Topics covered so far:

Size: px
Start display at page:

Download "Topics covered so far:"

Transcription

1 Topics covered so far: Chap 1: The kinetic theory of gases P, T, and the Ideal Gas Law Chap 2: The principles of statistical mechanics 2.1, The Boltzmann law (spatial distribution) 2.2, The distribution of speeds (Maxwellian distribution) 2.3, The Equipartition of energy 1

2 Class 4 Previous class: * Maxwellian distribution f(v x,v y,v z )dv x dv y dv z / e mv2 x /2kT e mv2 y /2kT e mv2 z /2kT * Equipartition of energy Each degree of freedom has an average kinetic energy of 1/2 kt. * For a molecule with r, s, l degrees of freedom for translational motion, rotational motion, and vibrational motion, the average kinetic energy of all molecules is <K.E.> = 1/2 kt * (r+s+l). Treating vibrational motion as that of a harmonic oscillator, then the average total energy is <E> = 1/2 kt * (r + s + 2*l) * U = N * <E> = > NkT = 2 U / (r+s+2l) = PV = (ɣ-1)u => ɣ = 2/(r+s+2l) +1 For diatomic molecules, we showed that experiments do not support this classical theory. The resolution of the difficulty could be found from Quantum Mechanics. 2

3 2.3 (cont d) Equipartition of energy Fig (a) A sensitive light-beam galvanometer. Light from a source L is reflected from a small mirror onto a scale. (b) A schematic record of the reading of the scale as a function of the time. 3

4 Kinetic energy: T = 1/2 mv 2 Assuming it s a harmonic oscillator: V = 1/2 kx 2 In thermal equilibrium: 4

5 Chap 3: Diffusion and Drift Two important means of transport of molecules 3.1 The Brownian motion Background The Brownian movement was discovered in 1827 by Robert Brown, a botanist. While he was studying microscopic life, he noticed little particles of plant pollens jiggling around in the liquid he was looking at in the microscope, and he was wise enough to realize that these were not living, but were just little pieces of dirt moving around in the water. Exact mechanism was explained by Albert Einstein in The explanation served as definitive confirmation that atoms and molecules actually exist. Papers published by Einstein in 1905 (The Miracle Year ): On a Heuristic Viewpoint Concerning the Production and Transformation of Light (June 9) On the Motion of Small Particles Suspended in a Stationary Liquid, as Required by the Molecular Kinetic Theory of Heat (July 18) On the Electrodynamics of Moving Bodies (Sept 26) Does the Inertia of a Body Depend Upon Its Energy Content? (Nov 21) 5

6 Reproduced from the book of Jean Baptiste Perrin, Les Atomes, three tracings of the motion of colloidal particles of radius 0.53 µm, as seen under the microscope, are displayed. Successive positions every 30 seconds are joined by straight line segments (the mesh size is 3.2 µm). 6

7 3.2 The random walk (a stochastic process) Fig. The progress made in a random walk. The horizontal coordinate N is the total number of steps taken; the vertical coordinate DN is the net distance moved from the starting position. 7

8 We know that the average distance is <DN> = 0. So we normally look for < DN > or <DN 2 >, the latter is the conventionally used one. We know: And xn = xn-1+1 or xn-1-1 with 1/2 probability. Note: Replace D by x, save D for the diffusion coefficient So: So: The root-mean-squared distance 8

9 Or if each step takes t time, then we have <xn 2 > = N t = t. Traditionally we define a diffusion coefficient D as, in this case, D = <xn 2 >/2t = 1/2. (the meaning of diffusion will be explained later). Now let s get back to the Brownian motion in 1 dimension: Like the case analysed above, we are not interested in <x> which is about 0, but we look for <x 2 >, averaged over a large number of particles. Now Newton s ma = F. m d2 x 2 = dx + F ext the viscous drag the fluctuating force representing the incessant impacts of the molecules of the liquid on the Brownian particle. 9

