MAE 545: Lecture 2 (9/22) E. coli chemotaxis

Size: px
Start display at page:

Download "MAE 545: Lecture 2 (9/22) E. coli chemotaxis"

Transcription

1 MAE 545: Lecture 2 (9/22) E. coli chemotaxis

2 Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle position x. Assume that jumps occur in regular small time intervals (s x) apple applev(x)p(x, @x 2 D(x)p(x, t) drift velocity (external fluid flow, external potential) v(x) = X (s x) =hs(x)i st t s diffusion coefficient (e.g. position dependent temperature) D(x) = X s 2 s 2 2 t (s x) = (x) 2 t s 2

3 Lévy flights Probability of jump lengths in D dimensions Normalization condition Moments of distribution p( ~s ) = Z C ~s, 0, ~s > s0 ~s < s0 dd ~s p( ~s ) = 1 h~si = 0 ~s = 3.5, D = 2 >D 2 = AD s20, 1, >D+2 <D+2 Lévy flights are better strategy than random walk for finding prey that is scarce D. W. Sims et al. Nature 451, (2008) 3 2D random walk

4 Number of distinct sites visited by random walk Total number of sites inside explored region after N steps 1D 2D N tot / p N N tot / N In 1D and 2D every site gets visited after a long time 2r / p N 3D N tot / N p N In 3D not every site is visited even after a very long time! Shizuo Kakutani: A drunk man will find his way home, but a drunk bird may get lost forever. Number of distinct visited sites after N steps 4 1D 2D 3D N vis p 8N/ N vis N/ ln(8n) N vis 0.66N

5 Fick s laws Adolf Fick 1855 N noninteracting Brownian particles Local concentration c(x, t) =Np(x, t) Fick s laws below follow from Fokker-Plank equations First Fick s law Flux of particles J = Diffusion of particles Second Fick @x apple @x 5

6 First Fick s laws Estimate flow of particles due to concentration gradient N(x) N(x + x) At next time step half of particles jump to the left and half to the right x x + x J = 1 2 [N(x + x) N(x)] t J = D 1 x Net flux x2 x 2 = x 2 2 t 1 x 6 apple N(x + x) [c(x + x) c(x)] x N(x) x In the presence of flow we need to add transport of molecules J =

7 Second Fick s laws Estimate change in concentration due to gradient in flow N(x, t) J(x, t) J(x + x, t) x x + x 1 t x [N(x, t + t) N(x, t)] = 1 t x 1t [c(x, t + t) c(x, t)] = 1 x [J(x + x, t) J(x, t)] t [J(x + x, t) @x 7

8 Fick s laws Adolf Fick 1855 N noninteracting Brownian particles Local concentration c(x, t) =Np(x, t) Fick s laws below follow from Fokker-Plank equations First Fick s law Flux of particles J = Diffusion of particles Second Fick @x apple @x Generalization to higher dimensions ~J = ~vc = ~ r (~vc)+ ~ r 2 (Dc) 8

9 E. coli chemotaxis L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, (2000) 9

10 Escherichia coli 0.8µm 2.5µm flagella E. coli is a part of gut flora that helps us digest food. Concentration of E. coli Total concentration of bacteria 10 9 cm cm 3 10 In normal conditions E. coli divide and produce 2 daughter cells every ~20min. In one day one E. coli could produce ~7x10 10 new cells!

11 Flagella filaments and rotary motors length L. 10µm Flagellum filament left handed helix helix diameter d 0.4µm filament diameter 20nm pitch p 2.3µm Rotary motor 45nm 11

12 Swimming of E. coli F thrust F drag swimming speed v s 20µm/s body spinning frequency f b 10Hz spinning frequency of flagellar bundle f r 100Hz Thrust force generated by spinning flagellar bundle F thrust = F drag 6 Rv s F thrust 0.4pN = N Torque generated by spinning flagellar bundle N = N drag 8 R 3! b N 2pN µm = Nm size of E. coli water viscosity R 1µm 10 3 kg m 1 s 1 12

