Lecture #26. Gage R&R Study. Oct. 29, 2003

Size: px
Start display at page:

Download "Lecture #26. Gage R&R Study. Oct. 29, 2003"

Transcription

1 Lecture #26 Gage R&R Study Oct. 29, 2003

2 Background - Measurement: Integral part of manufacturing Estimate the contribution attributable to the measurement system itself SPC requires accurate and precise data - Variation: Study and predict system variation Decompose the variation into components

3 Gage R&R R&R - Repeatability & Reproducibility Gage - A gage is any device that is used to obtain measurements. What is gage R&R? - Statistical approach of determing if a gage/gaging system is suitable for the process under measurement.

4 Repeatability: Definition Variation in measurements when an operator measures identical characteristics on the same part using the same measuring instrument. Reproducibility: Variation in measurements when different operators measure identical characteristics on the same part using the same measuring instrument.

5 Sources of Variation Part to Part Variation Overall Variation Measurement System Variation Variation due to Gage Repeatability Variation due to Operators Reproducibility Operators Operator by Part

6 A Statistical Model for Describing the Gage R&R Study y ijk = µ + α i + β j + (αβ) ij + ε ijk σ y 2 = σ 2 part + σ2 op + σ2 op*part + σ2 y ijk - kth measurement by operator j on part i µ - Unknown grand average α i ~ N(0,σ part ), Part effect. β j ~ N(0,σ op. ), Operator effect ( between operator effect ) (αβ) ij ~ N(0,σ op.*part ), Operator-Part interaction ε ijk ~ N(0,σ), Pure error ( within-operator effect )

7 Repeatability & Reproducibility Repeatability: [σ repeat ] 2 = σ 2 Reproducibility [σ reprod ] 2 = σ 2 op + σ2 op*part Repeatability & Reproducibility [σ r&r ] 2 = [σ repeat ] 2 + [σ reprod ] 2 = σ 2 + σ 2 op + σ2 op*part Total Variance σ y 2 = σ 2 part + σ2 r&r

8 Methods to Determine Gage R&R Average and Range method Analysis of Variance (ANOVA)

9 Example Operator A Operator B Operator C Part 1 Part 2 Part 3 Part

10 Analysis of Variance (ANOVA) Part 1 Part 2 Part 3 Part 4 Mean Operator A Operator B Operator C Mean

11 Analysis of Variance (ANOVA) S. of S. for S. of S. for Part Operator 32.60*9= *12= x 12 x 12 x 12 Mean Mean x 9 x 9 x 9 x 9

12 Analysis of Variance (ANOVA) Part 1 Part 2 Part 3 Part 4 Operator A Operator B Operator C S. of S. Pure Error: = 60.82

13 Analysis of Variance (ANOVA) Part 1 Part 2 Part 3 Part 4 Operator A Operator B Operator C S. of S. of interacton: 3*[ ( ) 2 + (0.275) (0.425) 2 ]=17.965

14 Analysis of Variance (ANOVA) No. of parts = 4 (i) No. of operators = 3 (j) No. of replications = 3 (k) Results of ANOVA DOF Sum of Squares Mean Squares F calc F table(.95) Part Operator Op * Part Error

15 Two Way Random Effect ANOVA Table DOF Sum of Squares Mean Squares EMS Part i-1 SS part MS part kjσ 2 part + kσ2 op*part + σ2 Operator j-1 SS op. MS op. kiσ 2 op. + kσ2 op*part + σ2 Op * Part (i-1)*(j-1) SS op.*part MS op.*part kσ 2 op*part + σ2 Error i*j*(k-1) SS error MS error σ 2 Part 3? 9σ 2 part + 3σ2 op*part + σ2 Operator 2? 12σ 2 op. + 3σ2 op*part + σ2 Op * Part 6? 3σ 2 op*part + σ2 Error 24? σ 2