10 Since we are interested in <x 2 >, we multiple both sides of the equation by x and obtain mx d2 x 2 = xdx + xf ext m " d x dx dx 2 # = 2 dx 2 + xf ext And now take an average over all Brownian particles, we have m 2 d 2 hx 2 i 2 hmv 2 xi = 2 dhx 2 i + hxf ext i = 0, because of F is fluctuating and is independent of x 10

11 One can also solve the following equation directly: m 2 d 2 hx 2 i 2 kt = 2 dhx 2 i which can be written as m 2 dy + 2 y = kt where dhx 2 i y This equation has a general solution in the form is about 0 dhx 2 i y = 2kT + C exp ( t/m) m/ 10 8 s by Langevin (very small) 11

12 So we have dhx 2 i = 2kT the diffusion coefficient: D = 1 2 dhx 2 i = kt 12

13 3.3 The evolution of the distribution function (Brownian motion, Einstein s explanation) Consider a one dimensional system in x. The Brownian particles are constantly moving around randomly. Now choose a time interval τ that is much smaller than the time scale of interest, but larger enough so that in two successive time intervals, the motions executed by the particle can be thought of as events which are independent of each other. (a Markov process) For a particle, the x-coordinate of Brownian particles will increase by an amount. And has a probability distribution ɸ Z 1 1 ( )d =1 and the number of dn of particles which experience a shift which is between and +d dn = n ( )d ( )= ( ) 13

14 Let f(x,t) be the number of particles per unit volume. Z 1 f(x, t + )dx =dx 1 f(x +,t) ( )d f(x, t + ) @f(x, t) f(x +,t)=f(x, t) = f Z 1 1 ( Z 1 1 ( )d 2 Z ( )d 1 Z ( )d D 14

15 = 2 A diffusion equation If all particles start from the origin (x=0) at t=0, then f(x, t) = p n e x2 /4Dt p 4 D t 15

16 f(x,t) Fig. The characteristic bell-shaped curves of the diffusion of Brownian particles. The distribution begins as a Dirac delta function, indicating that all the particles are located at the origin at time t=0, and for increasing times they become flatter and flatter until the distribution becomes uniform in the asymptotic time limit. (Wikipedia) 16

Brownian Motion and The Atomic Theory

Brownian Motion and The Atomic Theory Brownian Motion and The Atomic Theory Albert Einstein Annus Mirabilis Centenary Lecture Simeon Hellerman Institute for Advanced Study, 5/20/2005 Founders Day 1 1. What phenomenon did Einstein explain?

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

BROWNIAN MOTION. 1 Introduction. 2 Theory. Physics 120 General Physics I

BROWNIAN MOTION. 1 Introduction. 2 Theory. Physics 120 General Physics I BROWNIAN MOTION Physics 10 General Physics I 1 Introduction By the beginning of the 0th century, the evidence for the existence of atoms was mounting. It was known that atomic theory could explain the

More information

ROBERT BROWN AND THE POLLEN STUFF

ROBERT BROWN AND THE POLLEN STUFF ROBERT BROWN AND THE POLLEN STUFF P. Hänggi Institut für Physik Universität Augsburg Robert Brown (1773-1858) This is the view Brown obtained in 1828, when he first recognised the cell nucleus. It shows

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

Chapter 14 Kinetic Theory

Chapter 14 Kinetic Theory Chapter 14 Kinetic Theory Kinetic Theory of Gases A remarkable triumph of molecular theory was showing that the macroscopic properties of an ideal gas are related to the molecular properties. This is the

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Turning up the heat: thermal expansion

Turning up the heat: thermal expansion Lecture 3 Turning up the heat: Kinetic molecular theory & thermal expansion Gas in an oven: at the hot of materials science Here, the size of helium atoms relative to their spacing is shown to scale under

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

2. Molecules in Motion

2. Molecules in Motion 2. Molecules in Motion Kinetic Theory of Gases (microscopic viewpoint) assumptions (1) particles of mass m and diameter d; ceaseless random motion (2) dilute gas: d λ, λ = mean free path = average distance

More information

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction EXPERIMENT 17 To Determine Avogadro s Number by Observations on Brownian Motion Introduction In 1827 Robert Brown, using a microscope, observed that very small pollen grains suspended in water appeared

