constant ρ constant θ

Size: px
Start display at page:

Download "constant ρ constant θ"

Transcription

1 Answers to Problem Set Number 3 for MIT (Fall 999) Contents Roolfo R. Rosales Λ Boris Schlittgen y Zhaohui Zhang ẓ October 9, 999 Problems from the book by Saff an Snier. 2. Problem 04 in section Problem 07 in section Problem 6 in section Problem 09 in section Problem 2 in section Problem 08 in section Problem 4 in section Other problems Problem 3. in List of Figures.3. Level curves for the real an imaginary parts of Log(z) Stream lines for the flow given by w = z Λ MIT, Department of Mathematics, room 2-337, Cambrige, MA y MIT, Department of Mathematics, room 2-490, Cambrige, MA z MIT, Department of Mathematics, room 2-229, Cambrige, MA 0239.

2 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 2 Problems from the book by Saff an Snier.. Problem 04 in section 3.2. Let us write z = x + iy. Then Log(e z ) = Log(e x e iy ) = ln(e x ) + Arg(e x e iy )=x+i(y+2k 0 ß)where k 0 is an integer chosen such that ß <y+2k 0 ß»ß. Thus, we see that Log e z = z if an only if k 0 =0,which happens if an only if ß <y»ß..2 Problem 07 in section 3.2. Let us write z in polar form: z = re i. Then the polar form of the Cauchy-Riemann @r = an : Writing log z = ln(r)+i( +2kß), we have u = ln(r) an v = +2kß. r = =0 =0: So we see that the Cauchy-Riemann equations are inee satise, an thus log(z) is analytic. To n its erivative, consier approaching the limit raially, with angle = 0 xe. Then z log(z) = (e i 0 r) (ln(r)+i( +2kß)) = e i 0 (ln(r)+i( +2kß)) = r e i 0 r = z :.3 Problem 6 in section 3.2. Write z = ρe i, where ß <»ß. Then w = Log(z) = ln ρ + i. So the level curves for the real part of Log(z) are curves with ρ =constant, i.e.: circles centere at the origin. The level curves for the imaginary part of Log(z) are curves with constant argument, i.e. rays starting from the origin. See gure.3.. To see that the level curves are orthogonal at each point, we compute r(re(w)) r(im(w))=(=ρ)e ρ (=ρ)e =0: Alternatively: the level curves for the real an imaginary parts of Log(z) are the same as the coorinate lines for the (orthogonal an curvilinear) polar coorinate system.

3 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 3 constant ρ constant θ Figure.3.: Level curves for the real an imaginary parts of Log(z)..4 Problem 09 in section 3.3. Let z = cos(w) = 2 (eiw + e iw )= 2 ( + ), where = e iw. Multiplying both sies by 2 an then using the quaratic formula to solve for, we n: e iw = = z +(z 2 ) =2. Taking logs of both sies in this last equation an iviing by i, wen that w = cos (z) = ilog z +(z 2 ) =2 : (.4.) Now we ifferentiate this expression to n z cos (z) = i z+(z 2 ) =2 ψ z + (z 2 ) =2! = i : (.4.2) (z 2 =2 ) Remark.4. We coul now argue that, in the last expression in equation (.4.2) i(z 2 ) =2 =( z 2 ) =2 ; (.4.3) an thus write z cos (z) = : (.4.4) ( z 2 =2 )

