Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Size: px
Start display at page:

Download "Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa"

Transcription

1 Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Probability Theory Results page 1 D.Bricker, U. of Iowa, 2002

2 Probability of simultaneous occurrence of events If A and B are two independent events, then by definition: If A and B are dependent, then { AND } = { } = { } { } P A B P A B P A P B { } = { } { } = P{ A B} P{ B} P A B P B A P A Note: This follows from the definition of conditional probability: { } { } { } P A P A B B and P{ B A} P A B P B P A { } { } Probability Theory Results page 2 D.Bricker, U. of Iowa, 2002

3 Probability of occurrence of at least one of two events If A and B are two events, then the probability of A OR B is P{ A B} = P{ A} + P{ B} P{ A B} Note: If A and B are mutually exclusive, then this is equivalent to P{ A B} = P{ A} + P{ B} If A and B are independent, then this is equivalent to P{ A B} = P{ A} + P{ B} P{ A} P{ B} Probability Theory Results page 3 D.Bricker, U. of Iowa, 2002

4 Law of Total Probability for computation of the probability of an event A. Suppose that B 1, B 2, B n are mutually exclusive events, i.e., such that A B i i B B =, i j i j Then chain rule ( ) ( ) ( ) P A = P A B P B i i i In particular, we can condition upon the value of a discrete random variable Y: ( ) = ( = ) ( = ) P A P A Y y P Y y y Probability Theory Results page 4 D.Bricker, U. of Iowa, 2002

5 Example: A certain product is manufactured in three plants: Plant # market share 1 30% 5% 2 25% 4% 3 45% 3% defective rate Suppose that we sample a unit of this product from a retail shop shelf. What is the probability that it is defective? Probability Theory Results page 5 D.Bricker, U. of Iowa, 2002

6 Let Y= plant which manufactured the unit. A = event that product is defective. 3 ( unit is defective ) = ( = ) ( = ) P P defect Y i P Y i i= 1 = = That is, the probability that we have sampled a defective unit is 3.85%. Probability Theory Results page 6 D.Bricker, U. of Iowa, 2002

7 Law of Total Expectation For any two random variables X and Y, ( ) = ( = ) ( = ) E X E X Y y P Y y y where Y has discrete values and we assume that the expectations exist. Probability Theory Results page 7 D.Bricker, U. of Iowa, 2002

8 Example: Consider a series of competitions between two evenly-matched teams, in which the series ends as soon as one team has won 3 consecutive games. What is the expected length of the series? Probability Theory Results page 8 D.Bricker, U. of Iowa, 2002

9 Solution: Define X i = number of games to follow after one of the teams has won the last i consecutive games What is the value of E(X 0 )? Define Y =1 if the team which is ahead wins the next game, 0 otherwise. Then by the Law of Total Expectation, ( ) = ( = 0) ( = 0 ) + ( = 1) ( = 1) E X E X Y P Y E X Y P Y i i i Probability Theory Results page 9 D.Bricker, U. of Iowa, 2002

10 Now, E{ X Y 0} 1 E{ X } i = = +, 1 since, if the leading team loses, then the opposing team has a winning streak of one game, and { 1} 1 { } E Xi Y E X i + 1 = = +, since, if the leading team wins, then it has a winning streak of i+1 games. Therefore, { } = { = 0} { = 0 } + { = 1} { = 1} E X E X Y P Y E X Y P Y i i i 1 1 = ( 1+ E{ X1} ) + ( 1+ E{ Xi+ 1} ) = + E X + + E X = + E X + E X E X. for i=0, 1, and 2, where ( ) { } { } 1 { } { } 1 i+ 1 1 i Probability Theory Results page 10 D.Bricker, U. of Iowa, 2002

11 1 1 E{ Xi} = 1 + E{ X1} + E{ Xi+ 1} for i = 0,1, = 1+ + = Case i=0: E{ X } E{ X } E{ X } E{ X } E{ X } = 1+ + = Case i=1: E{ X } E{ X } E{ X } E{ X } E{ X } Case i=2: since E{ X 3 } = 0, E{ X2} = 1+ E{ X1} + E{ X3} E{ X1} + E{ X2} = Probability Theory Results page 11 D.Bricker, U. of Iowa, 2002

