Electric Dipole Moments: Phenomenology & Implications

Size: px
Start display at page:

Download "Electric Dipole Moments: Phenomenology & Implications"

Transcription

1 Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst ACFI Workshop, Amherst May 015! 1

2 Outline I. Experimental situation II. Effective operators III. Illustrative examples IV. Paramagnetic & diamagnetic systems V. Theoretical issues

3 I. Experimental Situation 3

4 EDMs: New CPV? System Limit (e cm) * SM CKM CPV BSM SM CPV 199 Hg ThO n 3.1 x x 10-9 ** 3.3 x background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent 4

5 EDMs: New CPV? System 199 Hg ThO n Limit (e cm) * 3.1 x x 10-9 ** 3.3 x 10-6 SM CKM CPV BSM SM CPV background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent Mass Scale Sensitivity ψ e ϕ ϕ γ sinφ CP ~ 1! M > 5000 GeV M < 500 GeV! sinφ CP < 10-5

6 EDMs: New CPV? System Limit (e cm) * SM CKM CPV BSM SM CPV 199 Hg ThO n 3.1 x x 10-9 ** 3.3 x background well 10 below new CPV expectations 10 New expts: 10 to 10 3 more sensitive 10-6 CPV needed for BAU? * 95% CL ** e - equivalent neutron proton & nuclei atoms Not shown: muon ~ 100 x better sensitivity 6

7 II. Effective Operators 7

8 Why Multiple Systems? 8

9 Why Multiple Systems? Multiple sources & multiple scales 9

10 EDM Interpretation & Multiple Scales Baryon Asymmetry Early universe CPV BSM CPV SUSY, GUTs, Extra Dim Collider Searches Particle spectrum; also scalars for baryon asym? Energy Scale QCD Matrix Elements d n, g πnn, Expt Nuclear & atomic MEs Schiff moment, other P- & T-odd moments, e-nucleus CPV 10

11 Effective Operators: The Bridge + 11

12 EDM Interpretation & Multiple Scales Baryon Asymmetry Early universe CPV BSM CPV SUSY, GUTs, Extra Dim Collider Searches Particle spectrum; also scalars for baryon asym d= 6 Effective Operators: CPV Sources fermion EDM, quark chromo EDM, 3 gluon, 4 fermion Energy Scale QCD Matrix Elements d n, g πnn, Expt Nuclear & atomic MEs Schiff moment, other P- & T-odd moments, e-nucleus CPV 1

13 Weinberg 3 gluon Operator Classification

14 Operator Classification ϕ + ϕ! υ θ-term renormalization

15 Operator Classification Quark chromo-edm

16 Operator Classification Fermion EDM

17 Wilson Coefficients: EDM & CEDM Chirality flipping ~ δ f, δ q appropriate for comparison with other d=6 Wilson coefficients 17

18 Operator Classification Semileptonic Nonleptonic Semileptonic Semileptonic: atomic & molecular EDMs

19 Operator Classification Nonleptonic: hadronic EDMs & Schiff moment

20 Operator Classification ϕ d L W + u R ϕ! υ u L d R ϕ Nonleptonic: hadronic EDMs & Schiff moment

21 Wilson Coefficients: Summary δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) 1 65s

22 Wilson Coefficients: Summary δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) Complementary searches needed 66

23 BSM Origins EDM: γff CEDM: gff Weinberg ggg: MSSM LRSM RS Four fermion udhh ϕ d L W + u R u L ϕ d R 3

24 III. Illustrative Examples 4

25 Complementarity: Three Illustrations CPV in an extended scalar sector (HDM): Higgs portal CPV Weak scale baryogenesis (MSSM) Model-independent 5