16 Analysis of Variance (ANOVA) Repeatability [σ repeat ] 2 =σ 2 = Reproducibility σ 2 op*part = 1/3( ) = σ 2 op. = 1/12( ) = [σ reprod ] 2 = σ 2 op + σ2 op*part = Repeatability & Reproducibility [σ r&r ] 2 = [σ repeat ] 2 + [σ reprod ] 2 = 3.419

17 Gage Capability Ratio GCR If > 1? = 6σ r&r UpperSpec LowerSpec %GCR_repeat If > 5 %? if > 10%? %GCR_reprod. = = If > 20 %? if > 30%? 6σ repeat UpperSpec LowerSpec X 100% 6σ reprod UpperSpec LowerSpec X 100%

18 Average and Range Method [σ r&r ] 2 = [σ reprod ] 2 + [σ repeat ] 2 Repeatability - Equipment variation EV = Rdbar ( k) d 2 Rdbar = (Rbar A + Rbar B + Rbar C )/ No. of operators Reproducibility - Operator variation OV = X d d 2 ( j) 2 ( EV) k Xd = Max. Xbar - Min Xbar

CHAPTER-5 MEASUREMENT SYSTEM ANALYSIS. Two case studies (case study-3 and 4) conducted in bearing

CHAPTER-5 MEASUREMENT SYSTEM ANALYSIS. Two case studies (case study-3 and 4) conducted in bearing 6 CHAPTER-5 MEASUREMENT SYSTEM ANALYSIS 5.0 INTRODUCTION: Two case studies (case study- and 4) conducted in bearing manufacturing facility. In this industry the core process is bearing rings machining

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Statistical Quality Control, IE 3255 March Homework #6 Due: Fri, April points

Statistical Quality Control, IE 3255 March Homework #6 Due: Fri, April points Statistical Quality Control, IE 355 March 30 007 Homework #6 Due: Fri, April 6 007 00 points Use Ecel, Minitab and a word processor to present quality answers to the following statistical process control

More information

SMA 6304 / MIT / MIT Manufacturing Systems. Lecture 10: Data and Regression Analysis. Lecturer: Prof. Duane S. Boning

SMA 6304 / MIT / MIT Manufacturing Systems. Lecture 10: Data and Regression Analysis. Lecturer: Prof. Duane S. Boning SMA 6304 / MIT 2.853 / MIT 2.854 Manufacturing Systems Lecture 10: Data and Regression Analysis Lecturer: Prof. Duane S. Boning 1 Agenda 1. Comparison of Treatments (One Variable) Analysis of Variance

More information

Measurement Systems Analysis

Measurement Systems Analysis Measurement Systems Analysis Since measurement systems represent a subprocess within a process They are subject to Variation. What could be the source of this variation? Why do Measurements Vary? Possible

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Measuring System Analysis in Six Sigma methodology application Case Study

Measuring System Analysis in Six Sigma methodology application Case Study Measuring System Analysis in Six Sigma methodology application Case Study M.Sc Sibalija Tatjana 1, Prof.Dr Majstorovic Vidosav 1 1 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije

More information

Lektion 6. Measurement system! Measurement systems analysis _3 Chapter 7. Statistical process control requires measurement of good quality!

Lektion 6. Measurement system! Measurement systems analysis _3 Chapter 7. Statistical process control requires measurement of good quality! Lektion 6 007-1-06_3 Chapter 7 Measurement systems analysis Measurement system! Statistical process control requires measurement of good quality! Wrong conclusion about the process due to measurement error!

More information

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA iron retention (log) 0 1 2 3 high Fe2+ high Fe3+ low Fe2+ low Fe3+ medium Fe2+ medium Fe3+ 2 Two-way ANOVA In the one-way design there is only one factor. What if there are several factors? Often, we are

More information

IE 361 Module 5. Gauge R&R Studies Part 1: Motivation, Data, Model and Range-Based Estimates

IE 361 Module 5. Gauge R&R Studies Part 1: Motivation, Data, Model and Range-Based Estimates IE 361 Module 5 Gauge R&R Studies Part 1: Motivation, Data, Model and Range-Based Estimates Reading: Section 2.2 Statistical Quality Assurance for Engineers (Section 2.4 of Revised SQAME) Prof. Steve Vardeman