4 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 4 We coul equally make the argument that an so conclue that i(z 2 ) =2 = ( z 2 ) =2 ; (.4.5) z cos (z) = ; (.4.6) ( z 2 =2 ) which is formula (3.3.) (page 92) in the book. However, now we seem to have arrive at two (apparently) ifferent answers equations (.4.4) an (.4.6) for the same question! So what is going on here? The answer to this conunrum lies in the multiple value nature of the functions involve, an it also teaches us that we have to be very careful when ealing with multiple value functions: Both (.4.3) an (.4.5) are true only in the multiple value sense, meaning that the set of values that the right han sies can take is equal to the set of values that the left han sies (respectively) can take. Since the values for square roots come in pairs with opposite signs, it is quite clear that these two equations are actually the same thing. Equations (.4.4) an (.4.6) are vali in precisely the same way. However, equation (.4.2) is vali in a somewhat stronger sense, as we explain next. Consier some arbitrary point z 0 6= ± in the complex plane. In some neighborhoo of it we can then ene (z 2 ) =2 as a single value function (i.e.: we pick a branch). Just so we o not get confuse in the argument that follows, we will give give a name to this branch of(z 2 ) =2 say: G(z). Thus G(z) is now some nice, single value, analytic function ene in some neighborhoo of z 0, which happens to have the property that G 2 = z 2. Let us also choose a branch for the logarithm, ene in a neighborhoo of z 0 + G(z 0 ). Then we can write (using equation (.4.)): w = arcos(z) = ilog(z + G) ; (.4.7) where LoG is the name of the branch for the log we just selecte an arcos is the name for the branch of cos that equation (.4.7) enes. The important point that istinguishes equation (.4.2) from equations (.4.4) an (.4.6) arises now, for we can substitute into it the various branches we have selecte to obtain a true equation, vali in a single value sense. That is: z arcos(z) = i G(z) : (.4.8)

5 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 5 This is easy to see, since all the operations in (.4.2) are consistent with the enitions of the various branches above. But we cannot o this with either (.4.4) or (.4.6), simply because these formulas involve yet another multiple value function (namely: ( z 2 ) =2 ) for which no branch has been selecte. So, short an sweet: once branches are ene for (.4.), equation (.4.2) can be use to calculate the erivative, without any longer having to worry about possible multiple values. Remark.4.2 We can also write (this is equivalent to (.4.), as can be seen using (.4.5)) w = cos (z) = ilog z + i( z 2 ) =2 : (.4.9) Then equation (.4.6) has the same relationship to this formula that (.4.2) has to (.4.). That is: once branches are ene for (.4.9), equation (.4.6) can be use to calculate the erivative, without any longer having to worry about possible multiple values..5 Problem 2 in section 3.3. Write z = tan w = i(e iw e iw )=(e iw + e iw ) an solve for w. First multiply both sies of the equation by ie iw (e iw + e iw ) to n iz(e 2iw +)=e 2iw. Hence: e 2iw =(+iz)=( iz). Now take the log of both sies an ivie by 2i to get: w = tan (z) = log +iz 2i iz We ifferentiate now this expression using the chain rule: z tan z = i 2 ψ i z i + z.6 Problem 08 in section 4.. = i 2 log i + z : i z (i z) (i + z)( ) (i z) 2! = +z 2 : The contour can be split naturally into two pieces, each one of which is easy to parametrize. Let us rst parametrize these two curves separately an then patch them together in a secon step. The rst curve can be parametrize as: z(t) =( 2+2i)+( 2i)t, for 0» t». The secon curve is escribe by: z(t) = exp(iß( t)), for 0» t». Patching these together, we have :z(t)= 8 >< >: ( 2+2i)+(2 4i)t; 0» t» 2 ; e 2iß( t) ; 2» t» :

6 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 6 We can now also parametrize the contour with the opposite orientation: :z(t)= 8 >< >: e 2iß(+t) ;» t» 2 ; ( 2+2i) (2 4i)t; 2» t»0:.7 Problem 4 in section 4.. Let I Now let t = f(s) so that t = f s s = I = Z c z (t) t Z c s f s z 2 (s) Z = c z (f(s)) s : s, since (by assumption) f=s > 0. Then: f Z s s = t=f() z Z t=f(c) t t = b z a t t :