12 We thus obtain the system of linear equations EX 0 EX1 = 1 0.5EX1 0.5EX 2 = 1 0.5EX1 + EX 2 = 1 which has the solution (using Gauss elimination, for example): EX = 7, EX = 6, EX = That is, the series is expected to end after 7 games. Notice that when one team has already won two consecutive games, we expect a total of four games, i.e., two additional games to be played! Probability Theory Results page 12 D.Bricker, U. of Iowa, 2002

13 The k th Moment of a distribution is defined to be E X k The k th Central Moment of a distribution is k [ ] k M = E X EX In particular, the 2 nd central moment is the variance, the 3 rd central moment is the skewness, and the 4 th central moment is the kurtosis. Probability Theory Results page 13 D.Bricker, U. of Iowa, 2002

14 2 Variance is the second central moment: Var{ X} =σ M 2 Therefore, { } = ( ) 2 Var X E X E X Sometimes it is more convenient to compute the variance using the relationship: { } 2 2 ( ) ( ) Var X = E X X E X + E X ( ) ( ) 2 2 = E X E 2 X E X + E E X ( ) ( ) ( ) = E X E X E X E X { } = ( 2 ) 2 ( ) Var X E X E X 2 Probability Theory Results page 14 D.Bricker, U. of Iowa, 2002

15 Other relationships: if c is a constant, The term { + } = { } 2 { } = c Var{ X} { + } = { } + { } + 2 ( )( ) Var X c V X Var cx { } Var X Y Var X Var Y E X EX Y EY {( )( )} E X EX Y EY is called the covariance of X & Y, or Cov{X,Y} A more useful formula for computation is {, } = { } { } { } Cov X Y E XY E X E Y Probability Theory Results page 15 D.Bricker, U. of Iowa, 2002

16 In general, the expectation of a sum = sum of expectations, i.e., N N i = i= 1 i= 1 ( ) E X E X i and, if the random variables X i are independent, the variance of a sum = sum of variances, i.e., N var = N Xi var( Xi). i= 1 i= 1 Thus, if the random variables X i are independent & identically-distributed, N = i ( 1 ) and var Xi Nvar( X1) E X NE X i= 1 N = i= 1 Probability Theory Results page 16 D.Bricker, U. of Iowa, 2002

17 Suppose that the number of terms N is itself a random variable. If the random event {N=n} is independent of X n+1, X n+2, for each n 1: Wald's Equation: N i = i= 1 ( ) ( ) E X E N E X 1 If in addition, the event {N=n} is independent of all X i, i=1,2,3,. N var Xi = E N var X + var N E X i= 1 2 ( ) ( ) ( ) ( ) 1 1 Probability Theory Results page 17 D.Bricker, U. of Iowa, 2002

18 Suppose that X 1, X 2, X 3,. is a sequence of independent, identicallydistributed random variables with mean and variance which exist: 2 { } Var{ X } E X and let Y n be the n th partial sum, i.e., i = µ and =σ > 0 i Y n n = X i= 1 i so that the expected value of Y n is nµ, and its variance is nσ 2. Central Limit Theorem: The distribution of the standardized form of Y n, i.e., Yn nµ, σ n is, in the limit, the normal distribution with mean 0 and variance 1. Probability Theory Results page 18 D.Bricker, U. of Iowa, 2002

19 Normal Approximation to Binomial Distribution Suppose that {X n } is a Bernouilli process, i.e., X 1, X 2,. is a sequence of Bernouilli random variables, with P{X i =1}=p. Then the n th partial sum Y n has binomial distribution with parameters n & p, with mean np and variance np(1 p). Therefore, by the Central Limit Theorem, the cumulative distribution function (CDF) of Y n, i.e., t n PYn t p p k= 0 k k { } = ( 1 ) should have, for large n, approximately normal distribution with mean np and standard deviation np( 1 p) n k Probability Theory Results page 19 D.Bricker, U. of Iowa, 2002