More information

CHAPTER 1 The Birth of Modern Physics

CHAPTER 1 The Birth of Modern Physics CHAPTER 1 The Birth of Modern Physics 1.1 Classical Physics of the 1890s 1.2 The Kinetic Theory of Gases 1.3 Waves and Particles 1.4 Conservation Laws and Fundamental Forces 1.5 The Atomic Theory of Matter

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Electronics Labs - Digital Electronics

Electronics Labs - Digital Electronics Electronics Labs - Digital Electronics Zhenyu Ye The Art of Electronics by Horowitz and Hill Chapter 8 14-Nov-16 1 Equivalent Logic Circuits Circuit A Circuit B October 24, 2016 Digit Electronics, Zhenyu

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

Kinetic theory of the ideal gas

Kinetic theory of the ideal gas Appendix H Kinetic theory of the ideal gas This Appendix contains sketchy notes, summarizing the main results of elementary kinetic theory. The students who are not familiar with these topics should refer

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information

Brownian motion 18.S995 - L03 & 04

Brownian motion 18.S995 - L03 & 04 Brownian motion 18.S995 - L03 & 04 Typical length scales http://www2.estrellamountain.edu/faculty/farabee/biobk/biobookcell2.html dunkel@math.mit.edu Brownian motion Brownian motion Jan Ingen-Housz (1730-1799)

More information

Chapter 3. Random Process & Partial Differential Equations

Chapter 3. Random Process & Partial Differential Equations Chapter 3 Random Process & Partial Differential Equations 3.0 Introduction Deterministic model ( repeatable results ) Consider particles with coordinates rr 1, rr, rr the interactions between particles

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS. A given quantity has both magnitude and direction. Is it necessarily a vector? Justify your answer.. What is the rotational analogue of the force?.

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Organization of NAMD Tutorial Files

Organization of NAMD Tutorial Files Organization of NAMD Tutorial Files .1.1. RMSD for individual residues Objective: Find the average RMSD over time of each residue in the protein using VMD. Display the protein with the residues colored

More information

Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and. The Adiabatic Process Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

More information

Math 345 Intro to Math Biology Lecture 21: Diffusion

Math 345 Intro to Math Biology Lecture 21: Diffusion Math 345 Intro to Math Biology Lecture 21: Diffusion Junping Shi College of William and Mary November 12, 2018 Functions of several variables z = f (x, y): two variables, one function value Domain: a subset

More information

Origins of Modern Physics

Origins of Modern Physics PY1P0/PY1T0 Origins of Modern Physics S. Hutzler notes at: http://www.tcd.ie/physics/foams/lecture_notes/py1p0_origins_of_modern_physics 1. The existence of atoms. Fingerprints of Matter: Spectra 3. The

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

Irreversibility. Have you ever seen this happen? (when you weren t asleep or on medication) Which stage never happens?

Irreversibility. Have you ever seen this happen? (when you weren t asleep or on medication) Which stage never happens? Lecture 5: Statistical Processes Random Walk and Particle Diffusion Counting and Probability Microstates and Macrostates The meaning of equilibrium 0.10 0.08 Reading: Elements Ch. 5 Probability (N 1, N

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013 Temperature and Heat Ken Intriligator s week 4 lectures, Oct 21, 2013 This week s subjects: Temperature and Heat chapter of text. All sections. Thermal properties of Matter chapter. Omit the section there

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Brownian mo*on and microscale entropy

Brownian mo*on and microscale entropy Corso di Laurea in FISICA Brownian mo*on and microscale entropy Luca Gammaitoni Corso di Laurea in FISICA Content The microscopic interpreta*on of energy. The microscopic interpreta*on of entropy The energy

More information

3. First Law of Thermodynamics and Energy Equation

3. First Law of Thermodynamics and Energy Equation 3. First Law of Thermodynamics and Energy Equation 3. The First Law of Thermodynamics for a ontrol Mass Undergoing a ycle The first law for a control mass undergoing a cycle can be written as Q W Q net(cycle)

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Elementary Lectures in Statistical Mechanics

