CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24

Size: px
Start display at page:

Download "CSCI 3210: Computational Game Theory. Cascading Behavior in Networks Ref: [AGT] Ch 24"

Transcription

1 CSCI 3210: Computational Game Theory Cascading Behavior in Networks Ref: [AGT] Ch 24 Mohammad T. Irfan Web: Course Website: Cascading behavior u Analogy: epidemic u Starts with a few sick people u Propagates Alice 2 1

2 Diffusion of innovations u Studied in sociology since 1940s u Examples u Indirect/informational effects u Adoption of new medical or agricultural innovations u Photos/video going viral u Sudden success of new products u Rise of celebrities u Direct-benefit effects u Technology adoption Xbox/PS4, phone, fax, , online social networking apps Viral Facebook posts (2013) 2

3 #TheDress (February 2015) 3

4 Twitter vs Facebook Questions u What is the process by which these happen? u Models u Depart from one-shot game setting u Who are the most influential entities? u Algorithms 8 4

5 Modeling cascades Threshold models Morris' contagion model (2000) u "Networked coordination game" u Game u 2 actions: A (old: Yahoo messenger) and B (new: Google hangout) u Payoffs of two friends v & w in network q, q 1-q, 1-q u Any node v's total payoff is the sum of all payoffs from v's friends 5

6 Contagion model (cont...) u What action will v adopt (A or B)? Degree of v = d d A neighbors choose A d B neighbors choose B # d A # d B v will adopt B if: d B (1-q) >= d A q d B >= q d v adopts B if at least q fraction of her neighbors do so q = threshold of adoption Dynamic process u Initial adopters: A set of nodes adopting B at the start u Time steps 1, 2, 3,... u At each time step u Every node simultaneously updates their behavior in response to the current behaviors of neighbors u 2 versions u Nonpregressive: Nodes may switch between A & B u Progressive: Once switch to B, stay at B 6

7 Complete cascade u Complete cascade: everyone gets "converted" u Initial adopters are called contagious set u Depends on u Initial adopters u Network structure u Threshold q u Contagious threshold: Max q s.t. there is a finite contagious set Examples u Infinite line graph with q = 1/2 u A A A B A A A Vs u A A B B B A A Oscillations Complete cascade with contagious threshold = 1/2 7

8 Complete contagion with q = 1/2 2 main results u Setting: graph has countably infinite nodes, with finite maximum degree 1. Progressive and nonprogressive versions are equivalent w.r.t. a finite contagious set 2. Contagious threshold q cannot be > ½ for any (infinite) graph 8

9 More General Models Linear threshold model General threshold model Cascade model Linear threshold model u Actions of node i, x i is 0 for old behavior A and 1 for new behavior B u Threshold of each node i, b i u Assume: b i is chosen randomly between 0 and 1 j w ji b i i u Influence level from j to i, w ji u Assume: w ji >= 0 and j N (i) w ji 1 u Decision rule u Adopt B iff w ji x j b i j N (i) 18 9

10 General threshold model u The influence on a node is any general function of its neighbors u Assume: this function is (weakly) monotonous u Influence can't decrease as more people adopt B g i (x N (i)) b i? j b i i 19 Dynamics u Starts with the initial adopters of B u Progressive: no switching back to A u Time steps: 1, 2, 3,... (same as before) 10

11 Cascade model u Probabilistic model u Dynamics u For any edge u à v s.t. x u = 1, x v = 0 u u is given one chance to convert v u u's success probability is a function of u, v, and F v u u F v is set of neighbors of v that have already tried and failed Equivalent to the general threshold model! (Kempe et al., 2005) 21 Independent Cascade Model (ICM) u u's success probability is a function of u and v only u Independent of other nodes 11

12 Finding most influential nodes Most influential nodes problem u Posed by Domingos and Richardson [2001] u Kleinberg et al s formulation [2003]: u Input u Graph instance and cascade model u Integer (budget) k >= 1 u Function f(s), giving the expected number of nodes converted by initial adopters S. u We want to u Find a set S of k nodes such that f(s) is maximized 24 12

13 Kleinberg et al s formulation u NP-hard to find the optimal set S u NP-hard to approximate 25 Special case u The function f is submodular u Shows the property of diminishing marginal return u Greedy hill-climbing search gives 0.63 approximation (Nemhauser+, 1978) u Greedily selecting k nodes will lead to 0.63 times the maximum spread u Greedy algorithm: u For iteration 1 to k: u Pick the node that increases f the most f(s) Smalle r set Larger set S 26 13

14 Wish list beyond linear threshold model (LTM) u Non-probabilistic model, instantiated using data u Something is more general u Allows switching back and forth u Allows negative influences (Why is negative influence troublesome in LTM?) u Threshold values not required to be in [0, 1] u A model focused on outcome (LTM focuses on process) u Most influential nodes problem should be w.r.t. a desirable outcome u Must ensure stable outcomes (LTM allows unstable initial adopters) Linear Influence Game (LIG) Model Next 14

