MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL

Size: px
Start display at page:

Download "MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL"

Transcription

1 MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL Jing (Selena) He Department of Computer Science, Kennesaw State University Shouling Ji, and Raheem Beyah School of Electrical and Computer Engineering, Georgia Institute of Technology Zhipeng Cai Department of Computer Science, Georgia State University

2 INTRODUCTION What is a social network? The graph of relationships and interactions within a group of individuals. 2

3 SOCIAL NETWORK AND SPREAD OF INFLUENCE Social network plays a fundamental role as a medium for the spread of INFLUENCE among its members Opinions, ideas, information, innovation Direct Marketing takes the word-of-mouth effects to significantly increase profits (facebook, twitter, myspace, ) 3

4 MOTIVATION 900 million users, Apr the 3rd largest Country in the world More visitors than Google Action: Update statues, create event More than 4 billion images Action: Add tags, Add favorites Social networks already become a bridge to connect our really daily life and the virtual web space 2009, 2 billion tweets per quarter 2010, 4 billion tweets per quarter Action: Post tweets, Retweet 4

5 MOTIVATION (CONT.) Modeling and tracking users actions in social networks is a very important issue and can benefit many real applications Advertising Social recommendation Expert finding Marketing 5

6 APPLICATION George Who are the opinion leaders in a community? 2 2 Ada 1 Bob Marketer Alice Frank 4 1 Carol 2 Eve David 3 3 Find minimum-sized node (user) set in a social network that could influence on every node in the network 6

7 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 7

8 OUTLINE Network Model Models of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 8

9 NETWORK MODEL A social network is represented as a undirected graph Nodes start either active or inactive An active node may trigger activation of neighboring nodes based on a pre-defined threshold τ Monotonicity assumption: active nodes never deactivate 9

10 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 10

11 MODEL OF INFLUENCE If u 1 is active, then the active node set I = {u 1 } P 1 (I) = 1 P 2 (I) = 0.5 P 3 (I) = 0.7 P 4 (I) =

12 MODEL OF INFLUENCE P ii = 1, if u i ϵ I P ii = 0, otherwise P i (I) = 1 1 Pij τ u j I If u 1 and u 4 are active, then the active node set I = {u 1, u 4 } P 1 (I) = 1 (1 P 11 )(1 P 14 ) = 1 P 2 (I) = 1 (1 P 21 )(1 P 24 ) = 0.9 P 3 (I) = 1 (1 P 31 )(1 P 34 ) = 0.97 P 4 (I) = 1 (1 P 41 )(1 P 44 ) = 1 12

13 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 13

14 MINIMUM-SIZED INFLUENCE NODE SET SELECTION PROBLEM (MINS) Given a social network G = (V, E, P) a threshold τ Goal The initially selected active node set denoted by I could influence every node in the network ui V, P i (I) = 1 1 Pij τ u j I Objective Minimize the size of I 14

15 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 15

16 CONTRIBUTION FUNCTION f(i) = min (Pi I, τ) u i V Greedy algorithm Initialize I = empty set While f(i) < V τ do Choose u to maximize f(i {u}) I = I {u} End while Return I 16

17 EXAMPLE First round: I = empty set Second round: I = {u 1 } f(i) = = 2.6 I = {u 2 } f(i) = = 2.5 I = {u 3 } f(i) = = 2.7 I = {u 4 } f(i) = = 3.0 τ = 0.8 f(i) = min (Pi I, τ) u i V 17 17

18 EXAMPLE Third round: I = {u 4, u 1 } f(i) = = 3.2 I = {u 4, u 2 } f(i) = = 3.2 I = {u 4, u 3 } f(i) = = 3.2 Use node ID to break the tie I = {u 4, u 1 } The greedy algorithm stops, since f(i) = V τ = 4 * 0.8 = 3.2. τ = 0.8 f(i) = min (Pi I, τ) u i V 18 18

19 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 19

20 THEORETICAL ANALYSIS Theorem 1. The MINS selection problem is NP-hard. 20

21 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 21

22 SIMULATION SETTINGS generate random graphs based on the random graph model G(n,p) = {G G has n nodes, and an edge between any pair of nodes is generated with probability p}. 22

23 EXPERIMENT DATA Real-world data set: academic coauthor network, which is extracted from academic search system Arnetminer [19]. co-authorship networks arguably capture many of the key features of social networks more generally. Resulting graph: 640, 134 nodes (authors), 1, 554, 643distinct edges (coauthor relations) 23