Elementary Lectures in Statistical Mechanics George DJ. Phillies Elementary Lectures in Statistical Mechanics With 51 Illustrations Springer Contents Preface References v vii I Fundamentals: Separable Classical Systems 1 Lecture 1. Introduction 3

More information

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals From Micro to Macro Statistical Mechanics (Statistical

More information

Protein Dynamics, Allostery and Function

Protein Dynamics, Allostery and Function Protein Dynamics, Allostery and Function Lecture 3. Protein Dynamics Xiaolin Cheng UT/ORNL Center for Molecular Biophysics SJTU Summer School 2017 1 Obtaining Dynamic Information Experimental Approaches

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Kinetic Model of Gases

Kinetic Model of Gases Kinetic Model of Gases Section 1.3 of Atkins, 6th Ed, 24.1 of Atkins, 7th Ed. 21.1 of Atkins, 8th Ed., and 20.1 of Atkins, 9th Ed. Basic Assumptions Molecular Speeds RMS Speed Maxwell Distribution of Speeds

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF OSLO FCULTY OF MTHEMTICS ND NTURL SCIENCES Exam in: FYS430, Statistical Mechanics Day of exam: Jun.6. 203 Problem :. The relative fluctuations in an extensive quantity, like the energy, depends

More information

4. Systems in contact with a thermal bath

4. Systems in contact with a thermal bath 4. Systems in contact with a thermal bath So far, isolated systems microcanonical methods 4.1 Constant number of particles:kittelkroemer Chap. 3 Boltzmann factor Partition function canonical methods Ideal

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

Year 7 Science. 7C1: The Particle Model. PPA Challenge

Year 7 Science. 7C1: The Particle Model. PPA Challenge Year 7 Science 7C1: The Particle Model PPA Challenge Name: Form: Task Sheet 1 (Bronze Challenge): The Particle Model Use the words in the box to label the diagram below. This particle diagram shows the

More information

Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017

Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017 100 points total Please write your name on each page. In your answers you should: Biology 3550 Physical Principles in Biology Fall Semester 2017 Mid-Term Exam 6 October 2017 Show your work or provide an

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY Third edition N.G. VAN KAMPEN Institute for Theoretical Physics of the University at Utrecht ELSEVIER Amsterdam Boston Heidelberg London New York Oxford Paris

More information

The Failure of Classical Mechanics

The Failure of Classical Mechanics Chapter 1 The Failure of Classical Mechanics Classical mechanics, erected by Galileo and Newton, with enormous contributions from many others, is remarkably successful. It enables us to calculate celestial

More information

Particle Dynamics: Brownian Diffusion

Particle Dynamics: Brownian Diffusion Particle Dynamics: Brownian Diffusion Prof. Sotiris E. Pratsinis Particle Technology Laboratory Department of Mechanical and Process Engineering, ETH Zürich, Switzerland www.ptl.ethz.ch 1 or or or or nucleation

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

Introduction to Theory of Mesoscopic Systems. Boris Altshuler Columbia University & NEC Laboratories America

Introduction to Theory of Mesoscopic Systems. Boris Altshuler Columbia University & NEC Laboratories America Introduction to Theory of Mesoscopic Systems Boris Altshuler Columbia University & NEC Laboratories America Introduction Einstein s Miraculous Year - 1905 Six papers: 1. The light-quantum and the photoelectric

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface Introduction to Thermodynamics, Lecture 3-5 Prof. G. Ciccarelli (0) Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x FRICTIONLESS

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 Reading check Main concept introduced in first half of this chapter A)Temperature

More information

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e Prepared by: Anthony Pitucco, Ph.D. Pima Community College Dept of Physics, Chair Tucson, Arizona CHAPTER 1 The Birth of Modern Physics 1.1

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

More information

Week of September 2 Torricelli's Law: The flow velocity from a liquid column of height h is the free fall velocity v = p 2gh. The viscous force transm

Week of September 2 Torricelli's Law: The flow velocity from a liquid column of height h is the free fall velocity v = p 2gh. The viscous force transm Physics 23 Summary of Results from Lecture Week of September 8 Pressure is force per unit area, d ~F = pd ~A, where the direction of ~A is outward along the surface normal. The compressibility of a fluid