13 How quickly E. coli stops if motors shut off? F drag swimming speed v s 20µm/s F thrust size of E. coli R 1µm water viscosity 10 3 kg m 1 s 1 mass of E. coli m 4 R3 3 4pg Newton s law ma = 6 Rv x = x 0 h 1 e t/ i E. coli stops almost instantly! m 6 R 2 R2 9 x 0 = v s 0.1Å 0.2µs signature of low Reynolds numbers Re = Rv s

14 Translational and rotational diffusion x hx 2 i =2D T t 2 =2D R t Einstein - Stokes relation Einstein - Stokes relation D T k BT 6 R 0.2µm2 /s D R k BT 8 R rad2 /s After ~10s orientation changes by 90 degrees due to Brownian motion! size of E. coli R 1µm water viscosity temperature Boltzmann constant 10 3 kg m 1 s 1 T = 300K k B = J/K 14

15 E. coli chemotaxis Rotary motor 45nm typical duration: 15 Run swimming speed: v s 20µm/s t r 1s all motors turning counter clockwise Increase (Decrease) run durations, when swimming towards good (harmful) environment. Tumble random change in orientation h i = 68 typical duration: t t 0.1s one or more motors turning clockwise

16 E. coli chemotaxis ˆn ẑ Homogeneous environment run duration: t r 1s tumble duration: t t 0.1s swimming speed: v s 20µm/s drift velocity v d =0 D e = D e effective diffusion `2 6 h ti v2 st 2 r 6(t r + t t ) 60µm2 /s 16 Gradient in food concentration run duration increases (decreases) when swimming towards (away) from food t r (ˆn) =t r + (ˆn ẑ)(@c/@z) v d = h h drift velocity zi ti v s (@c/@z) 3( t r + t t )

17 Sensing of environment E. coli surface is covered with receptors, which can bind specific molecules. Average fraction of bound receptors pb is related to concentration c of molecules. p B = c c 0 = k o c + c 0 k on Singling network inside E. coli analyzes state of receptors and gives direction to rotary motor. k on k o 17

18 Diffusion limited flux of molecules to E. coli Fick = Dr2 c = D 1 boundary conditions c(r!1)=c 1 c(r) =0 absorbing sphere steady state c(r) =c 1 apple1 R r J(r) = flux of rate of absorbing molecules = Dc 1R r 2 I(r) =J(r) 4 r 2 = 4 DRc 1 = I 0 = k on c 1 diffusion constant for D 10 3 µm 2 /s k on 10 4 µm 3 /s small molecules I = N absorbing disks of radius s I 0 1+ R/Ns example R 1µm 18 s 1nm flux drops by factor 2 for N = R/s 3000 fractional area covered by these receptors (N s 2 )/(4 R 2 ) 10 3 E. coli can use many types of receptors specific for different molecules, without significantly affecting the diffusive flux

19 Accuracy of concentration measurement How many molecules do we expect inside a volume occupied by E. coli? Probability p(n) that cell measures N molecules follows Poisson distribution p mean N p(n) = N N E N N! Error in measurement Err N N (R3 c) 1/2 N R 3 c standard N N = deviation for c =1µM = m 3 ) Err 4% E.coli can be more precise by counting molecules for longer time t. However, they need to wait some time t0 in order for the original molecules to diffuse away to prevent double counting of the same molecules! t 0 R 2 /D 10 3 s N R 3 ct/t 0 DRct Err (DRct) 1/2 for t=1s, precision improves to Err~0.1% When E. coli is swimming, it wants to swim faster than the diffusion of small molecules v s t & (Dt) 1/2 ) t & D/v 2 s 1s 19

20 How E. coli actually measures concentration? Probability for motor to rotate in CCW direction (runs) as a function of time in response to short pulse in external molecular concentration Input concentration 1s 3s E. coli integrates measured concentration observed during the last second and compare this with measured concentration during the previous 3 seconds. If difference is positive then increase the probability of runs, otherwise increase the probability of tumbles. J. E. Segall, S. M. Block, and H. C. Berg, PNAS 83, (1986) 20

