hmltonn. 2. Dervton of the bngrms the grphcl representton of sngle electron solutons 3. Anlytcl expresson for bngps Questons you shoul be ble

More information

VECTORS AND TENSORS IV.1.1. INTRODUCTION

VECTORS AND TENSORS IV.1.1. INTRODUCTION Chpter IV Vector nd Tensor Anlyss IV. Vectors nd Tensors Septemer 5, 08 05 IV. VECTORS AND TENSORS IV... INTRODUCTION In mthemtcs nd mechncs, we he to operte wth qunttes whch requre dfferent mthemtcl ojects

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Integrability and the variational formulation of non-conservative mechanical systems

Integrability and the variational formulation of non-conservative mechanical systems Integrblty nd the vrtonl formulton of non-conservtve mechncl systems D. H. Delphench Lndsborg, S 67456 Receved 29 Aug 2007, revsed 27 Nov 2008, ccepted 28 Nov 2008 by F. W. Hehl Publshed onlne ey words

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemstry 163 Wnter 1 Hndouts for hrd Lw nd Entropy of Mxng (del gs, dstngushle molecules) PPENDIX : H f, G f, U S (no Δ, no su f ) Chemstry 163 solute Entropes nd Entropy of Mxng Hº f Gº f Sº 1 hrd Lw

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

G. Herglotz s treatment of acceleration waves in his lectures on Mechanik der Kontinua applied to the jump waves of Christoffel

G. Herglotz s treatment of acceleration waves in his lectures on Mechanik der Kontinua applied to the jump waves of Christoffel From: E. B. Chrstoffel: the Influence of hs Wor on Mthemtcs nd the Physcl Scences, ed. P. L. Butzer nd F. Feher, Brhäuser, Boston, 1981. G. Herglotz s tretment of ccelerton wves n hs lectures on Mechn

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

The Dirac equation in Rindler space: A pedagogical introduction

The Dirac equation in Rindler space: A pedagogical introduction The Drc equton n Rndler spce: A pedgogcl ntroducton Dvd McMhon Snd Ntonl Lbortores Albuquerque, NM 87185 Eml: dmmcmh@snd.gov Pul M. Alsng Deprtment of Physcs nd Astronomy, Unversty of New Meco, Albuquerque,

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information