26 this symmetry general haveunder a di erent expression another basistoobtained by the transformatio ethough CPV complex phases will thatinare invariant a rephasing of theinscalar fields. 0 totaking a basis where the vacuum expectation value (vev) of the j = UY jk transformation L U(1) k. For example, complex: while that associated with the neutral component of is in general For future purposes,+we emphasize U = p that the value, of is not invariant. ( 1 1 H1+ H Inoue, R-M, Zhang: tan = v / v1,0 the,minimization conditions in the(5) Hk0 and A0k directions give us the, Denoting = p1 (v1 + H 0 + ia0 ) p1 (v + H 0+ ia ) 1 1 thetransformation (1) corresponds to i i Higgs Portal CPV m11 = 1v cos +( )v sin Re(m1 e ) tan + Re( 5e )v sin GeV, v1 = v1 and v = v ei. It is apparent that in0 general the relative $ +0( 3. +denotes m = v sin Re(m1 ei ) cot + Re( 5 ei )v cos (3 4 )v cos 1 CPV & HDM: Type I & II λ6,7 = 0 for simplicity lobal rephasing transformation i i Im(m e ) = v sin cos Im( 5 e ). We then take the Higgs i potential to have the1form 0 j (6) j = e j, h given the complex i parameters From the last equation, it is clear that the phase can be solved1 for 1 = the ( useful, ( to )express + 3 ( this )( ) +in terms however, 1) + 4 ( 1 of )(the 5 ( 1 ) + h.c. 1 1condition 1k): + e redefined tovabsorb 1global phases n h i o 0 m sin( sin( 0 i( 1 ) 1 i( 1 ) 1). 1 (4 (m1 ) = e m1m, 11 ( 15 = e m1 ( 1 5,) + h.c. + m ( ) 1.) = 5 v1 v(7) 1) + In the limit that the to small but non-vanishing that rephasing will be appropriate for our later phenomeno k are l is unchanged. It is then straightforward observe that there exist two eventually to EDMs. A repr work, only the scalar loop could contribute to C1 and The complex coefficientseq. in (1) the potential are m1 and 5. In general, the presence of the then implies 1 term, in conjunctio the right panel of Fig. 1. It is proportional to with the Z -conserving quartic interactions, will induce other Z -breaking quartic operators at one-loop order. Simp v sin ).. Give 5 v1 vim( 5 m1 v1 v ) = 5m1 v1/(16 EWSB power counting implies that the responding coefficients are finite with magnitude proportional to m 1 k = Arg (m ), 1 1 m1 5 1, isterm. our attention tousing 1 the 1/16 suppression, we thethe tree-level Z -breaking bilinear relationin Eq. (13), the above quantity indeed related to the unique CPV will restrict 5 v1 v = Arg (m )v v. (8) 1 1 The fermionic loops do not contribute because the Higgs and quar 5 1 m1a rephasing physical It is instructive to identify the CPV complex phases proportional that are toinvariant under of thecharge scalar fields. T the corresponding CKM element. As a result, the coefficients Cij are that end, we perform an SU()L U(1)Y transformationimaginary. to a basis vacuum expectation value (vev) of th They where contributethe to magnetic dipole moments instead of EDMs. so that there exists only one independent CPV phase in the theory after EWSB. neutral component of 1 is real while that associated with the neutral component of is in general complex: A special case arises when 1 = 0. In this case, Eq. (1) implies that + M at the electroweak scale without the Z symmetry flavor violation, flavor H1+ is to assume minimal H sin( ) = 0 5 v1 v0 sin(, = m1p1 studies., ), (5 not discuss this possibility, but refer [13 15] for recent phenomenological = to p (v + H + ia ) (v + H + ia ) Viable EWB & CPV: or H 0 /H + p H+ i where v = vedms + v = 46 GeV, v = v and v = v e. It is apparent that in general denotes the relativ 1 are -loop m 1 H phase of v and v1. Under the global rephasing transformation cos W ±=. CPV is flavor non-diag the couplings m1 j =e i j 0 j, f 5 v1 v f f W+ H0 (6 When the right-hand side is less than 1, has solutions two solutions of equal magnitude and op to the presence of spontaneous CPV (SCPV) [17, 18]: and sponding 5 can be redefined to absorb the global phases FIG. 1: Left: quark or lepton EDM from W ± H exchange and CPV Higgs interactions. then contributes as the upper loop of t to W a B µ e ective operator, which to EDM 0 i( 1 ) 1 µ 01 i( m 1 m 1 ) 1 1 (m1 ) = e m arccos, (7 5 =e = 5±,. = ±1 cos sin v v v The gauge invariant to EDM 5 1 contributions 5 from this class of diagrams have been c a