21 Adaptation Probability for motor to rotate in CCW direction (runs) as a function of time in response to a sudden increase in external molecular concentration 1-0F Input concentration (n CD Time (sec) E. coli adapts to the new level of concentration in about 4 seconds. This enables E. coli to be very sensitive to changes in concentration over a very broad range of concentrations! J. E. Segall, S. M. Block, and H. C. Berg, PNAS 83, (1986) 21

22 How efficient is motor of E. coli? Energy source for rotary motor are charged protons ph =7.0 H + Each proton gains energy due to Transmembrane electric potential difference 120mV Change in ph U =( 2.3k B T/e) ph 50mV Total protonmotive force p = + U 170mV Need 1200 protons per one revolution Input power P in = e p f = 170meV 10Hz pn nm/s ph 7.8 H + Power loss due to stokes drag P rot = N (2 f) 4600pN nm (20 Hz) pn nm/s P trans = F v 0.4pN 20000nm/s pn nm/s 22 Motor efficiency P trans + P rot P in 90%

23 Further reading 23

Bacterial Chemotaxis

Bacterial Chemotaxis Bacterial Chemotaxis Bacteria can be attracted/repelled by chemicals Mechanism? Chemoreceptors in bacteria. attractant Adler, 1969 Science READ! This is sensing, not metabolism Based on genetic approach!!!

More information

MAE 545. Special Topics - Lessons from Biology for Engineering Tiny Devices. Lectures: T, Th 1:30-2:50 PM, Friend Center 003

MAE 545. Special Topics - Lessons from Biology for Engineering Tiny Devices. Lectures: T, Th 1:30-2:50 PM, Friend Center 003 MAE 545 Special Topics - Lessons from Biology for Engineering Tiny Devices Lectures: T, Th 1:30-2:50 PM, Friend Center 003 Office hours: W 1:30-3:00 PM, EQUAD D414 Andrej Košmrlj andrej@princeton.edu Lecture

More information

Lecture 18 Molecular Motion and Kinetic Energy

Lecture 18 Molecular Motion and Kinetic Energy Physical Principles in Biology Biology 3550 Fall 2017 Lecture 18 Molecular Motion and Kinetic Energy Monday, 2 October c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Fick s First

More information

Light controlled motility in E.coli bacteria: from individual response to population dynamics

Light controlled motility in E.coli bacteria: from individual response to population dynamics Light controlled motility in E.coli bacteria: from individual response to population dynamics Ph.D. Candidate: Supervisor: GIACOMO FRANGIPANE Dr. ROBERTO DI LEONARDO Escherichia Coli A model organism for

More information

SPRING 2011 Phys 450 Solution set 2

SPRING 2011 Phys 450 Solution set 2 SPRING 011 Phys 450 Solution set Problem 1 (a) Estimate the diameter of a ater molecule from its self-diffusion coefficient, and using the Stokes-Einstein relation, assuming that it is a spherical molecule.

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

A Study of Bacterial Flagellar Bundling

A Study of Bacterial Flagellar Bundling A Study of Bacterial Flagellar Bundling Heather Flores Edgar Lobaton University of Nebraska-Lincoln Seattle University hflores@math.unl.edu lobatoe@seattleu.edu Stefan Méndez-Diez Svetlana Tlupova University

More information

Diffusion in biological systems and Life at low Reynolds number

Diffusion in biological systems and Life at low Reynolds number Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September

More information

Investigation of the E. coli Flagellar Motor using Optical Tweezers

Investigation of the E. coli Flagellar Motor using Optical Tweezers FOPRA 2017/2018 Physik-Department Lehrstuhl für Biophysik E22 Technische Universität München Investigation of the E. coli Flagellar Motor using Optical Tweezers Alfredo Sciortino (alfredo.sciortino@tum.de)

More information

IMECE TRACKING BACTERIA IN A MICROFLUIDIC CHEMOTAXIS ASSAY

IMECE TRACKING BACTERIA IN A MICROFLUIDIC CHEMOTAXIS ASSAY Proceedings of IMECE 2008 2008 ASME International Mechanical Engineering Congress and Exposition October 31 November 6, 2008, Boston, Massachusetts, USA IMECE2008-66436 TRACKING BACTERIA IN A MICROFLUIDIC