7 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # Other problems. 2. Problem 3. in 999. Statement: Consier the complex potential for a flui given by w = Az 3, where A > 0 is a real number: (i) Fin the potential f, the stream-function ψ an the velocity el (u; v). (ii) Sketch the streamlines an the velocity el in the complex plane. (iii) Can you use this to n an incompressible, irrotational flow inawege (for some angle)? What is the angle of the wege you can o with this solution? Can you think ofawayof getting solutions for other angles? Solution: Let us set A = for convenience (you shoul be able to see that none of the arguments below will change in any essential way if the size of A is change). ffl i) Let = x + iy. Then w = z 3 =(x+iy) 3 =(x 3 3xy 2 )+i(3x 2 y y 3 ). Thus we can take: f(x; y) = Re(w) = x 3 3xy 2 (potential), ψ(x; y) = Im(w) = 3x 2 y y 3 (stream function), u = rf = 3(x 2 y 2 ) i 6xy j (u =(u; v) =velocity el) : Notice that u iv =3z 2 = erivative of the complex potential w =3z 2. This is always true; can you see why? ffl ii) See gure 2... ffl iii) We must impose the requirement that no flui can escape across the bounary, that is (on the bounary): u n = rf n =0,where n is the normal vector to the bounary. Since rf rψ = 0everywhere, the bounary must be a stream-line: ψ = constant. Then rψ is orthogonal to the bounary (on the bounary). Now clearly, y = 0 is one possible bounary, since ψ(x; 0) = 0. In orer to obtain a wege, we nee another bounary of the form y = ffx, for some constant ff. Since ψ(x; ffx) =ff(3 ff 2 )x 3, for ψ to be constant along the line (i.e. inepenent of x), we nee ff = 0; ± p 3. The case ff = 0 gives us the bounary we alreay have. The case ff = p 3 gives us a bounary at an

8 8.04 MIT, Fall 999 (Rosales, Schlittgen an Zhang). Answers to Problem Set # 3. 8 angle = ß=3 an the case ff = p 3 gives us a bounary at an angle = ß=3. Thus we can use the complex potential w = z 3 to escribe an incompressible, irrotational, two imensional flow in a wege of angle ß=3. See gure Im(z) Re(z) Figure 2..: Stream lines for the flow given by w = z 3. The flow is along the stream lines, in the irection inicate by the arrows. The magnitue of the flow spee is 3r 2, where r = jzj. In orer to obtain flow in weges of ifferent angles, consier w = z = ρ e i. Then the stream function is given by ψ = Im(w) =ρ sin( ) an two level curves where ψ = constant are clearly given by = 0 an = ß= (since ψ vanishes on these curves). THE END.

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 9 Spring 2015 19 Stream functions and conformal maps There is a useful device for thinking about two dimensional flows, called the stream function

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

18.04 MIT, Fall 1999 (Rosales, Schlittgen and Zhang). Exam # 2. 2 Below some hints and tips on how to make things readable and on how to avoid being t

18.04 MIT, Fall 1999 (Rosales, Schlittgen and Zhang). Exam # 2. 2 Below some hints and tips on how to make things readable and on how to avoid being t Exam Number 2 for 18.04, MIT (Fall 1999). Rodolfo R. Rosales Λ Boris Schlittgen y Zhaohui Zhang ẓ Friday November 12, 1999 (room 6-120, 12:00 to 1:00 PM). POINTS: all the problems are worth the same amount.

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj Formula hysics 24 Winter 207 The Sokhotski-lemelj Formula. The Sokhotski-lemelj formula The Sokhotski-lemelj formula is a relation between the following generalize functions (also calle istributions), ±iǫ = iπ(),

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

Solutions to MATH 271 Test #3H

Solutions to MATH 271 Test #3H Solutions to MATH 71 Test #3H This is the :4 class s version of the test. See pages 4 7 for the 4:4 class s. (1) (5 points) Let a k = ( 1)k. Is a k increasing? Decreasing? Boune above? Boune k below? Convergant

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

u = 0; thus v = 0 (and v = 0). Consequently,

u = 0; thus v = 0 (and v = 0). Consequently, MAT40 - MANDATORY ASSIGNMENT #, FALL 00; FASIT REMINDER: The assignment must be handed in before 4:30 on Thursday October 8 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus,

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

Math 251 Notes. Part I.

Math 251 Notes. Part I. Math 251 Notes. Part I. F. Patricia Meina May 6, 2013 Growth Moel.Consumer price inex. [Problem 20, page 172] The U.S. consumer price inex (CPI) measures the cost of living base on a value of 100 in the

More information

Advanced Partial Differential Equations with Applications

Advanced Partial Differential Equations with Applications MIT OpenCourseWare http://ocw.mit.eu 18.306 Avance Partial Differential Equations with Applications Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms.