27 Future Reach: Higgs Portal CPV CPV & HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n Ra Present sin α b : CPV scalar mixing Future: d n x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d A (Ra) Future: d n x 0.01 d A (Hg) x 0.1 d ThO x 0.1 d A (Ra) Inoue, R-M, Zhang:

28 EDMs & EW Baryogenesis: MSSM f ~ f ~ V f γ, g Heavy sfermions: LHC consistent & suppress 1-loop EDMs Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases Compatible with observed BAU d e = 10-8 e cm ACME: ThO sin(µm 1 b * ) d n = 10-7 e cm sin(µm 1 b * ) d e = 10-9 e cm d n = 10-8 e cm Next gen d e Next gen d n Li, Profumo, RM

29 EDMs & EW Baryogenesis: MSSM f ~ f ~ V f γ, g Heavy sfermions: LHC consistent & suppress 1-loop EDMs Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases Compatible with observed BAU d e = 10-8 e cm ACME: ThO sin(µm 1 b * ) d n = 10-7 e cm sin(µm 1 b * ) d e = 10-9 e cm d n = 10-8 e cm Next gen d e Next gen d n Li, Profumo, RM Compressed spectrum (stealthy SUSY) 9

30 Wilson Coefficients: Model Independent δ f fermion EDM (3) ~ δ q quark CEDM () C G ~ 3 gluon (1) C quqd non-leptonic () C lequ, ledq semi-leptonic (3) C ϕud induced 4f (1) 1 total + θ light flavors only (e,u,d) 30 71

31 IV. Paramagnetic & Diamagnetic Systems 31

32 EDM Classification Paramagnetic: unpaired electron spin (ThO & YbF molecules, Tl atom ) Diamagnetic: no unpaired electron spin (neutron, 199 Hg, 5 Ra ) 3

33 Global Analysis: Input Chupp & R-M:

34 Global Analysis: Input Paramag Chupp & R-M:

35 Paramagnetic Systems: Two Sources e Electron EDM γ e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 35

36 Paramagnetic Systems: Two Sources e Electron EDM γ e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 36

37 Paramagnetic Systems: Two Sources e Electron EDM γ Chupp & R-M: e N e γ (Scalar q) x (PS e - ) N e Tl, YbF, ThO 37

38 Paramagnetic Systems: Two Sources e Electron EDM γ Chupp & R-M: e N e γ p (Scalar q) x (PS e - ) N e > (1.5 TeV) p sin CPV Electron EDM (global) > (1300 TeV) p sin CPV C S (global) Tl, YbF, ThO 38

39 Global Analysis: Diamagnetic Systems Chupp & R-M:

40 Diamagnetic Systems Nucleon EDMs Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

41 Diamagnetic Systems I = 0, 1, PVTV πn interaction π p n π π γ π +! Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

42 Hadronic CPV: Nucleons, Nuclei, Atoms PVTV πn p interaction π γ π +! n π π chromo EDM 3 gluon 4 quark θ QCD Nucleon EDM + quark EDM Nuclear EDM & Schiff moment + quark EDM Neutron, proton & light nuclei (future), diamagnetic atoms 4

43 Diamagnetic Systems: P- & T-Odd Moments Schiff Screening Atomic effect from nuclear finite size: Schiff moment Schiff moment, MQM, EDMs of diamagnetic atoms ( 199 Hg )

44 Nuclear Schiff Moment I Schiff Screening Nuclear Schiff Moment Nuclear EDM: Screened in atoms Atomic effect from nuclear finite size: Schiff moment EDMs of diamagnetic atoms ( 199 Hg ) π +!

