7.3 The Chi-square, F and t-distributions

Size: px
Start display at page:

Download "7.3 The Chi-square, F and t-distributions"

Transcription

1 7.3 The Chi-square, F and t-distributions Ulrich Hoensch Monday, March 25, 2013

2 The Chi-square Distribution Recall that a random variable X has a gamma probability distribution (X Gamma(r, λ)) with parameters r > 0 and λ > 0 if it has the PDF Definition f (x) = λr Γ(r) x r 1 e λx, x > 0. A random variable X has a chi-square distribution with n degrees of freedom if X Gamma(n/2, 1/2). We write X χ 2 (n) in this situation.

3 The Chi-Square Distribution Theorem Let Z 1, Z 2,..., Z n be independent random variables with Z i N(0, 1). Then the sum V = n i=1 Z i 2 has the distribution V χ 2 (n). Proof. It is sufficient to show that if Z N(0, 1), then Z 2 χ 2 (1) = Gamma(1/2, 1/2). This is since the Zi 2 are also independent and it follows from Theorem that the sum of n independent random variables Zi 2 Gamma(1/2, 1/2) has again a gamma distribution with parameters r = n/2 and λ = 1/2.

4 The Chi-Square Distribution Let Z N(0, 1), i.e. f Z (z) = (1/ 2π)e z2 /2. Then, for U = Z 2, and u > 0 the CDF is F U (u) = P(Z 2 u) = P( u Z u) = = u u 2 u 2π 1 2π e z2 /2 dz 0 e z2 /2 dz. Differentiating (and using the chain rule) gives f U (u) = 2 2π 1 2 u e u/2 = (1/2)1/2 Γ(1/2) u(1/2) 1 e (1/2)u, where we used that Γ(1/2) = 0 e t t (1/2) 1 dt = π.

5 Distribution of the Sample Variance Theorem Let X 1, X 2,..., X n be a random sample of size n from a normally distributed population with mean µ and variance σ 2. Let S 2 = (1/(n 1)) n i=1 (X i X ) 2 be the sample variance. Then, (a) X and S 2 are independent random variables. (n 1)S 2 (b) σ 2 χ 2 (n 1). Remarks. The Central Limit Theorem and Theorem give us information about the distribution of the sample mean and the sample variance of a random sample taken from a normally distributed population. You can use χ 2 cdf (a, b, n) on a TI-83/84 calculator to find the probability that a chi-square distributed random variable with n degrees of freedom is between a and b.

6 Proof of Theorem Fisher s Lemma. Let Z 1, Z 2,..., Z n be iid random variables with Z i N(0, 1), and let A be an orthogonal n n-matrix (i.e. AA T = I). Let (U 1, U 2,..., U n ) = A(Z 1, Z 2,..., Z n ). Then U 1, U 2,..., U n are iid random variables with U i N(0, 1) Proof of Fisher s lemma. We have that for U = (U 1, U 2,..., U n ) and Z = (Z 1, Z 2,..., Z n ), P(U D) = P(AZ D) = P(Z A 1 D) = f Z (z) dz. A 1 D

7 Proof of Theorem Using the change of coordinates formula, the facts that det A = ±1 and Ax = x, and independence, we get: P(U D) = f Z (z) dz A 1 D = f Z (A 1 u) det A 1 du D = f Z (A 1 u) du D ( ) 1 n = exp( (1/2) A 1 u 2 ) du D 2π ( ) 1 n = exp( (1/2) u 2 ) du. 2π D Thus, U 1, U 2,..., U n are independent and U i N(0, 1).

8 Proof of Theorem Now, let A be an orthogonal n n-matrix whose last row is (1/ n, 1/ n,..., 1/ n). (It is possible to construct such a matrix using the Gram-Schmidt method.) Also, let Z i N(0, 1) be iid. The last row of A was chosen so that U n = (1/ n)z 1 + (1/ n)z (1/ n)z n = ( n)z. Thus, since n i=1 U2 i = n i=1 Z 2 i, n 1 Ui 2 + nz 2 = i=1 n Ui 2 = i=1 n i=1 Z 2 i = n (Z i Z) 2 + nz 2. i=1 Thus, n 1 i=1 U2 i = n i=1 (Z i Z) 2 and nz 2 (and hence Z) is independent of n i=1 (Z i Z) 2.

9 Proof of Theorem Also, n n 1 (Z i Z) 2 = Ui 2 χ 2 (n 1) i=1 from theorem i=1 The general result follows from normalization: X = σz + µ, n i=1 (X i X ) 2 = σ 2 n i=1 (Z i Z) 2.

10 Example Suppose X 1, X 2,..., X 10 is a random sample taken from an N(12, 25)-distributed population. Find the range for the middle 90% of the distribution of the sample mean X.