More information

Addition of Center Points to a 2 k Designs Section 6-6 page 271

Addition of Center Points to a 2 k Designs Section 6-6 page 271 to a 2 k Designs Section 6-6 page 271 Based on the idea of replicating some of the runs in a factorial design 2 level designs assume linearity. If interaction terms are added to model some curvature results

More information

Design and Analysis of Experiments Prof. Jhareswar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur

Design and Analysis of Experiments Prof. Jhareswar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Design and Analysis of Experiments Prof. Jhareswar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Lecture 26 Randomized Complete Block Design (RCBD): Estimation

More information

Analysis of variance

Analysis of variance Analysis of variance 1 Method If the null hypothesis is true, then the populations are the same: they are normal, and they have the same mean and the same variance. We will estimate the numerical value

More information

Randomized Blocks, Latin Squares, and Related Designs. Dr. Mohammad Abuhaiba 1

Randomized Blocks, Latin Squares, and Related Designs. Dr. Mohammad Abuhaiba 1 Randomized Blocks, Latin Squares, and Related Designs Dr. Mohammad Abuhaiba 1 HomeWork Assignment Due Sunday 2/5/2010 Solve the following problems at the end of chapter 4: 4-1 4-7 4-12 4-14 4-16 Dr. Mohammad

More information

Analysis of Variance and Design of Experiments-I

Analysis of Variance and Design of Experiments-I Analysis of Variance and Design of Experiments-I MODULE VIII LECTURE - 35 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS MODEL Dr. Shalabh Department of Mathematics and Statistics Indian

More information

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik

Factorial Treatment Structure: Part I. Lukas Meier, Seminar für Statistik Factorial Treatment Structure: Part I Lukas Meier, Seminar für Statistik Factorial Treatment Structure So far (in CRD), the treatments had no structure. So called factorial treatment structure exists if

More information

Stat 511 HW#10 Spring 2003 (corrected)

Stat 511 HW#10 Spring 2003 (corrected) Stat 511 HW#10 Spring 003 (corrected) 1. Below is a small set of fake unbalanced -way factorial (in factors A and B) data from (unbalanced) blocks. Level of A Level of B Block Response 1 1 1 9.5 1 1 11.3

More information

3. Factorial Experiments (Ch.5. Factorial Experiments)

3. Factorial Experiments (Ch.5. Factorial Experiments) 3. Factorial Experiments (Ch.5. Factorial Experiments) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University DOE and Optimization 1 Introduction to Factorials Most experiments for process

More information

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA.

Analysis of Variance. Read Chapter 14 and Sections to review one-way ANOVA. Analysis of Variance Read Chapter 14 and Sections 15.1-15.2 to review one-way ANOVA. Design of an experiment the process of planning an experiment to insure that an appropriate analysis is possible. Some

More information

Lecture 27 Two-Way ANOVA: Interaction

Lecture 27 Two-Way ANOVA: Interaction Lecture 27 Two-Way ANOVA: Interaction STAT 512 Spring 2011 Background Reading KNNL: Chapter 19 27-1 Topic Overview Review: Two-way ANOVA Models Basic Strategy for Analysis Studying Interactions 27-2 Two-way

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

Process Capability Analysis Using Experiments

Process Capability Analysis Using Experiments Process Capability Analysis Using Experiments A designed experiment can aid in separating sources of variability in a quality characteristic. Example: bottling soft drinks Suppose the measured syrup content

More information

G. Nested Designs. 1 Introduction. 2 Two-Way Nested Designs (Balanced Cases) 1.1 Definition (Nested Factors) 1.2 Notation. 1.3 Example. 2.

G. Nested Designs. 1 Introduction. 2 Two-Way Nested Designs (Balanced Cases) 1.1 Definition (Nested Factors) 1.2 Notation. 1.3 Example. 2. G. Nested Designs 1 Introduction. 1.1 Definition (Nested Factors) When each level of one factor B is associated with one and only one level of another factor A, we say that B is nested within factor A.