45 Diamagnetic Systems Nuclear Moments P T P T P T P T C J T M J T E J E O O E O E EDM, Schiff MQM. Anapole 45

46 Diamagnetic Systems Nuclear Moments C J T M J P T P T P T P T E O O E EDM, Schiff MQM. Nuclear Enhancements T E J O E Anapole 46

47 Nuclear Schiff Moment Nuclear Enhancements Schiff moment, MQM, Nuclear polarization: mixing of opposite parity states by H TVPV ~ 1 / ΔE EDMs of diamagnetic atoms ( 199 Hg ) 47

48 Nuclear Enhancements: Octupole Deformation Nuclear Schiff Moment Opposite parity states mixed by H TVPV Nuclear amplifier EDMs of diamagnetic atoms ( 5 Ra ) Nuclear polarization: mixing of opposite parity states by H TVPV ~ 1 / ΔE Thanks: J. Engel 48 94

49 Diamagnetic Global Fit N e γ N π γ N e N Tensor eq TVPV πnn Short distance d n Chupp & R-M:

50 Diamagnetic Global Fit Isoscalar CEDM (+) q v < 0.01 > ( TeV) p sin CPV Caveat: Large hadronic uncertainty Chupp & R-M:

51 V. Theoretical Issues 51

52 Hadronic Matrix Elements Engel, R-M, van Kolck 13 5

53 Hadronic Matrix Elements Engel, R-M, van Kolck 13 53

54 Hadronic Matrix Elements (CEDM) Engel, R-M, van Kolck 13 54

55 Nuclear Matrix Elements Engel, R-M, van Kolck 13 55

56 Had & Nuc Uncertainties CPV & HDM: Type II illustration λ 6,7 = 0 for simplicity Present sin α b : CPV scalar mixing Inoue, R-M, Zhang:

57 IV. Outlook Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis Studies on complementary systems is essential for first finding and then disentangling new CPV The interpretation of diamagnetic system EDMs (including the nucleon) is plagued by substantial hadronic and nuclear many-body uncertainties The advancing experimental sensitivity challenges hadronic structure theory to aim for an unprecedented level of reliability 57

Electric Dipole Moments: Phenomenology & Implications

Electric Dipole Moments: Phenomenology & Implications Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Workshop, Amherst January 015! 1 Goals for this talk Set the context for

More information

Electric Dipole Moments: A Look Beyond the Standard Model

Electric Dipole Moments: A Look Beyond the Standard Model Electric Dipole Moments: A Look Beyond the Standard Model M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ PSI Symmetries Workshop October 016! 1 Outline I. The BSM context II. Electric

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

Lecture I: Electric Dipole Moments Overview & the Standard Model

Lecture I: Electric Dipole Moments Overview & the Standard Model Lecture I: Electric Dipole Moments Overview & the Standard Model M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI EDM School November 2016! 1 Goals for This Course Provide a comprehensive

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

The electron EDM and EDMs in Two-Higgs-Doublet Models

The electron EDM and EDMs in Two-Higgs-Doublet Models The electron EDM and EDMs in Two-Higgs-Doublet Models Martin Jung Recontres de Moriond EW 2014 March 21st 2014 Based on: A robust limit for the EDM of the electron, MJ, JHEP 1305 (2013) 168, EDMs in Two-Higgs-Doublet

More information

Mitglied der Helmholtz-Gemeinschaft. Theory Outlook EDM Searches at Storage Rings

Mitglied der Helmholtz-Gemeinschaft. Theory Outlook EDM Searches at Storage Rings Mitglied der Helmholtz-Gemeinschaft Theory Outlook EDM Searches at Storage Rings ECT, Trento, October 5, 2012 Andreas Wirzba Outline: 1 Observations and the physics case 2 Theory input 3 What to measure?