11 Example Find the probability that the sample variance S 2 is between 20 and 30.

12 Example Find the range for the middle 90% of the distribution of the sample variance.

13 F -Distribution Definition Suppose U and V are independent random variables, U χ 2 (n 1 ) and V χ 2 (n 2 ). Then, F = (U/n 1 )/(V /n 2 ) has a (Fisher) F -distribution with n 1 numerator and n 2 denominator degrees of freedom. We write F F (n 1, n 2 ) in this situation. Remarks. The PDF of F F (n 1, n 2 ) is zero if x 0 and for x > 0 it is equal to f (x) = Γ((n 1 + n 2 )/2) Γ(n 1 /2)Γ(n 2 /2) ( n1 n 2 ) n1 /2 ( x (n 1/2) n ) (n1 +n 2 )/2 1 x. n 2 The F -distribution is skewed to the right, and if F α (n 1, n 2 ) is chosen so that P(F > F α (n 1, n 2 )) = α, then F α (n 1, n 2 )F 1 α (n 2, n 1 ) = 1.

14 F -Distribution Theorem Suppose a random sample of size n 1 is drawn from a normally distributed population with variance σ1 2, and (independently) another random sample of size n 2 is drawn from a normally distributed population with variance σ2 2. If S 1 2 is the variance of the first sample, and S2 2 is the variance of the second sample, then F = S 2 1 /σ2 1 S 2 2 /σ2 2 F (n 1 1, n 2 1). Proof: By Theorem 7.3.2, U = (n 1 1)S 2 1 /σ2 1 χ2 (n 1 1) and V = (n 2 1)S 2 2 /σ2 2 χ2 (n 2 1). Note that U and V are independent. By Definition 7.3.2, F = (U/(n 1 1))/(V /(n 2 1)) F (n 1 1, n 2 1). But now F = U/(n 1 1) V /(n 2 1) = S 1 2/σ2 1 S2 2. /σ2 2

15 Example Two random samples are taken from two different normally distributed populations. It is assumed that these populations have the same variance σ 2 = σ1 2 = σ2 2. Suppose the size of the first sample is n 1 = 20 and the size of the second sample is n 2 = 30. Find the probability that the ratio of the sample variances S1 2/S 2 2 is between 0.5 and 1.5.

16 Example Find two values a and b so that P(a S1 2/S 2 2 b) = 0.90.

17 Student t-distribution Definition Suppose U and Z are independent random variables, U χ 2 (n) and Z N(0, 1). Then, T = Z/ U/n has a (Student) t-distribution with n degrees of freedom. We write T t(n) in this situation. Remarks. The PDF of T t(n) is symmetric about the line t = 0 and equal to f (t) = ( ) (n+1)/2 Γ((n + 1)/2) 1 + t2. πnγ(n/2) n If T t(n), then E(T ) = 0 and Var(T ) = n/(n 2). For n 30, we have that a t(n)-distribution can be well-approximated by a N(0, 1)-distribution.

18 Student t-distribution n 2 n 5 n 10 n 30 4 The PDF of T t(n) for n = 2, 5, 10, 30.

19 Student t-distribution Theorem Suppose X is the mean and S 2 is the variance of a random sample of size n taken from a normally distributed population with mean µ and variance σ 2. Then the random variable T = X µ S/ n t(n 1). Proof: By the Central Limit Theorem, X N(µ, σ 2 /n), so Z = (X µ)/(σ/ n) N(0, 1). By Theorem 7.3.2, U = (n 1)S 2 /σ 2 χ 2 (n 1). Since X and S 2 are independent by Theorem 7.3.2, so are Z and U. Thus, by Definition 7.3.3, T = Z/ U/(n 1) t(n 1). But now T = Z U/(n 1) = X µ σ/ n (n 1)S 2 σ 2 (n 1) = X µ σ/ n S/σ = X µ S/ n.

20 Homework Problems for Section 7.3 (Points) p.394: (2), (2), (2), (2). Homework problems are due at the beginning of the class on Wednesday, April 3, 2013.