More information

If we have many sets of populations, we may compare the means of populations in each set with one experiment.

If we have many sets of populations, we may compare the means of populations in each set with one experiment. Statistical Methods in Business Lecture 3. Factorial Design: If we have many sets of populations we may compare the means of populations in each set with one experiment. Assume we have two factors with

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/term

More information

STAT Final Practice Problems

STAT Final Practice Problems STAT 48 -- Final Practice Problems.Out of 5 women who had uterine cancer, 0 claimed to have used estrogens. Out of 30 women without uterine cancer 5 claimed to have used estrogens. Exposure Outcome (Cancer)

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

A hybrid Measurement Systems Analysis and Uncertainty of Measurement Approach for Industrial Measurement in the Light Controlled Factory

A hybrid Measurement Systems Analysis and Uncertainty of Measurement Approach for Industrial Measurement in the Light Controlled Factory A hybrid Measurement Systems Analysis and Uncertainty of Measurement Approach for Industrial Measurement in the Light Controlled Factory J E Muelaner, A Francis, M Chappell, P G Maropoulos Laboratory for

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

Repeatability & Reproducibility Studies

Repeatability & Reproducibility Studies Repeatability & Reproducibility Studies Introduction Before we can talk about gage R&R, we have to define the word gage. When asked to name a gage, people typically think of micrometers, pressure gages,

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

+ E 1,1.k + E 2,1.k Again, we need a constraint because our model is over-parameterized. We add the constraint that

+ E 1,1.k + E 2,1.k Again, we need a constraint because our model is over-parameterized. We add the constraint that TWO WAY ANOVA Next we consder the case when we have two factors, categorzatons, e.g. lab and manufacturer. If there are I levels n the frst factor and J levels n the second factor then we can thnk of ths

More information

MTH6134 / MTH6134P: Statistical Modelling II

MTH6134 / MTH6134P: Statistical Modelling II Main Examination period 2017 MTH6134 / MTH6134P: Statistical Modelling II Duration: 2 hours Student number Desk number Name and type of calculator used Apart from this page, you are not permitted to read

More information

QUEEN MARY, UNIVERSITY OF LONDON

QUEEN MARY, UNIVERSITY OF LONDON QUEEN MARY, UNIVERSITY OF LONDON MTH634 Statistical Modelling II Solutions to Exercise Sheet 4 Octobe07. We can write (y i. y.. ) (yi. y i.y.. +y.. ) yi. y.. S T. ( Ti T i G n Ti G n y i. +y.. ) G n T

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu Feb, 2018, week 7 1 / 17 Some commonly used experimental designs related to mixed models Two way or three way random/mixed effects

More information

Lecture 9: Factorial Design Montgomery: chapter 5

Lecture 9: Factorial Design Montgomery: chapter 5 Lecture 9: Factorial Design Montgomery: chapter 5 Page 1 Examples Example I. Two factors (A, B) each with two levels (, +) Page 2 Three Data for Example I Ex.I-Data 1 A B + + 27,33 51,51 18,22 39,41 EX.I-Data

More information

Lecture 10: Experiments with Random Effects

Lecture 10: Experiments with Random Effects Lecture 10: Experiments with Random Effects Montgomery, Chapter 13 1 Lecture 10 Page 1 Example 1 A textile company weaves a fabric on a large number of looms. It would like the looms to be homogeneous

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

Solution to Final Exam

Solution to Final Exam Stat 660 Solution to Final Exam. (5 points) A large pharmaceutical company is interested in testing the uniformity (a continuous measurement that can be taken by a measurement instrument) of their film-coated

More information

Chapter 4: Randomized Blocks and Latin Squares

Chapter 4: Randomized Blocks and Latin Squares Chapter 4: Randomized Blocks and Latin Squares 1 Design of Engineering Experiments The Blocking Principle Blocking and nuisance factors The randomized complete block design or the RCBD Extension of the

More information

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication CHAPTER 4 Analysis of Variance One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication 1 Introduction In this chapter, expand the idea of hypothesis tests. We