More information

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics Bacterial chemotaxis and the question of high gain in signal transduction Réka Albert Department of Physics E. coli lives in the gut and takes up nutrients through its pores E. coli moves by rotating its

More information

The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards

The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards Pushkar P. Lele a1, Thibault Roland a, Abhishek Shrivastava a, Yihao Chen and Howard C. Berg a Affiliations:

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

56:198:582 Biological Networks Lecture 11

56:198:582 Biological Networks Lecture 11 56:198:582 Biological Networks Lecture 11 Network Motifs in Signal Transduction Networks Signal transduction networks Signal transduction networks are composed of interactions between signaling proteins.

More information

The efficiency of propulsion by a rotating flagellum

The efficiency of propulsion by a rotating flagellum Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11307 11311, October 1997 Biophysics The efficiency of propulsion by a rotating flagellum (bacteria motility hydrodynamics low Reynolds number) EDWARD M. PURCELL*

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems

More information

must move around the sphere : l 3 dt dt d dy

must move around the sphere : l 3 dt dt d dy Name: KEY SC/BPHS090 First Term Test (Lew 9 October 014 Student ID: Be sure to write your name and student ID above. Read the three questions carefully, think, then write your answers in the lined space

More information

Coupling between switching regulation and torque

Coupling between switching regulation and torque Coupling between switching regulation and torque generation in bacterial flagellar motor Fan Bai 1, Tohru Minamino 1, Zhanghan Wu 2, Keiichi Namba 1*, Jianhua Xing 2* 1.Graduate School of Frontier Biosciences,

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Life in the low-reynolds number world

Life in the low-reynolds number world Lecture 11 Life in the low-reynolds number world Sources: Purcell Life at low Reynolds number (Am. J. Phys 1977) Nelson Biological Physics (CH.5) Tsvi Tlusty, tsvi@unist.ac.kr I. Friction in fluids. Outline

More information

BACKGROUND ON CELL MOTION

BACKGROUND ON CELL MOTION BACKGROUND ON CELL MOTION This lab module contains an introduction to the measurement of diffusive and directed motion of micron-size objects in water. The background material presented here deals with

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture 22 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released

More information

Asymmetry in the Clockwise and Counter-Clockwise Rotation of the Bacterial Flagellar Motor

Asymmetry in the Clockwise and Counter-Clockwise Rotation of the Bacterial Flagellar Motor Asymmetry in the Clockwise and Counter-Clockwise Rotation of the Bacterial Flagellar Motor The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Protein Dynamics, Allostery and Function

Protein Dynamics, Allostery and Function Protein Dynamics, Allostery and Function Lecture 3. Protein Dynamics Xiaolin Cheng UT/ORNL Center for Molecular Biophysics SJTU Summer School 2017 1 Obtaining Dynamic Information Experimental Approaches

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

Physics 131: Lecture 22. Today s Agenda

Physics 131: Lecture 22. Today s Agenda Physics 131: Lecture Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Similarities and differences:

Similarities and differences: How does the system reach equilibrium? I./9 Chemical equilibrium I./ Equilibrium electrochemistry III./ Molecules in motion physical processes, non-reactive systems III./5-7 Reaction rate, mechanism, molecular

More information

2. Molecules in Motion

2. Molecules in Motion 2. Molecules in Motion Kinetic Theory of Gases (microscopic viewpoint) assumptions (1) particles of mass m and diameter d; ceaseless random motion (2) dilute gas: d λ, λ = mean free path = average distance

More information

Candidacy Exam Department of Physics February 6, 2010 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I Candidacy Exam Department of Physics February 6, 2010 Part I Instructions: ˆ The following problems are intended to probe your understanding of basic physical principles. When answering each question,

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

SC/BIOL Current Topics in Biophysics TERM TEST ONE

SC/BIOL Current Topics in Biophysics TERM TEST ONE Page 1 of 1 SC/BIOL 2090.02 Current Topics in Biophysics TERM TEST ONE Name: KEY Student ID: There are three questions. You must complete all three. Ensure that you show your work (that is, equations,