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Influence and Social Networks Economics, sociology, political science, etc. all have studied

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Inormation) Network Analysis Jure Leskovec Stanord University Initially some nodes S are active Each edge (a,b) has probability (weight) p ab b 0.4 0.4 0.2 a 0.4 0.2 0.4 g 0.2 Node

More information

Diffusion of Innovation

Diffusion of Innovation Diffusion of Innovation Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network Analysis

More information

Cascading Behavior in Networks: Algorithmic and Economic Issues

Cascading Behavior in Networks: Algorithmic and Economic Issues CHAPTER 24 Cascading Behavior in Networks: Algorithmic and Economic Issues Jon Kleinberg Abstract The flow of information or influence through a large social network can be thought of as unfolding with

More information

Viral Marketing and the Diffusion of Trends on Social Networks

Viral Marketing and the Diffusion of Trends on Social Networks University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 2008 Viral Marketing and the Diffusion of Trends on Social Networks Jennifer Wortman

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/24/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL

MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL Jing (Selena) He Department of Computer Science, Kennesaw State University Shouling Ji,

More information

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network Maximizing the Spread of Influence through a Social Network David Kempe Dept. of Computer Science Cornell University, Ithaca NY kempe@cs.cornell.edu Jon Kleinberg Dept. of Computer Science Cornell University,

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Find most influential set S of size k: largest expected cascade size f(s) if set S is activated

More information

A Note on Maximizing the Spread of Influence in Social Networks

A Note on Maximizing the Spread of Influence in Social Networks A Note on Maximizing the Spread of Influence in Social Networks Eyal Even-Dar 1 and Asaf Shapira 2 1 Google Research, Email: evendar@google.com 2 Microsoft Research, Email: asafico@microsoft.com Abstract.

More information

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks Osman Yağan Department of ECE Carnegie Mellon University Joint work with Y. Zhuang and V. Gligor (CMU) Alex

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Probability Models of Information Exchange on Networks Lecture 6

Probability Models of Information Exchange on Networks Lecture 6 Probability Models of Information Exchange on Networks Lecture 6 UC Berkeley Many Other Models There are many models of information exchange on networks. Q: Which model to chose? My answer good features

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process

Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process Wei Chen Microsoft Research Asia Beijing, China weic@microsoft.com Wei Lu University of British Columbia Vancouver,

More information

On the Submodularity of Influence in Social Networks

On the Submodularity of Influence in Social Networks On the Submodularity of Influence in Social Networks Elchanan Mossel Dept. of Statistics U.C. Berkeley mossel@stat.berkeley.edu Sebastien Roch Dept. of Statistics U.C. Berkeley sroch@stat.berkeley.edu

More information

9. Submodular function optimization

9. Submodular function optimization Submodular function maximization 9-9. Submodular function optimization Submodular function maximization Greedy algorithm for monotone case Influence maximization Greedy algorithm for non-monotone case

More information

CS540 ANSWER SHEET

CS540 ANSWER SHEET CS540 ANSWER SHEET Name Email 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 1 2 Final Examination CS540-1: Introduction to Artificial Intelligence Fall 2016 20 questions, 5 points

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University Announcements: Please fill HW Survey Weekend Office Hours starting this weekend (Hangout only) Proposal: Can use 1 late period CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

More information

6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks

6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks 6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks Daron Acemoglu and Asu Ozdaglar MIT November 4, 2009 1 Introduction Outline The role of networks in cooperation A model of social norms

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Influence Maximization in Dynamic Social Networks

Influence Maximization in Dynamic Social Networks Influence Maximization in Dynamic Social Networks Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang and Xiaoming Sun Department of Computer Science and Technology, Tsinghua University Department of Computer

More information

Efficient Respondents Selection for Biased Survey using Online Social Networks

Efficient Respondents Selection for Biased Survey using Online Social Networks Efficient Respondents Selection for Biased Survey using Online Social Networks Donghyun Kim 1, Jiaofei Zhong 2, Minhyuk Lee 1, Deying Li 3, Alade O. Tokuta 1 1 North Carolina Central University, Durham,

More information

Epidemics and information spreading

Epidemics and information spreading Epidemics and information spreading Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network

More information

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework

Performance Evaluation. Analyzing competitive influence maximization problems with partial information: An approximation algorithmic framework Performance Evaluation ( ) Contents lists available at ScienceDirect Performance Evaluation journal homepage: www.elsevier.com/locate/peva Analyzing competitive influence maximization problems with partial

More information

WITH the recent advancements of information technologies,

WITH the recent advancements of information technologies, i Distributed Rumor Blocking with Multiple Positive Cascades Guangmo (Amo) Tong, Student Member, IEEE, Weili Wu, Member, IEEE, and Ding-Zhu Du, arxiv:1711.07412 [cs.si] 1 Dec 2017 Abstract Misinformation