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter 2 Governing Equations In the present an the subsequent chapters, we shall, either irectly or inirectly, be concerne with the bounary-layer flow of an incompressible viscous flui without any involvement

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

S10.G.1. Fluid Flow Around the Brownian Particle

S10.G.1. Fluid Flow Around the Brownian Particle Rea Reichl s introuction. Tables & proofs for vector calculus formulas can be foun in the stanar textbooks G.Arfken s Mathematical Methos for Physicists an J.D.Jackson s Classical Electroynamics. S0.G..

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Curvature, Conformal Mapping, and 2D Stationary Fluid Flows. Michael Taylor

Curvature, Conformal Mapping, and 2D Stationary Fluid Flows. Michael Taylor Curvature, Conformal Mapping, an 2D Stationary Flui Flows Michael Taylor 1. Introuction Let Ω be a 2D Riemannian manifol possibly with bounary). Assume Ω is oriente, with J enoting counterclockwise rotation

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

The Principle of Least Action and Designing Fiber Optics

The Principle of Least Action and Designing Fiber Optics University of Southampton Department of Physics & Astronomy Year 2 Theory Labs The Principle of Least Action an Designing Fiber Optics 1 Purpose of this Moule We will be intereste in esigning fiber optic

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet A P Q O B DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geoesics an the Theorem of Gauss-Bonnet 7.. Geoesics on a Surface. The goal of this section is to give an answer to the following question. Question.

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

The continuity equation

The continuity equation Chapter 6 The continuity equation 61 The equation of continuity It is evient that in a certain region of space the matter entering it must be equal to the matter leaving it Let us consier an infinitesimal

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj Formula hysics 25 Winter 208 The Sokhotski-lemelj Formula. The Sokhotski-lemelj formula The Sokhotski-lemelj formula is a relation between the following generalize functions (also calle istributions), ±iǫ = iπ(),

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Appendix: Proof of Spatial Derivative of Clear Raindrop

Appendix: Proof of Spatial Derivative of Clear Raindrop Appenix: Proof of Spatial erivative of Clear Rainrop Shaoi You Robby T. Tan The University of Tokyo {yous,rei,ki}@cvl.iis.u-tokyo.ac.jp Rei Kawakami Katsushi Ikeuchi Utrecht University R.T.Tan@uu.nl Layout

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Gravitation & Cosmology. Exercises # µ x = 0 (1)

Gravitation & Cosmology. Exercises # µ x = 0 (1) Gravitation & Cosmology. Exercises # 4.1 - Geoesics a) Show that the Euler-Lagrange equations for the Lagrangian L τ ẋ L µ x = 0 (1) µ L = 1 2 g µνẋ µ ẋ ν (2) are the geoesic equations where, as usual,

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Center of Gravity and Center of Mass

Center of Gravity and Center of Mass Center of Gravity an Center of Mass 1 Introuction. Center of mass an center of gravity closely parallel each other: they both work the same way. Center of mass is the more important, but center of gravity

More information

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2)

1.4.3 Elementary solutions to Laplace s equation in the spherical coordinates (Axially symmetric cases) (Griffiths 3.3.2) 1.4.3 Elementary solutions to Laplace s equation in the spherical coorinates (Axially symmetric cases) (Griffiths 3.3.) In the spherical coorinates (r, θ, φ), the Laplace s equation takes the following

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Bohr Model of the Hydrogen Atom

Bohr Model of the Hydrogen Atom Class 2 page 1 Bohr Moel of the Hyrogen Atom The Bohr Moel of the hyrogen atom assumes that the atom consists of one electron orbiting a positively charge nucleus. Although it oes NOT o a goo job of escribing

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

VIBRATIONS OF A CIRCULAR MEMBRANE

VIBRATIONS OF A CIRCULAR MEMBRANE VIBRATIONS OF A CIRCULAR MEMBRANE RAM EKSTROM. Solving the wave equation on the isk The ynamics of vibrations of a two-imensional isk D are given by the wave equation..) c 2 u = u tt, together with the

More information