24 OUTLINE Network Model Model of influence Minimum-sized Influence Node Set selection problem Problem definition Greedy Algorithm Proof of performance bound Experiments Data and setting Results 24

25 RESULTS: SIMULATION 25

26 RESULTS: SIMULATION 26

27 RESULTS: REAL DATA 27

28 CONCLUSIONS We introduce a new optimization problem, named the Minimum-sized Influential Node Set (MINS) selection problem. We prove that it is a NP-hard problem under the independent cascade model. We define a polymatroid contribution function, which suggests us a greedy approximation algorithm. Comprehensive theoretical analysis about its performance ratio is given. We conduct extensive experiments and simulations to validate our proposed greedy algorithm both on real world coauthor data sets and random graphs. 28

29 FUTURE WORK Study more realistic network model Directed graph Study more general influence models Deal with negative influences Study the network evolution as time changes 29

30 Q & A 30

Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences

Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences Jing (Selena) He, Shouling Ji, Xiaojing Liao, Hisham M. Haddad, Raheem Beyah

More information

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24

CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24 CSCI 3210: Computational Game Theory Cascading Behavior in Networks Ref: [AGT] Ch 24 Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Course Website: www.bowdoin.edu/~mirfan/csci-3210.html

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Personalized Social Recommendations Accurate or Private

Personalized Social Recommendations Accurate or Private Personalized Social Recommendations Accurate or Private Presented by: Lurye Jenny Paper by: Ashwin Machanavajjhala, Aleksandra Korolova, Atish Das Sarma Outline Introduction Motivation The model General

More information

Efficient Respondents Selection for Biased Survey using Online Social Networks

Efficient Respondents Selection for Biased Survey using Online Social Networks Efficient Respondents Selection for Biased Survey using Online Social Networks Donghyun Kim 1, Jiaofei Zhong 2, Minhyuk Lee 1, Deying Li 3, Alade O. Tokuta 1 1 North Carolina Central University, Durham,

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Influence and Social Networks Economics, sociology, political science, etc. all have studied

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6-8:50PM Thursday Location: AK233 Spring 2018 v Course Project I has been graded. Grading was based on v 1. Project report

More information

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6:00pm 8:50pm Mon. and Wed. Location: SL105 Spring 2016 Reading assignments We will increase the bar a little bit Please

More information

An Efficient reconciliation algorithm for social networks

An Efficient reconciliation algorithm for social networks An Efficient reconciliation algorithm for social networks Silvio Lattanzi (Google Research NY) Joint work with: Nitish Korula (Google Research NY) ICERM Stochastic Graph Models Outline Graph reconciliation

More information

Diffusion of Innovation

Diffusion of Innovation Diffusion of Innovation Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network Analysis

More information

Interact with Strangers

Interact with Strangers Interact with Strangers RATE: Recommendation-aware Trust Evaluation in Online Social Networks Wenjun Jiang 1, 2, Jie Wu 2, and Guojun Wang 1 1. School of Information Science and Engineering, Central South

More information

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks Osman Yağan Department of ECE Carnegie Mellon University Joint work with Y. Zhuang and V. Gligor (CMU) Alex

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Influence Maximization in Dynamic Social Networks

Influence Maximization in Dynamic Social Networks Influence Maximization in Dynamic Social Networks Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang and Xiaoming Sun Department of Computer Science and Technology, Tsinghua University Department of Computer

More information

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework Performance Evaluation ( ) Contents lists available at ScienceDirect Performance Evaluation journal homepage: www.elsevier.com/locate/peva Analyzing competitive influence maximization problems with partial

More information

A Note on Maximizing the Spread of Influence in Social Networks

A Note on Maximizing the Spread of Influence in Social Networks A Note on Maximizing the Spread of Influence in Social Networks Eyal Even-Dar 1 and Asaf Shapira 2 1 Google Research, Email: evendar@google.com 2 Microsoft Research, Email: asafico@microsoft.com Abstract.

More information

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE Cost and Preference in Recommender Systems Junhua Chen, Big Data Research Center, UESTC Email:junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming Abstract In many recommender systems (RS), user

More information

Analysis of Multiview Legislative Networks with Structured Matrix Factorization: Does Twitter Influence Translate to the Real World?