More information

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities

On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities On the Efficiency of Influence-and-Exploit Strategies for Revenue Maximization under Positive Externalities Dimitris Fotakis and Paris Siminelakis School of Electrical and Computer Engineering, National

More information

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model

Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model Xinran He Guojie Song Wei Chen Qingye Jiang Ministry of Education Key Laboratory of Machine Perception, Peking

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6-8:50PM Thursday Location: AK233 Spring 2018 v Course Project I has been graded. Grading was based on v 1. Project report

More information

Online Social Networks and Media. Opinion formation on social networks

Online Social Networks and Media. Opinion formation on social networks Online Social Networks and Media Opinion formation on social networks Diffusion of items So far we have assumed that what is being diffused in the network is some discrete item: E.g., a virus, a product,

More information

Tractable Models for Information Diffusion in Social Networks

Tractable Models for Information Diffusion in Social Networks Tractable Models for Information Diffusion in Social Networks Masahiro Kimura 1 and Kazumi Saito 2 1 Department of Electronics and Informatics, Ryukoku University Otsu, Shiga 520-2194, Japan 2 NTT Communication

More information

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network Peng Zhang Purdue University zhan1456@purdue.edu Yajun Wang Microsoft yajunw@microsoft.com Wei Chen Microsoft weic@microsoft.com

More information

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions ECS 253 / MAE 253, Lecture 13 May 15, 2018 Diffusion, Cascades and Influence Mathematical models & generating functions Last week: spatial flows and game theory on networks Optimal location of facilities

More information

Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users?

Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users? Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users? ABSTRACT Yu Yang Simon Fraser University Burnaby, Canada yya119@sfu.ca Jian Pei Simon Fraser University Burnaby,

More information

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond

Influence Spreading Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond 1 ing Path and its Application to the Time Constrained Social Influence Maximization Problem and Beyond Bo Liu, Gao Cong, Yifeng Zeng, Dong Xu,and Yeow Meng Chee Abstract Influence maximization is a fundamental

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6:00pm 8:50pm Mon. and Wed. Location: SL105 Spring 2016 Reading assignments We will increase the bar a little bit Please

More information

Profit Maximization for Viral Marketing in Online Social Networks

Profit Maximization for Viral Marketing in Online Social Networks Maximization for Viral Marketing in Online Social Networks Jing TANG Interdisciplinary Graduate School Nanyang Technological University Email: tang0311@ntu.edu.sg Xueyan TANG School of Comp. Sci. & Eng.

More information

Diffusion of Innovations in Social Networks

Diffusion of Innovations in Social Networks Daron Acemoglu Massachusetts Institute of Technology, Department of Economics, Cambridge, MA, 02139, daron@mit.edu Diffusion of Innovations in Social Networks Asuman Ozdaglar Massachusetts Institute of

More information

Cellular Automata Models for Diffusion of Innovations

Cellular Automata Models for Diffusion of Innovations arxiv:adap-org/9742v 8 Apr 997 Cellular Automata Models for Diffusion of Innovations Henryk Fukś Nino Boccara,2 February 3, 28 Department of Physics, University of Illinois, Chicago, IL 667-759, USA 2

More information

Social Networks. Chapter 9

Social Networks. Chapter 9 Chapter 9 Social Networks Distributed computing is applicable in various contexts. This lecture exemplarily studies one of these contexts, social networks, an area of study whose origins date back a century.

More information

ECS 289 / MAE 298, Lecture 16 May 22, Diffusion, Cascades and Influence, Part II

ECS 289 / MAE 298, Lecture 16 May 22, Diffusion, Cascades and Influence, Part II ECS 289 / MAE 298, Lecture 16 May 22, 2014 Diffusion, Cascades and Influence, Part II Announcements Homeworks HW3 and HW3b now due Tues May 27 HW3a (project progress report) due Fri May 30 NetSci 2014

More information

Info-Cluster Based Regional Influence Analysis in Social Networks

Info-Cluster Based Regional Influence Analysis in Social Networks Info-Cluster Based Regional Influence Analysis in Social Networks Chao Li,2,3, Zhongying Zhao,2,3,JunLuo, and Jianping Fan Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen

More information

Multi-Stage Complex Contagions in Random Multiplex Networks

Multi-Stage Complex Contagions in Random Multiplex Networks Multi-Stage Complex Contagions in Random Multiplex Networks Yong Zhuang and Osman Yağan Department of ECE, Carnegie Mellon University, Pittsburgh, PA 523, USA (Dated: July 4, 28) In this work, we aim to

More information

Influence Diffusion Dynamics and Influence Maximization in Social Networks with Friend and Foe Relationships

Influence Diffusion Dynamics and Influence Maximization in Social Networks with Friend and Foe Relationships Influence Diffusion Dynamics and Influence Maximization in Social Networks with Friend and Foe Relationships Yanhua Li, Wei Chen, Yajun Wang and hi-li hang Dept. of Computer Science & Engineering, Univ.