More information

Outline Topic 21 - Two Factor ANOVA

Outline Topic 21 - Two Factor ANOVA Outline Topic 21 - Two Factor ANOVA Data Model Parameter Estimates - Fall 2013 Equal Sample Size One replicate per cell Unequal Sample size Topic 21 2 Overview Now have two factors (A and B) Suppose each

More information

2-way analysis of variance

2-way analysis of variance 2-way analysis of variance We may be considering the effect of two factors (A and B) on our response variable, for instance fertilizer and variety on maize yield; or therapy and sex on cholesterol level.

More information

Quantitative. Accurate. Precise. Measurement Error

Quantitative. Accurate. Precise. Measurement Error Measurement Error Before we do any experiments, collect any data, or set up any process: We need to ensure we have a way to measure the results that is: Quantitative Accurate Precise So how do we test

More information

Power & Sample Size Calculation

Power & Sample Size Calculation Chapter 7 Power & Sample Size Calculation Yibi Huang Chapter 7 Section 10.3 Power & Sample Size Calculation for CRDs Power & Sample Size for Factorial Designs Chapter 7-1 Power & Sample Size Calculation

More information

Measurement Systems Analysis January 2015 Meeting. Steve Cox

Measurement Systems Analysis January 2015 Meeting. Steve Cox Measurement Systems Analysis January 2015 Meeting Steve Cox Steve Cox Currently retired 33 Years with 3M Mostly quality related: 37 total in Quality ASQ Certified Quality Engineer Certified Black Belt

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes Two-Way Analysis of Variance 44 Introduction In the one-way analysis of variance (Section 441) we consider the effect of one factor on the values taken by a variable Very often, in engineering investigations,

More information

Lecture 3: Analysis of Variance II

Lecture 3: Analysis of Variance II Lecture 3: Analysis of Variance II http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. A second introduction to two-way ANOVA II. Repeated measures design III. Independent versus

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

ANOVA Randomized Block Design

ANOVA Randomized Block Design Biostatistics 301 ANOVA Randomized Block Design 1 ORIGIN 1 Data Structure: Let index i,j indicate the ith column (treatment class) and jth row (block). For each i,j combination, there are n replicates.

More information

Graduate Lectures and Problems in Quality Control and Engineering Statistics: Theory and Methods

Graduate Lectures and Problems in Quality Control and Engineering Statistics: Theory and Methods Graduate Lectures Problems in Quality Control Engineering Statistics: Theory Methods To Accompany Statistical Quality Assurance Methods for Engineers by Vardeman Jobe Stephen B. Vardeman V2.0: January

More information

Fractional Factorial Designs

Fractional Factorial Designs k-p Fractional Factorial Designs Fractional Factorial Designs If we have 7 factors, a 7 factorial design will require 8 experiments How much information can we obtain from fewer experiments, e.g. 7-4 =

More information

Design of Engineering Experiments Chapter 5 Introduction to Factorials

Design of Engineering Experiments Chapter 5 Introduction to Factorials Design of Engineering Experiments Chapter 5 Introduction to Factorials Text reference, Chapter 5 page 170 General principles of factorial experiments The two-factor factorial with fixed effects The ANOVA

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Research Methodology Statistics Comprehensive Exam Study Guide

Research Methodology Statistics Comprehensive Exam Study Guide Research Methodology Statistics Comprehensive Exam Study Guide References Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and psychology (3rd ed.). Boston: Allyn and Bacon. Gravetter,

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Stat 6640 Solution to Midterm #2

Stat 6640 Solution to Midterm #2 Stat 6640 Solution to Midterm #2 1. A study was conducted to examine how three statistical software packages used in a statistical course affect the statistical competence a student achieves. At the end

More information

What is Experimental Design?