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

KINETICE THEROY OF GASES

KINETICE THEROY OF GASES INTRODUCTION: Kinetic theory of gases relates the macroscopic properties of gases (like pressure, temperature, volume... etc) to the microscopic properties of the gas molecules (like speed, momentum, kinetic

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 The need for statistical mechanics 2 How to describe large systems In

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x Lecture 7: Kinetic Theory of Gases, Part 2 Last lecture, we began to explore the behavior of an ideal gas in terms of the molecules in it We found that the pressure of the gas was: P = N 2 mv x,i! = mn

More information

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

Displacement Noises in Laser Interferometric Gravitational Wave Detectors Gravitational Wave Physics @ University of Tokyo Dec 12, 2017 Displacement Noises in Laser Interferometric Gravitational Wave Detectors Yuta Michimura Department of Physics, University of Tokyo Slides

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2 Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x Frictionless surface M dv v dt M dv dt v F F F ; v mass velocity in x direction

More information

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like?

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? (1) No longer Gaussian (2) Identical Gaussians (3) Gaussians with

More information

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero PHYS 352 Noise Noise fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero so, we talk about rms voltage for noise V=0 1 Sources of Intrinsic Noise sometimes noise

More information

General classifications:

General classifications: General classifications: Physics is perceived as fundamental basis for study of the universe Chemistry is perceived as fundamental basis for study of life Physics consists of concepts, principles and notions,

More information

Lecture 5: Diatomic gases (and others)

Lecture 5: Diatomic gases (and others) Lecture 5: Diatomic gases (and others) General rule for calculating Z in complex systems Aims: Deal with a quantised diatomic molecule: Translational degrees of freedom (last lecture); Rotation and Vibration.

More information

Contents. 1 Introduction 1

Contents. 1 Introduction 1 Abstract In the first part of this thesis we review the concept of stochastic Langevin equations. We state a simple example and explain its physical meaning in terms of Brownian motion. We then calculate

More information

Dynamique d un gaz de sphères dures et équation de Boltzmann

Dynamique d un gaz de sphères dures et équation de Boltzmann Dynamique d un gaz de sphères dures et équation de Boltzmann Thierry Bodineau Travaux avec Isabelle Gallagher, Laure Saint-Raymond Outline. Linear Boltzmann equation & Brownian motion Linearized Boltzmann

More information

Energy at micro scales

Energy at micro scales Corso di Laurea in FISICA Energy at micro scales Luca Gammaitoni ERASMUS + IESRES INNOVATIVE EUROPEAN STUDIES on RENEWABLE ENERGY SYSTEMS 19 Oct 2016, Perugia Corso di Laurea in FISICA Content The microscopic

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Kinetic Theory of Gases (1)

Kinetic Theory of Gases (1) Advanced Thermodynamics (M2794.007900) Chapter 11 Kinetic Theory of Gases (1) Min Soo Kim Seoul National University 11.1 Basic Assumption Basic assumptions of the kinetic theory 1) Large number of molecules

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Chapter 6 Kinetic Particle Theory

Chapter 6 Kinetic Particle Theory Chapter 6 Kinetic Particle Theory To understand that matter is made up of small particles which are in constant and random motion. To describe simple model of solids, liquids and gases, in terms of the

More information

Protein dynamics. Folding/unfolding dynamics. Fluctuations near the folded state

Protein dynamics. Folding/unfolding dynamics. Fluctuations near the folded state Protein dynamics Folding/unfolding dynamics Passage over one or more energy barriers Transitions between infinitely many conformations B. Ozkan, K.A. Dill & I. Bahar, Protein Sci. 11, 1958-1970, 2002 Fluctuations

More information

Another Method to get a Sine Wave. X = A cos θ V = Acc =

Another Method to get a Sine Wave. X = A cos θ V = Acc = LAST NAME FIRST NAME DATE PER CJ Wave Assignment 10.3 Energy & Simple Harmonic Motion Conceptual Questions 3, 4, 6, 7, 9 page 313 6, 7, 33, 34 page 314-316 Tracing the movement of the mass on the end of

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information