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Will Landau. Feb 28, 2013

Will Landau. Feb 28, 2013 Iowa State University The F Feb 28, 2013 Iowa State University Feb 28, 2013 1 / 46 Outline The F The F Iowa State University Feb 28, 2013 2 / 46 The normal (Gaussian) distribution A random variable X is

More information

SOME SPECIFIC PROBABILITY DISTRIBUTIONS. 1 2πσ. 2 e 1 2 ( x µ

SOME SPECIFIC PROBABILITY DISTRIBUTIONS. 1 2πσ. 2 e 1 2 ( x µ SOME SPECIFIC PROBABILITY DISTRIBUTIONS. Normal random variables.. Probability Density Function. The random variable is said to be normally distributed with mean µ and variance abbreviated by x N[µ, ]

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Homework for 1/13 Due 1/22

Homework for 1/13 Due 1/22 Name: ID: Homework for 1/13 Due 1/22 1. [ 5-23] An irregularly shaped object of unknown area A is located in the unit square 0 x 1, 0 y 1. Consider a random point distributed uniformly over the square;

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES 557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES Example Suppose that X,..., X n N, ). To test H 0 : 0 H : the most powerful test at level α is based on the statistic λx) f π) X x ) n/ exp

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2018 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

8 - Continuous random vectors

8 - Continuous random vectors 8-1 Continuous random vectors S. Lall, Stanford 2011.01.25.01 8 - Continuous random vectors Mean-square deviation Mean-variance decomposition Gaussian random vectors The Gamma function The χ 2 distribution

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

3 Random Samples from Normal Distributions

3 Random Samples from Normal Distributions 3 Random Samples from Normal Distributions Statistical theory for random samples drawn from normal distributions is very important, partly because a great deal is known about its various associated distributions

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Random Vectors and Multivariate Normal Distributions

Random Vectors and Multivariate Normal Distributions Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random 75 variables. For instance, X = X 1 X 2., where each

More information

II. The Normal Distribution

II. The Normal Distribution II. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Analysis of Experimental Designs

Analysis of Experimental Designs Analysis of Experimental Designs p. 1/? Analysis of Experimental Designs Gilles Lamothe Mathematics and Statistics University of Ottawa Analysis of Experimental Designs p. 2/? Review of Probability A short

More information

Statistics 3657 : Moment Generating Functions

Statistics 3657 : Moment Generating Functions Statistics 3657 : Moment Generating Functions A useful tool for studying sums of independent random variables is generating functions. course we consider moment generating functions. In this Definition

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Confidence intervals for parameters of normal distribution.

Confidence intervals for parameters of normal distribution. Lecture 5 Confidence intervals for parameters of normal distribution. Let us consider a Matlab example based on the dataset of body temperature measurements of 30 individuals from the article []. The dataset

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

Chapter 3.3 Continuous distributions

Chapter 3.3 Continuous distributions Chapter 3.3 Continuous distributions In this section we study several continuous distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more.

More information

Ch. 7. One sample hypothesis tests for µ and σ

Ch. 7. One sample hypothesis tests for µ and σ Ch. 7. One sample hypothesis tests for µ and σ Prof. Tesler Math 18 Winter 2019 Prof. Tesler Ch. 7: One sample hypoth. tests for µ, σ Math 18 / Winter 2019 1 / 23 Introduction Data Consider the SAT math

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., a the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Review of Statistics I

Review of Statistics I Review of Statistics I Hüseyin Taştan 1 1 Department of Economics Yildiz Technical University April 17, 2010 1 Review of Distribution Theory Random variables, discrete vs continuous Probability distribution

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa dennis-bricker@uiowa.edu Probability Theory Results page 1 D.Bricker, U. of Iowa, 2002 Probability of simultaneous occurrence

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Preliminary Statistics. Lecture 3: Probability Models and Distributions

Preliminary Statistics. Lecture 3: Probability Models and Distributions Preliminary Statistics Lecture 3: Probability Models and Distributions Rory Macqueen (rm43@soas.ac.uk), September 2015 Outline Revision of Lecture 2 Probability Density Functions Cumulative Distribution

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Homework 5. (due Wednesday 8 th Nov midnight)

Homework 5. (due Wednesday 8 th Nov midnight) Homework (due Wednesday 8 th Nov midnight) Use this definition for Column Space of a Matrix Column Space of a matrix A is the set ColA of all linear combinations of the columns of A. In other words, if

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Probability Density Functions

Probability Density Functions Probability Density Functions Probability Density Functions Definition Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f (x) such that

More information

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality Math 408 - Mathematical Statistics Lecture 13-14. The Sample Mean and the Sample Variance Under Assumption of Normality February 20, 2013 Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples.

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. Rebecca Barter March 16, 2015 The χ 2 distribution The χ 2 distribution We have seen several instances

More information

Chapter 5. Continuous Probability Distributions

Chapter 5. Continuous Probability Distributions Chapter 5. Continuous Probability Distributions Section 5.6: Normal Distributions Jiaping Wang Department of Mathematical Science 03/27/2013, Wednesday Outline Probability Density Function Mean and Variance

More information

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment.

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Course information: Instructor: Tim Hanson, Leconte 219C, phone 777-3859. Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Text: Applied Linear Statistical Models (5th Edition),

More information

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84 Chapter 2 84 Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random variables. For instance, X = X 1 X 2.