20 Example: In a true-false examination, What is the probability that a student can guess the correct answers to 15 or more out of 27 questions, i.e., a score of at least 55.5%? Solution: Assuming p = 50%, e.g., the student chooses his/her answer by flipping an unbiased coin, the exact value is t n PYn t p p k= 0 k k { } = ( 1 ) n k These values are shown on the following page, where we see that { } PY { } PY 15 = = 35% Probability Theory Results page 20 D.Bricker, U. of Iowa, 2002

21 x P{x} P{X<=x} P{X>x} Probability Theory Results page 21 D.Bricker, U. of Iowa, 2002

22 According to the Central Limit Theorem, Y 27 has approximately a normal distribution with mean 13.5 and standard deviation 27 ( 0.5)( 0.5) = = Therefore, according to tables for the Normal distribution or other resource (e.g., ) Y PY { } = P PZ { } = Probability Theory Results page 22 D.Bricker, U. of Iowa, 2002

23 Note: If we had computed P{Y 27 15} (instead of P{Y }), we would have obtained a less accurate value of about 28.2%. Probability Theory Results page 23 D.Bricker, U. of Iowa, 2002

24 NORMAL DISTRIBUTIONS A continuous random variable X has a Normal distribution with the two parameters: the mean µ and the standard deviation σ>0, if its probability density function is of the form f 1 1 x µ ; µσ, = exp σ 2π 2 σ ( x ) This Normal distribution, N(µ,σ), is symmetric about the mean µ, i.e., its skewness is 0. 2 Probability Theory Results page 24 D.Bricker, U. of Iowa, 2002

25 The Standard Normal distribution N(0,1) has mean µ=0 and standard deviation σ=1, with pdf f ( z) 2 1 z = exp 2π 2 If the random variable X has N(µ,σ) distribution, then X µ σ has the standard N(0,1) distribution. Probability Theory Results page 25 D.Bricker, U. of Iowa, 2002

26 The Cumulative Distribution Function (CDF) of the N(0,1) distribution cannot be expressed in closed form: t 2 1 t F( z) = P{ Z t} = exp dt 2π 2 Probability Theory Results page 26 D.Bricker, U. of Iowa, 2002

27 REPRODUCTIVE PROPERTY OF NORMAL DISTRIBUTION The Normal distribution has an important reproductive property: The sum of (independent) Normally distributed random variables has a Normal distribution! Specifically, if X N ( µ, σ ), i i i then T k = a X has N(µ,σ) distribution, i= 1 i i with mean k µ= a µ i= 1 i i and variance k aiσi i= 1 σ =. Note: The binomial, gamma, and a few other distributions also have this reproductive property! Probability Theory Results page 27 D.Bricker, U. of Iowa, 2002

28 RANDOM GENERATION OF NORMALLY DISTRIBUTED RANDOM VARIABLES Generate two random numbers u i and v i, uniformly distributed in [0,1]. Perform the transformations and ( ) z = 2lnu sin 2πv i i i ( ) z = 1 2lnu + cos 2 π v i i i to generate a pair of random variables having N(0,1) distribution. (This is known as the Box/Muller technique. Cf. ) Note: a less efficient and less accurate method, based upon the central limit theorm, would be to sum a large number (15?) uniformly-distributed random variables. Probability Theory Results page 28 D.Bricker, U. of Iowa, 2002

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Chapter 3.3 Continuous distributions

Chapter 3.3 Continuous distributions Chapter 3.3 Continuous distributions In this section we study several continuous distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more.