Analysis of Multiview Legislative Networks with Structured Matrix Factorization: Does Twitter Influence Translate to the Real World? Analysis of Multiview Legislative Networks with Structured Matrix Factorization: Does Twitter Influence Translate to the Real World? Shawn Mankad The University of Maryland Joint work with: George Michailidis

More information

Adaptive Rumor Spreading

Adaptive Rumor Spreading José Correa 1 Marcos Kiwi 1 Neil Olver 2 Alberto Vera 1 1 2 VU Amsterdam and CWI July 27, 2015 1/21 The situation 2/21 The situation 2/21 The situation 2/21 The situation 2/21 Introduction Rumors in social

More information

Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee

Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee wwlee1@uiuc.edu September 28, 2004 Motivation IR on newsgroups is challenging due to lack of

More information

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process Social Influence in Online Social Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Dr. Zesheng Chen Viral marketing ( word-of-mouth ) Blog information cascading Rumor

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University Announcements: Please fill HW Survey Weekend Office Hours starting this weekend (Hangout only) Proposal: Can use 1 late period CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

More information

Finding central nodes in large networks

Finding central nodes in large networks Finding central nodes in large networks Nelly Litvak University of Twente Eindhoven University of Technology, The Netherlands Woudschoten Conference 2017 Complex networks Networks: Internet, WWW, social

More information

Structure based Data De-anonymization of Social Networks and Mobility Traces

Structure based Data De-anonymization of Social Networks and Mobility Traces Structure based Data De-anonymization of Social Networks and Mobility Traces Shouling Ji 1, Weiqing Li 1, Mudhakar Srivatsa 2, Jing S. He 3, and Raheem Beyah 1 Georgia Institute of Technology 1, IBM T.

More information

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network Maximizing the Spread of Influence through a Social Network David Kempe Dept. of Computer Science Cornell University, Ithaca NY kempe@cs.cornell.edu Jon Kleinberg Dept. of Computer Science Cornell University,

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Wei Chen Microsoft Research Asia Beijing, China weic@microsoft.com Wei Lu University of British Columbia Vancouver,

More information

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Reputation Systems I HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Yury Lifshits Wiki Definition Reputation is the opinion (more technically, a social evaluation) of the public toward a person, a

More information

Determining the Diameter of Small World Networks

Determining the Diameter of Small World Networks Determining the Diameter of Small World Networks Frank W. Takes & Walter A. Kosters Leiden University, The Netherlands CIKM 2011 October 2, 2011 Glasgow, UK NWO COMPASS project (grant #12.0.92) 1 / 30

More information

Stability and Robustness in Influence Maximization

Stability and Robustness in Influence Maximization 1 Stability and Robustness in Influence Maximization XINRAN HE, University of Southern California DAVID KEMPE, University of Southern California In the well-studied Influence Maximization problem, the

More information

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model Xinran He Guojie Song Wei Chen Qingye Jiang Ministry of Education Key Laboratory of Machine Perception, Peking

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Find most influential set S of size k: largest expected cascade size f(s) if set S is activated

More information

Analytically tractable processes on networks

Analytically tractable processes on networks University of California San Diego CERTH, 25 May 2011 Outline Motivation 1 Motivation Networks Random walk and Consensus Epidemic models Spreading processes on networks 2 Networks Motivation Networks Random

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/24/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Info-Cluster Based Regional Influence Analysis in Social Networks

Info-Cluster Based Regional Influence Analysis in Social Networks Info-Cluster Based Regional Influence Analysis in Social Networks Chao Li,2,3, Zhongying Zhao,2,3,JunLuo, and Jianping Fan Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Reducing Computation Time for the Analysis of Large Social Science Datasets

Reducing Computation Time for the Analysis of Large Social Science Datasets Reducing Computation Time for the Analysis of Large Social Science Datasets Douglas G. Bonett Center for Statistical Analysis in the Social Sciences University of California, Santa Cruz Jan 28, 2014 Overview

More information

Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks

Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks Friends or Foes: Detecting Dishonest Recommenders in Online Social Networks Yongkun Li, John C.S. Lui Department of Computer Science & Engineering, The Chinese University of Hong Kong Email: {ykli, cslui}@cse.cuhk.edu.hk

More information

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities Dimitris Fotakis and Paris Siminelakis School of Electrical and Computer Engineering, National