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

Continuous Distributions

Continuous Distributions Chapter 3 Continuous Distributions 3.1 Continuous-Type Data In Chapter 2, we discuss random variables whose space S contains a countable number of outcomes (i.e. of discrete type). In Chapter 3, we study

More information

Confidence Intervals for the Sample Mean

Confidence Intervals for the Sample Mean Confidence Intervals for the Sample Mean As we saw before, parameter estimators are themselves random variables. If we are going to make decisions based on these uncertain estimators, we would benefit

More information

IV. The Normal Distribution

IV. The Normal Distribution IV. The Normal Distribution The normal distribution (a.k.a., the Gaussian distribution or bell curve ) is the by far the best known random distribution. It s discovery has had such a far-reaching impact

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Chapter 7. Sampling Distributions and the Central Limit Theorem If you can t explain it simply, you don t understand it well enough Albert Einstein. Theorem

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Functions of Random Variables Notes of STAT 6205 by Dr. Fan

Functions of Random Variables Notes of STAT 6205 by Dr. Fan Functions of Random Variables Notes of STAT 605 by Dr. Fan Overview Chapter 5 Functions of One random variable o o General: distribution function approach Change-of-variable approach Functions of Two random

More information

Small-Sample CI s for Normal Pop. Variance

Small-Sample CI s for Normal Pop. Variance Small-Sample CI s for Normal Pop. Variance Engineering Statistics Section 7.4 Josh Engwer TTU 06 April 2016 Josh Engwer (TTU) Small-Sample CI s for Normal Pop. Variance 06 April 2016 1 / 16 PART I PART

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics,

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

[Chapter 6. Functions of Random Variables]

[Chapter 6. Functions of Random Variables] [Chapter 6. Functions of Random Variables] 6.1 Introduction 6.2 Finding the probability distribution of a function of random variables 6.3 The method of distribution functions 6.5 The method of Moment-generating

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Chapter 8 - Statistical intervals for a single sample

Chapter 8 - Statistical intervals for a single sample Chapter 8 - Statistical intervals for a single sample 8-1 Introduction In statistics, no quantity estimated from data is known for certain. All estimated quantities have probability distributions of their

More information

MTH 5102 Linear Algebra Practice Final Exam April 26, 2016

MTH 5102 Linear Algebra Practice Final Exam April 26, 2016 Name (Last name, First name): MTH 5 Linear Algebra Practice Final Exam April 6, 6 Exam Instructions: You have hours to complete the exam. There are a total of 9 problems. You must show your work and write

More information

Other Continuous Probability Distributions

Other Continuous Probability Distributions CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists Second Edition PROBABILITY DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clar School of Engineering Department of Civil

More information

T has many other desirable properties, and we will return to this example

T has many other desirable properties, and we will return to this example 2. Introduction to statistics: first examples 2.1. Introduction. The basic problem of statistics is to draw conclusions about unknown distributions of random variables from observed values. These conclusions

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

University of Luxembourg. Master in Mathematics. Student project. Compressed sensing. Supervisor: Prof. I. Nourdin. Author: Lucien May

University of Luxembourg. Master in Mathematics. Student project. Compressed sensing. Supervisor: Prof. I. Nourdin. Author: Lucien May University of Luxembourg Master in Mathematics Student project Compressed sensing Author: Lucien May Supervisor: Prof. I. Nourdin Winter semester 2014 1 Introduction Let us consider an s-sparse vector

More information

STATISTICAL METHODS FOR SIGNAL PROCESSING c Alfred Hero

STATISTICAL METHODS FOR SIGNAL PROCESSING c Alfred Hero STATISTICAL METHODS FOR SIGNAL PROCESSING c Alfred Hero 1999 32 Statistic used Meaning in plain english Reduction ratio T (X) [X 1,..., X n ] T, entire data sample RR 1 T (X) [X (1),..., X (n) ] T, rank

More information

STATISTICS SYLLABUS UNIT I

STATISTICS SYLLABUS UNIT I STATISTICS SYLLABUS UNIT I (Probability Theory) Definition Classical and axiomatic approaches.laws of total and compound probability, conditional probability, Bayes Theorem. Random variable and its distribution

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013 STAB57H3 Introduction to Statistics Duration: 3 hours Last Name: First Name: Student number:

More information

ECON 5350 Class Notes Review of Probability and Distribution Theory

ECON 5350 Class Notes Review of Probability and Distribution Theory ECON 535 Class Notes Review of Probability and Distribution Theory 1 Random Variables Definition. Let c represent an element of the sample space C of a random eperiment, c C. A random variable is a one-to-one

More information