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Hadronic Matrix Elements for Probes of CP Violation - ACFI, UMass Amherst - Jan 2015 EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz University of Victoria Based on (older) work with M. Pospelov,

More information

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Should every physicists be measuring the neutron EDM? Can the neutron EDM save the world? Why are so many experiments

More information

Electric Dipole Moments and the search for new CP violation

Electric Dipole Moments and the search for new CP violation Electric Dipole Moments and the search for new CP violation σ σ Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Goals Goal 1: A crash course in Electric Dipole

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Neutron Lifetime Workshop, September 2014! 1 Outline I. CKM unitarity:

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS A New Look at the Electroweak Baryogenesis in the post-lhc Era. W. Huang, J. S,Y. Zhang, JHEP 1303 (2013) 164 J. S,Y. Zhang, Phys. Rev. Lett. 111 (2013) 091801 W. Huang, ZF. Kang, J. S, PW. Wu, JM. Yang,

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

Bounds on new physics from EDMs. Martin Jung

Bounds on new physics from EDMs. Martin Jung Bounds on new physics from EDMs Martin Jung Seminar at the Institute for Nuclear and Particle Physics 6th of July 2017 Motivation Quark-flavour and CP violation in the SM: CKM describes flavour and CP

More information

Electric Dipole Moments and New Physics

Electric Dipole Moments and New Physics Electric Dipole Moments and New Physics Maxim Pospelov Perimeter Institute/University of Victoria for a recent review, see M. Pospelov and A. Ritz, Annals of Physics 2005 Plan 1. Introduction. Current

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Electric dipole moments of light nuclei

Electric dipole moments of light nuclei Electric dipole moments of light nuclei In collaboration with Nodoka Yamanaka (IPN Orsay) E. Hiyama (RIKEN), T. Yamada (Kanto Gakuin Univ.), Y. Funaki (Beihang Univ.) 2017/4/24 RPP Marseille CP violation

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

Electroweak phase transition with two Higgs doublets near the alignment limit

Electroweak phase transition with two Higgs doublets near the alignment limit Electroweak phase transition with two Higgs doublets near the alignment limit Jérémy Bernon The Hong Kong University of Science and Technology Based on 1712.08430 In collaboration with Ligong Bian (Chongqing

More information

A robust limit on the EDM of the electron

A robust limit on the EDM of the electron A robust limit on the EDM of the electron Martin Jung Talk at PCPV 2013, Mahabaleshwar, India 22nd of February 2013 R.I.P. Kolya Uraltsev Outline Introduction The EDM in paramagnetic systems An explicit

More information

EDMs and CP Violation (in the LHC Era)

EDMs and CP Violation (in the LHC Era) Lepton Moments - Cape Cod - July 2014 EDMs and CP Violation (in the LHC Era) Adam Ritz University of Victoria w/~ D. McKeen, M. Pospelov [1208.4597, 1303.1172, 1311.5537] w/~ M. Le Dall, M. Pospelov [to

More information

Probing the TeV scale and beyond with EDMs

Probing the TeV scale and beyond with EDMs Probing the TeV scale and beyond with EDMs Junji Hisano (Nagoya Univ./IPMU) 4th KIAS Workshop on parkcle physics and cosmology 5 th floor conference hall, KIAS From Oct 27 to 31, 2014 Contents IntroducKon

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

CP violation in top physics*

CP violation in top physics* CP violation in top physics* CP violation from new physics in top-quark pair production and decay with T-odd correlations one of my first papers with John didn t get all the details right... T-odd observables

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

TeV Scale LNV: 0νββ-Decay & Colliders I

TeV Scale LNV: 0νββ-Decay & Colliders I TeV Scale LNV: 0νββ-Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

Fundamental Symmetries - 3

Fundamental Symmetries - 3 National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016 Fundamental Symmetries - 3 Vincenzo Cirigliano Los Alamos National Laboratory Flow of the lectures Review symmetry and symmetry

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Impact of a CP-violating Higgs Boson

Impact of a CP-violating Higgs Boson Impact of a CP-violating Higgs Boson Yue Zhang (Caltech) Talk at Pheno 2013, University of Pittsburgh In collaboration with, Jing Shu, arxiv:1304.0773, Higgs Couplings Higgs: always L (v + h) n Beyond