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ

Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ-13-2-0013 FY 2016 - First Quarterly Report January 1, 2016 Submitted

More information

Distributed Systems Gossip Algorithms

Distributed Systems Gossip Algorithms Distributed Systems Gossip Algorithms He Sun School of Informatics University of Edinburgh What is Gossip? Gossip algorithms In a gossip algorithm, each node in the network periodically exchanges information

More information

Mining Triadic Closure Patterns in Social Networks

Mining Triadic Closure Patterns in Social Networks Mining Triadic Closure Patterns in Social Networks Hong Huang, University of Goettingen Jie Tang, Tsinghua University Sen Wu, Stanford University Lu Liu, Northwestern University Xiaoming Fu, University

More information

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond 1 ing Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond Bo Liu, Gao Cong, Yifeng Zeng, Dong Xu,and Yeow Meng Chee Abstract Influence maximization is a fundamental

More information

When Social Influence Meets Item Inference

When Social Influence Meets Item Inference When Social Influence Meets Item Inference Hui-Ju Hung 1, Hong-Han Shuai, De-Nian Yang, Liang-Hao Huang, Wang-Chien Lee 1, Jian Pei 3, Ming-Syan Chen 4 1 The Pennsylvania State University, USA, Academia

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 12/3/2013 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

9. Submodular function optimization

9. Submodular function optimization Submodular function maximization 9-9. Submodular function optimization Submodular function maximization Greedy algorithm for monotone case Influence maximization Greedy algorithm for non-monotone case

More information

WITH the recent advancements of information technologies,

WITH the recent advancements of information technologies, i Distributed Rumor Blocking with Multiple Positive Cascades Guangmo (Amo) Tong, Student Member, IEEE, Weili Wu, Member, IEEE, and Ding-Zhu Du, arxiv:1711.07412 [cs.si] 1 Dec 2017 Abstract Misinformation

More information

Least cost influence propagation in (social) networks

Least cost influence propagation in (social) networks Least cost influence propagation in (social) networks Matteo Fischetti 1, Michael Kahr 2, Markus Leitner 2, Michele Monaci 3 and Mario Ruthmair 2 1 DEI, University of Padua, Italy. matteo.fischetti@unipd.it

More information

Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users?

Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users? Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users? ABSTRACT Yu Yang Simon Fraser University Burnaby, Canada yya119@sfu.ca Jian Pei Simon Fraser University Burnaby,

More information

From Competition to Complementarity: Comparative Influence Diffusion and Maximization

From Competition to Complementarity: Comparative Influence Diffusion and Maximization From Competition to Complementarity: Comparative Influence Diffusion and Maximization ei Lu University of British Columbia Vancouver, B.C., Canada welu@cs.ubc.ca ei Chen Microsoft Research Beijing, China

More information

Ant Colony Optimization: an introduction. Daniel Chivilikhin

Ant Colony Optimization: an introduction. Daniel Chivilikhin Ant Colony Optimization: an introduction Daniel Chivilikhin 03.04.2013 Outline 1. Biological inspiration of ACO 2. Solving NP-hard combinatorial problems 3. The ACO metaheuristic 4. ACO for the Traveling

More information

Jure Leskovec Stanford University

Jure Leskovec Stanford University Jure Leskovec Stanford University 2 Part 1: Models for networks Part 2: Information flows in networks Information spread in social media 3 Information flows through networks Analyzing underlying mechanisms

More information

Multi-Round Influence Maximization

Multi-Round Influence Maximization Multi-Round Influence Maximization Lichao Sun 1, Weiran Huang 2, Philip S. Yu 1,2, Wei Chen 3, 1 University of Illinois at Chicago, 2 Tsinghua University, 3 Microsoft Research lsun29@uic.edu, huang.inbox@outlook.com,

More information

1. REPRESENTATIVE PROBLEMS

1. REPRESENTATIVE PROBLEMS 1. REPRESENTATIVE PROBLEMS stable matching five representative problems Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated

More information

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

Cascading Behavior in Networks: Algorithmic and Economic Issues

Cascading Behavior in Networks: Algorithmic and Economic Issues CHAPTER 24 Cascading Behavior in Networks: Algorithmic and Economic Issues Jon Kleinberg Abstract The flow of information or influence through a large social network can be thought of as unfolding with