What is Experimental Design? One Factor ANOVA What is Experimental Design? A designed experiment is a test in which purposeful changes are made to the input variables (x) so that we may observe and identify the reasons for change

More information

Biostatistics 270 Kruskal-Wallis Test 1. Kruskal-Wallis Test

Biostatistics 270 Kruskal-Wallis Test 1. Kruskal-Wallis Test Biostatistics 270 Kruskal-Wallis Test 1 ORIGIN 1 Kruskal-Wallis Test The Kruskal-Wallis is a non-parametric analog to the One-Way ANOVA F-Test of means. It is useful when the k samples appear not to come

More information

Topic 32: Two-Way Mixed Effects Model

Topic 32: Two-Way Mixed Effects Model Topic 3: Two-Way Mixed Effects Model Outline Two-way mixed models Three-way mixed models Data for two-way design Y is the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

Design & Analysis of Experiments 7E 2009 Montgomery

Design & Analysis of Experiments 7E 2009 Montgomery Chapter 5 1 Introduction to Factorial Design Study the effects of 2 or more factors All possible combinations of factor levels are investigated For example, if there are a levels of factor A and b levels

More information

Lecture 10. Factorial experiments (2-way ANOVA etc)

Lecture 10. Factorial experiments (2-way ANOVA etc) Lecture 10. Factorial experiments (2-way ANOVA etc) Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regression and Analysis of Variance autumn 2014 A factorial experiment

More information

Topic 29: Three-Way ANOVA

Topic 29: Three-Way ANOVA Topic 29: Three-Way ANOVA Outline Three-way ANOVA Data Model Inference Data for three-way ANOVA Y, the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to b Factor C with levels

More information

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik Nesting and Mixed Effects: Part I Lukas Meier, Seminar für Statistik Where do we stand? So far: Fixed effects Random effects Both in the factorial context Now: Nested factor structure Mixed models: a combination

More information

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN BLOCKING FACTORS Semester Genap Jurusan Teknik Industri Universitas Brawijaya Outline The Randomized Complete Block Design The Latin Square Design The Graeco-Latin Square Design Balanced

More information

Chapter 11 - Lecture 1 Single Factor ANOVA

Chapter 11 - Lecture 1 Single Factor ANOVA Chapter 11 - Lecture 1 Single Factor ANOVA April 7th, 2010 Means Variance Sum of Squares Review In Chapter 9 we have seen how to make hypothesis testing for one population mean. In Chapter 10 we have seen

More information

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร Analysis of Variance ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร pawin@econ.tu.ac.th Outline Introduction One Factor Analysis of Variance Two Factor Analysis of Variance ANCOVA MANOVA Introduction

More information

21.0 Two-Factor Designs

21.0 Two-Factor Designs 21.0 Two-Factor Designs Answer Questions 1 RCBD Concrete Example Two-Way ANOVA Popcorn Example 21.4 RCBD 2 The Randomized Complete Block Design is also known as the two-way ANOVA without interaction. A

More information

Factorial BG ANOVA. Psy 420 Ainsworth

Factorial BG ANOVA. Psy 420 Ainsworth Factorial BG ANOVA Psy 420 Ainsworth Topics in Factorial Designs Factorial? Crossing and Nesting Assumptions Analysis Traditional and Regression Approaches Main Effects of IVs Interactions among IVs Higher

More information

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3 Contents TAMS38 - Lecture 8 2 k p fractional factorial design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics Example 0 2 k factorial design with blocking Example 1 2 k p fractional

More information

Multiple Sample Numerical Data

Multiple Sample Numerical Data Multiple Sample Numerical Data Analysis of Variance, Kruskal-Wallis test, Friedman test University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 /

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Blood coagulation time T avg A 62 60 63 59 61 B 63 67 71 64 65 66 66 C 68 66 71 67 68 68 68 D 56 62 60 61 63 64 63 59 61 64 Blood coagulation time A B C D Combined 56 57 58 59 60 61

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

PLSC PRACTICE TEST ONE

PLSC PRACTICE TEST ONE PLSC 724 - PRACTICE TEST ONE 1. Discuss briefly the relationship between the shape of the normal curve and the variance. 2. What is the relationship between a statistic and a parameter? 3. How is the α