More information

Bacterial swimming speed and rotation rate of bundled agella

Bacterial swimming speed and rotation rate of bundled agella FEMS Microbiology Letters 199 (2001) 125^129 www.fems-microbiology.org Bacterial swimming speed and rotation rate of bundled agella Yukio Magariyama a; *, Shigeru Sugiyama a, Seishi Kudo b Abstract b a

More information

arxiv:physics/ v1 [physics.bio-ph] 22 Dec 2005

arxiv:physics/ v1 [physics.bio-ph] 22 Dec 2005 Swimming Efficiency of Bacterium Escherichia Coli Suddhashil Chattopadhyay 1, Radu Moldovan 1, Chuck Yeung 2, and X.L. Wu 1 1 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh,

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics Chem 341, Fall, 2014 1 Frictional coefficients Consider a particle moving with velocity v under the influence of some external force F (say a graviational or electrostatic external

More information

Random Walks and Diffusion. APC 514 December 5, 2002 Cox&Shvartsman

Random Walks and Diffusion. APC 514 December 5, 2002 Cox&Shvartsman Random Walks and Diffusion APC 514 December 5, 2002 Cox&Shvartsman Cell motility over adhesive substrates: a periodic phenomenon Simple model for linear motion: DIMILLA PA, BARBEE K, LAUFFENBURGER DA MATHEMATICAL-MODEL

More information

Mechanical analysis of phase transition experiments of the bacterial flagellar filament

Mechanical analysis of phase transition experiments of the bacterial flagellar filament Acta Mech Sin (2010) 26:777 785 DOI 10.1007/s10409-010-0364-1 RESEARCH PAPER Mechanical analysis of phase transition experiments of the bacterial flagellar filament Xiao-Ling Wang Qing-Ping Sun Received:

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2009 February 1, 2009 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

A stochastic micro-machine inspired by bacterial chemotaxis

A stochastic micro-machine inspired by bacterial chemotaxis (6pp) A stochastic micro-machine inspired by bacterial chemotaxis Journal of Physics: Condensed Matter doi:10.1088/0953-8984/29/1/015102 ossein Mohammadi 1, Banafsheh Esckandariun 1 and Ali Najafi 1,2

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

return in class, or Rm B

return in class, or Rm B Last lectures: Genetic Switches and Oscillators PS #2 due today bf before 3PM return in class, or Rm. 68 371B Naturally occurring: lambda lysis-lysogeny decision lactose operon in E. coli Engineered: genetic

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity.

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity. 9.7 CENTRIFUGATION The centrifuge is a widely used instrument in clinical laboratories for the separation of components. Various quantities are used for the description and the calculation of the separation

More information

Dynamics of an active magnetic particle in a rotating magnetic field

Dynamics of an active magnetic particle in a rotating magnetic field PHYSICAL REVIEW E 73, 021505 2006 Dynamics of an active magnetic particle in a rotating magnetic field A. Cēbers* Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia M. Ozols University

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary.

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary. Biophysics of Macromolecules Prof. D. Braun and Prof. J. Lipfert SS 2015 Final exam Final exam Name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an ID card ready. You

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2014 January 29, 2014 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Lecture II. Bacterial flagellar motor: an adaptive molecular engine

Lecture II. Bacterial flagellar motor: an adaptive molecular engine Lecture II. Bacterial flagellar motor: an adaptive molecular engine The bacterial flagellar motor is a nanotechnologicalmarvel. -- Howard Berg A. It self-assembles (>20 parts) B. It switches its rotational

More information

Lecture 7 : Molecular Motors. Dr Eileen Nugent

Lecture 7 : Molecular Motors. Dr Eileen Nugent Lecture 7 : Molecular Motors Dr Eileen Nugent Molecular Motors Energy Sources: Protonmotive Force, ATP Single Molecule Biophysical Techniques : Optical Tweezers, Atomic Force Microscopy, Single Molecule