More information

Mining Structural Hole Spanners Through Information Diffusion in Social Networks

Mining Structural Hole Spanners Through Information Diffusion in Social Networks Mining Structural Hole Spanners Through Information Diffusion in Social Networks Tiancheng Lou and Jie Tang Google, Inc., Mountain View, CA 9443, US Tsinghua University, Beijing 84, China acrush@google.com,

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Winter Quarter, 2011 http://ee.washington.edu/class/235/2011wtr/index.html

More information

A Bivariate Point Process Model with Application to Social Media User Content Generation

A Bivariate Point Process Model with Application to Social Media User Content Generation 1 / 33 A Bivariate Point Process Model with Application to Social Media User Content Generation Emma Jingfei Zhang ezhang@bus.miami.edu Yongtao Guan yguan@bus.miami.edu Department of Management Science

More information

Memory-Efficient Low Rank Approximation of Massive Graphs

Memory-Efficient Low Rank Approximation of Massive Graphs Fast and Memory-Efficient Low Rank Approximation of Massive Graphs Inderjit S. Dhillon University of Texas at Austin Purdue University Jan 31, 2012 Joint work with Berkant Savas, Donghyuk Shin, Si Si Han

More information

Online Social Networks and Media. Opinion formation on social networks

Online Social Networks and Media. Opinion formation on social networks Online Social Networks and Media Opinion formation on social networks Diffusion of items So far we have assumed that what is being diffused in the network is some discrete item: E.g., a virus, a product,

More information

Using Crowdsourced Data in Location-based Social Networks to Explore Influence Maximization

Using Crowdsourced Data in Location-based Social Networks to Explore Influence Maximization Using Crowdsourced Data in Location-based Social Networks to Explore Influence Maximization Ji Li Zhipeng Cai Department of Computer Science Georgia State University Atlanta, Georgia 33 Email: jli3@student.gsu.edu

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

LEAD FROM THE FRONT MEDIA KIT

LEAD FROM THE FRONT MEDIA KIT LEAD FROM THE FRONT MEDIA KIT TABLE OF CONTENTS ABOUT US TOP 10 MUSIC SITE FASTEST GROWING MOBILE SITE AUDIENCE DATA ONLINE COMMUNITIES MOBILE COMMUNITY CASE STUDY AUDIENCE TARGETING CUSTOM PROGRAMS AD

More information

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Peng Zhang Purdue University zhan1456@purdue.edu Yajun Wang Microsoft yajunw@microsoft.com Wei Chen Microsoft weic@microsoft.com

More information

Modelling self-organizing networks

Modelling self-organizing networks Paweł Department of Mathematics, Ryerson University, Toronto, ON Cargese Fall School on Random Graphs (September 2015) Outline 1 Introduction 2 Spatial Preferred Attachment (SPA) Model 3 Future work Multidisciplinary

More information

Densest subgraph computation and applications in finding events on social media

Densest subgraph computation and applications in finding events on social media Densest subgraph computation and applications in finding events on social media Oana Denisa Balalau advised by Mauro Sozio Télécom ParisTech, Institut Mines Télécom December 4, 2015 1 / 28 Table of Contents

More information

Social Networks with Competing Products

Social Networks with Competing Products Social Networks with Competing Products Krzysztof R. Apt CWI, Amsterdam, the Netherlands and University of Amsterdam Evangelos Markakis Athens University of Economics and Business, Athens, Greece Abstract

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

F o r u m v e n u e :

F o r u m v e n u e : PRN is bringing together business executives, media representatives and marketing professionals to discuss what companies and industry professionals need to understand in order to cope with the challenges

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

1 Maximizing a Submodular Function

1 Maximizing a Submodular Function 6.883 Learning with Combinatorial Structure Notes for Lecture 16 Author: Arpit Agarwal 1 Maximizing a Submodular Function In the last lecture we looked at maximization of a monotone submodular function,

More information

Dominating Set. Chapter 26

Dominating Set. Chapter 26 Chapter 26 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET 294 CHAPTER 26. DOMINATING SET 26.1 Sequential Greedy Algorithm Chapter 26 Dominating Set Intuitively, to end up with a small dominating set S, nodes in S need to cover as many neighbors as possible. It

More information

Influence and Homophily

Influence and Homophily This chapter is from Social Media Mining: An Introduction. By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Cambridge University Press, 2014. Draft version: April 20, 2014. Complete Draft and Slides

More information

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.)