More information

Part 5 Introduction to Factorials

Part 5 Introduction to Factorials More Statistics tutorial at www.dumblittledoctor.com Lecture notes on Experiment Design & Data Analysis Design of Engineering Experiments Part 5 Introduction to Factorials Text reference, Chapter 5 General

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

SIZE = Vehicle size: 1 small, 2 medium, 3 large. SIDE : 1 right side of car, 2 left side of car

SIZE = Vehicle size: 1 small, 2 medium, 3 large. SIDE : 1 right side of car, 2 left side of car THREE-WAY ANOVA MODELS (CHAPTER 7) Consider a completely randomized design for an experiment with three treatment factors A, B and C. We will assume that every combination of levels of A, B and C is observed

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

MAT3378 ANOVA Summary

MAT3378 ANOVA Summary MAT3378 ANOVA Summary April 18, 2016 Before you do the analysis: How many factors? (one-factor/one-way ANOVA, two-factor ANOVA etc.) Fixed or Random or Mixed effects? Crossed-factors; nested factors or

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Advanced Experimental Design

Advanced Experimental Design Advanced Experimental Design Topic 8 Chapter : Repeated Measures Analysis of Variance Overview Basic idea, different forms of repeated measures Partialling out between subjects effects Simple repeated

More information

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous.

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous. COMPLETELY RANDOM DESIGN (CRD) Description of the Design -Simplest design to use. -Design can be used when experimental units are essentially homogeneous. -Because of the homogeneity requirement, it may

More information

Two-Factor Full Factorial Design with Replications

Two-Factor Full Factorial Design with Replications Two-Factor Full Factorial Design with Replications Dr. John Mellor-Crummey Department of Computer Science Rice University johnmc@cs.rice.edu COMP 58 Lecture 17 March 005 Goals for Today Understand Two-factor

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

Analysis of Variance. One-way analysis of variance (anova) shows whether j groups have significantly different means. X=10 S=1.14 X=5.8 X=2.4 X=9.

Analysis of Variance. One-way analysis of variance (anova) shows whether j groups have significantly different means. X=10 S=1.14 X=5.8 X=2.4 X=9. Analysis of Variance One-way analysis of variance (anova) shows whether j groups have significantly different means. A B C D 3 6 7 8 2 4 9 10 2 7 12 11 4 5 11 9 1 7 10 12 X=2.4 X=5.8 X=9.8 X=10 S=1.14

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

In-house germination methods validation studies: analysis

In-house germination methods validation studies: analysis 1 In-house germination methods validation studies: analysis Jean-Louis Laffont - ISTA Statistics Committee Design assumptions for the validation study Based on peer validation guidelines From Table 1 in

More information

Definitions of terms and examples. Experimental Design. Sampling versus experiments. For each experimental unit, measures of the variables of

Definitions of terms and examples. Experimental Design. Sampling versus experiments. For each experimental unit, measures of the variables of Experimental Design Sampling versus experiments similar to sampling and inventor design in that information about forest variables is gathered and analzed experiments presuppose intervention through appling

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Increasing precision by partitioning the error sum of squares: Blocking: SSE (CRD) à SSB + SSE (RCBD) Contrasts: SST à (t 1) orthogonal contrasts

Increasing precision by partitioning the error sum of squares: Blocking: SSE (CRD) à SSB + SSE (RCBD) Contrasts: SST à (t 1) orthogonal contrasts Lecture 13 Topic 9: Factorial treatment structures (Part II) Increasing precision by partitioning the error sum of squares: s MST F = = MSE 2 among = s 2 within SST df trt SSE df e Blocking: SSE (CRD)

More information

Using Gage R&R Studies to Quantify Test Method Repeatability and Reproducibility

Using Gage R&R Studies to Quantify Test Method Repeatability and Reproducibility Using Gage R&R Studies to Quantify Test Method Repeatability and Reproducibility Ronald D. Snee, PhD IVT Lab Week 2016 San Diego, CA December 12-14, 2016 1 About the Speaker.. He is also an Adjunct Professor

More information