More information

Brownian motion 18.S995 - L03 & 04

Brownian motion 18.S995 - L03 & 04 Brownian motion 18.S995 - L03 & 04 Typical length scales http://www2.estrellamountain.edu/faculty/farabee/biobk/biobookcell2.html dunkel@math.mit.edu Brownian motion Brownian motion Jan Ingen-Housz (1730-1799)

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects Proteins as nanomachines Protein physics, Lecture 11 ATP Synthase ATP synthase, a molecular motor Thermal motion and small objects Brownian motors and ratchets Actin and Myosin using random motion to go

More information

A Mathematical Explanation of an Increase in Bacterial Swimming Speed with Viscosity in Linear-Polymer Solutions

A Mathematical Explanation of an Increase in Bacterial Swimming Speed with Viscosity in Linear-Polymer Solutions Biophysical Journal Volume 83 August 2002 733 739 733 A Mathematical Explanation of an Increase in Bacterial Swimming Speed with Viscosity in Linear-Polymer Solutions Yukio Magariyama* and Seishi Kudo

More information

Physics of biological membranes, diffusion, osmosis Dr. László Nagy

Physics of biological membranes, diffusion, osmosis Dr. László Nagy Physics of biological membranes, diffusion, osmosis Dr. László Nagy -Metabolic processes and transport processes. - Macrotransport : transport of large amount of material : through vessel systems : in

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Lecture 13. Drunk Man Walks

Lecture 13. Drunk Man Walks Lecture 13 Drunk Man Walks H. Risken, The Fokker-Planck Equation (Springer-Verlag Berlin 1989) C. W. Gardiner, Handbook of Stochastic Methods (Springer Berlin 2004) http://topp.org/ http://topp.org/species/mako_shark

More information

8.6 Drag Forces in Fluids

8.6 Drag Forces in Fluids 86 Drag Forces in Fluids When a solid object moves through a fluid it will experience a resistive force, called the drag force, opposing its motion The fluid may be a liquid or a gas This force is a very

More information

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved Pathways Have Evolved Using Evolutionary Approaches To Study Biological Pathways Orkun S. Soyer The Microsoft Research - University of Trento Centre for Computational and Systems Biology Protein-protein

More information

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy Abstract Medical applications

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

Physics 101: Lecture 13 Rotational Kinetic Energy and Rotational Inertia. Physics 101: Lecture 13, Pg 1

Physics 101: Lecture 13 Rotational Kinetic Energy and Rotational Inertia. Physics 101: Lecture 13, Pg 1 Physics 0: Lecture 3 Rotational Kinetic Energy and Rotational Inertia Physics 0: Lecture 3, Pg Overview of Semester Newton s Laws F Net = m a Work-Energy F Net = m a W Net = DKE multiply both sides by

More information

Switching of the Bacterial Flagellar Motor Near Zero Load

Switching of the Bacterial Flagellar Motor Near Zero Load Switching of the Bacterial Flagellar Motor Near Zero Load The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published

More information

Conservation and dissipation principles for PDEs

Conservation and dissipation principles for PDEs Conservation and dissipation principles for PDEs Modeling through conservation laws The notion of conservation - of number, energy, mass, momentum - is a fundamental principle that can be used to derive

More information

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at Chapter 7 What is steady state diffusion? Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at any point, x, and hence the concentration gradient at x, in the solid,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Mechanism of phototaxis in marine zooplankton: Description of the model 1 Mathematical Model We describe here a model of a swimming Platynereis larva. The larva is selfpropelled by ciliated cells located

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

Active and Driven Soft Matter Lecture 3: Self-Propelled Hard Rods

Active and Driven Soft Matter Lecture 3: Self-Propelled Hard Rods A Tutorial: From Langevin equation to Active and Driven Soft Matter Lecture 3: Self-Propelled Hard Rods M. Cristina Marchetti Syracuse University Boulder School 2009 A Tutorial: From Langevin equation

More information

Physics 101: Lecture 14 Torque and Equilibrium

Physics 101: Lecture 14 Torque and Equilibrium Exam II Physics 101: Lecture 14 Torque and Equilibrium Today s lecture will cover Textbook Chapter 8.2-8.4 Physics 101: Lecture 14, Pg 1 Hour Exam 1 Results Average = 75 Number of students 20 0 20 40 60