More information

Theory overview on rare eta decays

Theory overview on rare eta decays Theory overview on rare eta decays WASA Jose L. Goity Hampton/JLab BES III KLOE Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014!UMass Amherst Motivation Main

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

CP violation in charged Higgs production and decays in the Complex 2HDM

CP violation in charged Higgs production and decays in the Complex 2HDM CP violation in charged Higgs production and decays in the Complex 2HDM Abdesslam Arhrib National Cheung Keung University (NCKU), Faculté des Sciences et Techniques Tangier, Morocco Based on: A.A, H. Eberl,

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity

Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity Phys. Rev. D 76:013003,2007 C.C. Chiou, O.C.W. Kong and RV PCPV-2013@Mahabaleshwar Feb. 19-23 2013 R I S H I K E S

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Electroweak baryogenesis in light of the Higgs discovery

Electroweak baryogenesis in light of the Higgs discovery Electroweak baryogenesis in light of the Higgs discovery Thomas Konstandin Grenoble, March 25, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

EDM Searches. Klaus Kirch. Paul Scherrer Institut, CH 5232 Villigen PSI and ETH Zürich, CH 8093 Zürich RELEVANCE OF SEARCHES FOR PERMANENT EDM

EDM Searches. Klaus Kirch. Paul Scherrer Institut, CH 5232 Villigen PSI and ETH Zürich, CH 8093 Zürich RELEVANCE OF SEARCHES FOR PERMANENT EDM EDM Searches Klaus Kirch Paul Scherrer Institut, CH 5232 Villigen PSI and ETH Zürich, CH 8093 Zürich Abstract. Searches for permanent electric dipole moments of fundamental particles and systems with spin

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes Stefano Profumo California Institute of Technology TAPIR Theoretical AstroPhysics Including Relativity Kellogg Rad Lab Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Brian Tiburzi 22 August 2012 RIKEN BNL Research Center

Brian Tiburzi 22 August 2012 RIKEN BNL Research Center Anatomy of Hadronic Parity Violation on the Lattice Brian Tiburzi 22 August 2012 RIKEN BNL Research Center The Anatomy of Hadronic Parity Violation Parity Violation, Nuclear Parity Violation, Hadronic

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Fermion Electric Dipole Moments in R-parity violating Supersymmetry.

Fermion Electric Dipole Moments in R-parity violating Supersymmetry. Rohini M. Godbole Fermion Electric Dipole Moments in R-parity violating Supersymmetry. Dipole Moments of fermions. R-parity violating Supersymmetry. A general method of analysis of the EDM s Application

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Recent results from rare decays

Recent results from rare decays Recent results from rare decays Jeroen van Tilburg (Physikalisches Institut Heidelberg) Don t worry about the number of slides: Only half of them is new Advanced topics in Particle Physics: LHC physics,

More information

EW phase transition in a hierarchical 2HDM

EW phase transition in a hierarchical 2HDM EW phase transition in a hierarchical 2HDM G. Dorsch, S. Huber, K. Mimasu, J. M. No ACFI workshop, UMass Amherst Phys. Rev. Lett. 113 (2014) 211802 [arxiv:1405.5537] September 18th, 2015 1 Introduction

More information

Two-Step Electroweak Baryogenesis

Two-Step Electroweak Baryogenesis ACFI-T5- Two-Step Electroweak Baryogenesis It is interesting to ask about the experimental signatures of the multi-step scenario. Requiring that the final transition to the SM Higgs phase occurs at sufficiently

More information

Effective Field Theories Beyond the Standard Model

Effective Field Theories Beyond the Standard Model NNPSS-TSI 2010, Vancouver, July 1 2010 Effective Field Theories Beyond the Standard Model Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lecture Introduction: Search for physics BSM! direct

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013 Outlook Post-Higgs Christopher T. Hill Fermilab UCLA Higgs Workshop March 22, 2013 A dynamical Higgs mechanism was supposed to explain the origin of electroweak mass A dynamical Higgs mechanism was supposed