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Which pair of nodes {i,j} should be connected? Variant: node i is given Alice Bob Charlie Friend

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Intro sessions to SNAP C++ and SNAP.PY: SNAP.PY: Friday 9/27, 4:5 5:30pm in Gates B03 SNAP

More information

Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Services

Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Services Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Services Caleb Chen CAO, Jieying SHE, Yongxin TONG, Lei CHEN The Hong Kong University of Science and Technology Is Istanbul the capital

More information

A note on modeling retweet cascades on Twitter

A note on modeling retweet cascades on Twitter A note on modeling retweet cascades on Twitter Ashish Goel 1, Kamesh Munagala 2, Aneesh Sharma 3, and Hongyang Zhang 4 1 Department of Management Science and Engineering, Stanford University, ashishg@stanford.edu

More information

Online Influence Maximization

Online Influence Maximization Online Influence Maximization Siyu Lei University of Hong Kong Pokfulam Road, Hong Kong sylei@cs.hku.hk Reynold Cheng University of Hong Kong Pokfulam Road, Hong Kong ckcheng@cs.hku.hk Silviu Maniu Noah

More information

Profit Maximization for Viral Marketing in Online Social Networks

Profit Maximization for Viral Marketing in Online Social Networks Maximization for Viral Marketing in Online Social Networks Jing TANG Interdisciplinary Graduate School Nanyang Technological University Email: tang0311@ntu.edu.sg Xueyan TANG School of Comp. Sci. & Eng.

More information

INFO 2950 Intro to Data Science. Lecture 18: Power Laws and Big Data

INFO 2950 Intro to Data Science. Lecture 18: Power Laws and Big Data INFO 2950 Intro to Data Science Lecture 18: Power Laws and Big Data Paul Ginsparg Cornell University, Ithaca, NY 7 Apr 2016 1/25 Power Laws in log-log space y = cx k (k=1/2,1,2) log 10 y = k log 10 x +log

More information

MS&E 233 Lecture 9 & 10: Network models

MS&E 233 Lecture 9 & 10: Network models MS&E 233 Lecture 9 & 10: Networ models Ashish Goel, scribed by Riley Matthews April 30, May 2 Review: Application of PR to Netflix movie suggestions Client x: relm 1 ǫ # of users who lied m m: i lies m

More information

Modeling Social Media Memes as a Contagious Process

Modeling Social Media Memes as a Contagious Process Modeling Social Media Memes as a Contagious Process S.Towers 1,, A.Person 2, C.Castillo-Chavez 1 1 Arizona State University, Tempe, AZ, USA 2 Some University, Nowhereville, NE, USA E-mail: smtowers@asu.edu

More information

Online to Offline : Translating Media Usage To Real Life Public

Online to Offline : Translating Media Usage To Real Life Public +Avivah Yamani +Indonesia langitselatan Online to Offline : Translating Media Usage To Real Life Public +Map of Indonesia Google map Indonesia is a tropical country with 17,508 island With a population

More information

Viral Marketing and the Diffusion of Trends on Social Networks

Viral Marketing and the Diffusion of Trends on Social Networks University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 2008 Viral Marketing and the Diffusion of Trends on Social Networks Jennifer Wortman

More information

Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ

Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ Evaluating Physical, Chemical, and Biological Impacts from the Savannah Harbor Expansion Project Cooperative Agreement Number W912HZ-13-2-0013 Annual Report FY 2018 Submitted by Sergio Bernardes and Marguerite

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Anand Narasimhamurthy, Pádraig Cunningham, and Derek Greene School

More information

Social Computing and Its Application in Query Suggestion

Social Computing and Its Application in Query Suggestion Social Computing and Its Application in Query Suggestion Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong

More information

Influence Maximization in Social Networks: An Ising-model-based Approach

Influence Maximization in Social Networks: An Ising-model-based Approach Influence Maximization in Social etworks: An Ising-model-based Approach Shihuan Liu, Lei Ying, and Srinivas Shakkottai Department of Electrical and Computer Engineering, Iowa State University Email: {liush08,

More information

the open-source sky survey David W. Hogg (NYU)

the open-source sky survey David W. Hogg (NYU) the open-source sky survey David W. Hogg (NYU) http://astrometry.net/ non-text searching need to search things that aren t text, with queries that aren t text even image search in Google requires accurate

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information