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Preliminary Statistics. Lecture 3: Probability Models and Distributions

Preliminary Statistics. Lecture 3: Probability Models and Distributions Preliminary Statistics Lecture 3: Probability Models and Distributions Rory Macqueen (rm43@soas.ac.uk), September 2015 Outline Revision of Lecture 2 Probability Density Functions Cumulative Distribution

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Chapter 2 Some Basic Probability Concepts 2.1 Experiments, Outcomes and Random Variables A random variable is a variable whose value is unknown until it is observed. The value of a random variable results

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Tom Salisbury

Tom Salisbury MATH 2030 3.00MW Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions Tom

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (RV)X (R.V.) X: A function on sample space X: S R Cumulative distribution

More information

Review of Statistics I

Review of Statistics I Review of Statistics I Hüseyin Taştan 1 1 Department of Economics Yildiz Technical University April 17, 2010 1 Review of Distribution Theory Random variables, discrete vs continuous Probability distribution

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Midterm Exam 1 (Solutions)

Midterm Exam 1 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran February 3, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Chapter 4 - Lecture 3 The Normal Distribution

Chapter 4 - Lecture 3 The Normal Distribution Chapter 4 - Lecture 3 The October 28th, 2009 Chapter 4 - Lecture 3 The Standard Chapter 4 - Lecture 3 The Standard Normal distribution is a statistical unicorn It is the most important distribution in

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 5: Review on Probability Theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 22 th, 2015 1 Lecture Outlines o Review on probability theory

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Edexcel past paper questions

Edexcel past paper questions Edexcel past paper questions Statistics 1 Discrete Random Variables Past examination questions Discrete Random variables Page 1 Discrete random variables Discrete Random variables Page 2 Discrete Random

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 3-RANDOM VARIABLES VARIABLE Studying the behavior of random variables, and more importantly functions of random variables is essential for both the

More information

Properties of Random Variables

Properties of Random Variables Properties of Random Variables 1 Definitions A discrete random variable is defined by a probability distribution that lists each possible outcome and the probability of obtaining that outcome If the random

More information

IC 102: Data Analysis and Interpretation

IC 102: Data Analysis and Interpretation IC 102: Data Analysis and Interpretation Instructor: Guruprasad PJ Dept. Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076 Email: pjguru@aero.iitb.ac.in Phone no.: 2576 7142

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

7.3 The Chi-square, F and t-distributions

7.3 The Chi-square, F and t-distributions 7.3 The Chi-square, F and t-distributions Ulrich Hoensch Monday, March 25, 2013 The Chi-square Distribution Recall that a random variable X has a gamma probability distribution (X Gamma(r, λ)) with parameters

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

PROBABILITY DISTRIBUTION

PROBABILITY DISTRIBUTION PROBABILITY DISTRIBUTION DEFINITION: If S is a sample space with a probability measure and x is a real valued function defined over the elements of S, then x is called a random variable. Types of Random

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Two Classes of R.V. Discrete R.V. Bernoulli Binomial Geometric Poisson Continuous R.V. Uniform Exponential,

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Homework for 1/13 Due 1/22

Homework for 1/13 Due 1/22 Name: ID: Homework for 1/13 Due 1/22 1. [ 5-23] An irregularly shaped object of unknown area A is located in the unit square 0 x 1, 0 y 1. Consider a random point distributed uniformly over the square;

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Mathematics 47: Lecture 9 Dan Sloughter Furman University March 16, 2006 Dan Sloughter (Furman University) Sampling Distributions March 16, 2006 1 / 10 Definition We call the probability

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Lecture 1: Basics of Probability

Lecture 1: Basics of Probability Lecture 1: Basics of Probability (Luise-Vitetta, Chapter 8) Why probability in data science? Data acquisition is noisy Sampling/quantization external factors: If you record your voice saying machine learning

More information

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2015 Dr. Michael O. Distler

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996 EXAMINATIONS OF THE ROAL STATISTICAL SOCIET (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 996 Paper I : Statistical Theory Time Allowed: Three Hours Candidates

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Analysis of Experimental Designs

Analysis of Experimental Designs Analysis of Experimental Designs p. 1/? Analysis of Experimental Designs Gilles Lamothe Mathematics and Statistics University of Ottawa Analysis of Experimental Designs p. 2/? Review of Probability A short

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Chapter 2. Continuous random variables

Chapter 2. Continuous random variables Chapter 2 Continuous random variables Outline Review of probability: events and probability Random variable Probability and Cumulative distribution function Review of discrete random variable Introduction

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information