More information

Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017

Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017 100 points total Please write your name on each page. In your answers you should: Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017 Show your work or provide an

More information

Physics 9 Spring 2011 Midterm 1 Solutions

Physics 9 Spring 2011 Midterm 1 Solutions Physics 9 Spring 2011 Midterm 1 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something

More information

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

PHYS208 P-N Junction. Olav Torheim. May 30, 2007 1 PHYS208 P-N Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

The switching dynamics of the bacterial flagellar motor

The switching dynamics of the bacterial flagellar motor Molecular Systems Biology 5; Article number 36; doi:.38/msb.29.74 Citation: Molecular Systems Biology 5:36 & 29 EMBO and Macmillan Publishers Limited All rights reserved 744-4292/9 www.molecularsystemsbiology.com

More information

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size Recap: Solid Rotational Motion (Chapter 8) We have developed equations to describe rotational displacement θ, rotational velocity ω and rotational acceleration α. We have used these new terms to modify

More information

Langevin equations for the run-and-tumble of swimming bacteria

Langevin equations for the run-and-tumble of swimming bacteria Langevin equations for the run-and-tumble of swimming bacteria G. Fier, D. Hansmann,2, and R. C. Buceta,2 arxiv:802.00269v [cond-mat.soft] Feb 208 Instituto de Investigaciones Físicas de Mar del Plata,

More information

Topics covered so far:

Topics covered so far: Topics covered so far: Chap 1: The kinetic theory of gases P, T, and the Ideal Gas Law Chap 2: The principles of statistical mechanics 2.1, The Boltzmann law (spatial distribution) 2.2, The distribution

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Strike. Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia. Page 1. Reminders:

Strike. Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia. Page 1. Reminders: Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia Reminders: Strike Prelectures, checkpoints, lectures continue with no change. Please come to your discussion section. No

More information

Diffusion of a density in a static fluid

Diffusion of a density in a static fluid Diffusion of a density in a static fluid u(x, y, z, t), density (M/L 3 ) of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 201 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

Jerry Gollub 7/18/2011

Jerry Gollub 7/18/2011 Fluid Dynamics of Swimming Cells Jerry Gollub Began as a collaboration with Ray Goldstein s group: M. Polin, I. Tuval, K. Drescher, K Leptos, Adriana Pesci. Haverford participants: Jeff Guasto (Haverford);

More information

Computational Biology and Chemistry

Computational Biology and Chemistry Computational Biology and Chemistry 33 (2009) 269 274 Contents lists available at ScienceDirect Computational Biology and Chemistry journal homepage: www.elsevier.com/locate/compbiolchem Research Article

More information

Weak Ergodicity Breaking. Manchester 2016

Weak Ergodicity Breaking. Manchester 2016 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Burov, Froemberg, Garini, Metzler PCCP 16 (44), 24128 (2014) Akimoto, Saito Manchester 2016 Outline Experiments: anomalous diffusion of single molecules

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Relating Translational and Rotational Variables

Relating Translational and Rotational Variables Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period

More information

On Torque and Tumbling in Swimming Escherichia coli

On Torque and Tumbling in Swimming Escherichia coli JOURNAL OF BACTERIOLOGY, Mar. 2007, p. 1756 1764 Vol. 189, No. 5 0021-9193/07/$08.00 0 doi:10.1128/jb.01501-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. On Torque and Tumbling

More information

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I

More information

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Introduction to Physiology II: Control of Cell Volume and Membrane Potential Introduction to Physiology II: Control of Cell Volume and Membrane Potential J. P. Keener Mathematics Department Math Physiology p.1/23 Basic Problem The cell is full of stuff: Proteins, ions, fats, etc.

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

Homework #4 Physics 498Bio Spring 2012 Prof. Paul Selvin

Homework #4 Physics 498Bio Spring 2012 Prof. Paul Selvin Assigned Wednesday Feb. 22, 2012: Due Wednesday February 29, 10:30am. Hand in at start of class. Late homework is not accepted. (Solution sets will be posted shortly after deadline.) Note: Marco will give

More information