More information

Electroweak baryogenesis after LHC8

Electroweak baryogenesis after LHC8 Electroweak baryogenesis after LHC8 Stephan Huber, University of Sussex Mainz, Germany August 2014 Moduli-induced baryogenesis [arxiv:1407.1827] WIMPy baryogenesis [arxiv:1406.6105] Baryogenesis by black

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

arxiv: v1 [hep-ph] 3 Jul 2014

arxiv: v1 [hep-ph] 3 Jul 2014 ACFI-14-1 Electric Dipole Moments: A Global Analysis imothy Chupp 1 and Michael Ramsey-Musolf, 3 1 Physics Department, University of Michigan Ann Arbor, MI 48109 UA Amherst Center for Fundamental Interactions

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

EDMs of stable atoms and molecules

EDMs of stable atoms and molecules W.Heil EDMs of stable atoms and molecules outline Introduction EDM sensitivity Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms Conclusion and outlook Solvay workshop Beyond

More information

SUSY with light electroweakino

SUSY with light electroweakino SUSY with light electroweakino Sho IWAMOTO A self introduction 17 Dec. 2014 Joint HEP Seminar @ Tel Aviv University References: * M. Endo, K. Hamaguchi, S. I., and T. Yoshinaga [1303.4256] * S. I., T.

More information

MSSM Higgs self-couplings at two-loop

MSSM Higgs self-couplings at two-loop MSSM Higgs self-couplings at two-loop mathias.brucherseifer@kit.edu Institut für Theoretische Teilchenphysik Karlsruhe Institute of Technology SUSY 2013, ICTP Trieste, Italy in collaboration with M. Spira

More information

(Lifetime and) Dipole Moments

(Lifetime and) Dipole Moments Precision Measurements with the Muon: (Lifetime and) Dipole Moments B.L. Roberts Department of Physics Boston University roberts @bu.edu http://physics.bu.edu/roberts.html B. Lee Roberts, APPEAL07, CAST,

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex Making baryons at the electroweak phase transition Stephan Huber, University of Sussex UK BSM '07 Liverpool, March 2007 Why is it interesting? There are testable consequences: New particles (scalars?!)

More information

Fundamental Symmetries - l

Fundamental Symmetries - l National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016 Fundamental Symmetries - l Vincenzo Cirigliano Los Alamos National Laboratory Goal of these lectures Introduce the field of nuclear

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS H S NATARAJ Under the Supervision of Prof. B P DAS Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

A Two Higgs Doublet Model for the Top Quark

A Two Higgs Doublet Model for the Top Quark UR 1446 November 1995 A Two Higgs Doublet Model for the Top Quark Ashok Das and Chung Kao 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA Abstract A two Higgs doublet

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

Neutron Electric Dipole Moment in the Standard Model and beyond from Lattice QCD

Neutron Electric Dipole Moment in the Standard Model and beyond from Lattice QCD Neutron Electric Dipole Moment in the Standard Model and beyond from Los Alamos National Laboratory Santa Fe Institute The 30 th International Symposium on Lattice Field Theory June 24 29, 2012 1 Dipole

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Extra-d geometry might also explain flavor

Extra-d geometry might also explain flavor Flavor and CP Solutions via~gim in Bulk RS LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung Introduction Lots of attention devoted to weak scale Flavor and CP remain outstanding

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

Investigating Beyond Standard Model

Investigating Beyond Standard Model Investigating Beyond Standard Model Joydeep Chakrabortty Physical Research Laboratory TPSC Seminar, IOP 5th February, 2013 1/35 Standard Model A Brief Tour Why BSM? BSM Classification How do we look into

More information

An Effective Approach to Hadronic Electric Dipole Moments. Jordy de Vries, Nikhef, Amsterdam

An Effective Approach to Hadronic Electric Dipole Moments. Jordy de Vries, Nikhef, Amsterdam An Effective Approach to Hadronic Electric Dipole Moments Jordy de Vries, Nikhef, Amsterdam Outline Part I: The Standard Model EFT and EDMs Part II: Chiral considerations Part III: EDMs of nucleons and

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information