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

Jure Leskovec Stanford University

Jure Leskovec Stanford University Jure Leskovec Stanford University 2 Part 1: Models for networks Part 2: Information flows in networks Information spread in social media 3 Information flows through networks Analyzing underlying mechanisms

More information

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization

Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Daniel Golovin California Institute of Technology Pasadena, CA 91125 dgolovin@caltech.edu Andreas Krause California

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 24: Introduction to Submodular Functions Instructor: Shaddin Dughmi Announcements Introduction We saw how matroids form a class of feasible

More information

Learning to Predict Opinion Share in Social Networks

Learning to Predict Opinion Share in Social Networks Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence AAAI-10 Learning to Predict Opinion Share in Social Networks Masahiro Kimura Department of Electronics and Informatics Ryukoku

More information

Least cost influence propagation in (social) networks

Least cost influence propagation in (social) networks Least cost influence propagation in (social) networks Matteo Fischetti 1, Michael Kahr 2, Markus Leitner 2, Michele Monaci 3 and Mario Ruthmair 2 1 DEI, University of Padua, Italy. matteo.fischetti@unipd.it

More information

Computing Competing Cascades on Signed Networks

Computing Competing Cascades on Signed Networks Noname manuscript No. (will be inserted by the editor Computing Competing Cascades on Signed Networks Ajitesh Srivastava Charalampos Chelmis Viktor K. Prasanna Received: date / Accepted: date Abstract

More information

A Game-theoretic Analysis of a Competitive Diffusion Process over Social Networks

A Game-theoretic Analysis of a Competitive Diffusion Process over Social Networks A Game-theoretic Analysis of a Competitive Diffusion Process over Social Networks Vasileios Tzoumas Christos Amanatidis Evangelos Markakis Abstract We study a game-theoretic model for the diffusion of

More information

Explaining Snapshots of Network Diffusions: Structural and Hardness Results

Explaining Snapshots of Network Diffusions: Structural and Hardness Results Explaining Snapshots of Network Diffusions: Structural and Hardness Results Georgios Askalidis, Randall A. Berry and Vijay G. Subramanian Northwestern University arxiv:1402.6273v1 [cs.si] 25 Feb 2014 Abstract

More information

Submodularity of Infuence in Social. Networks: From Local to Global

Submodularity of Infuence in Social. Networks: From Local to Global Submodularity of Infuence in Social Networks: From Local to Global arxiv:math/0612046v2 [math.pr] 28 Jul 2009 Elchanan Mossel and Sebastien Roch July 28, 2009 Abstract Social networks are often represented

More information

Multi-Round Influence Maximization

Multi-Round Influence Maximization Multi-Round Influence Maximization Lichao Sun 1, Weiran Huang 2, Philip S. Yu 1,2, Wei Chen 3, 1 University of Illinois at Chicago, 2 Tsinghua University, 3 Microsoft Research lsun29@uic.edu, huang.inbox@outlook.com,

More information

Influence Maximization in Social Networks: An Ising-model-based Approach

Influence Maximization in Social Networks: An Ising-model-based Approach Influence Maximization in Social etworks: An Ising-model-based Approach Shihuan Liu, Lei Ying, and Srinivas Shakkottai Department of Electrical and Computer Engineering, Iowa State University Email: {liush08,

More information

OLAK: An Efficient Algorithm to Prevent Unraveling in Social Networks. Fan Zhang 1, Wenjie Zhang 2, Ying Zhang 1, Lu Qin 1, Xuemin Lin 2

OLAK: An Efficient Algorithm to Prevent Unraveling in Social Networks. Fan Zhang 1, Wenjie Zhang 2, Ying Zhang 1, Lu Qin 1, Xuemin Lin 2 OLAK: An Efficient Algorithm to Prevent Unraveling in Social Networks Fan Zhang 1, Wenjie Zhang 2, Ying Zhang 1, Lu Qin 1, Xuemin Lin 2 1 University of Technology Sydney, Computer 2 University Science

More information

Monitoring Stealthy Diffusion

Monitoring Stealthy Diffusion Monitoring Stealthy Diffusion Nika Haghtalab, Aron Laszka, Ariel D. Procaccia, Yevgeniy Vorobeychik and Xenofon Koutsoukos Carnegie Mellon University {nhaghtal,arielpro}@cs.cmu.edu Vanderbilt University

More information

CSI 445/660 Part 3 (Networks and their Surrounding Contexts)

CSI 445/660 Part 3 (Networks and their Surrounding Contexts) CSI 445/660 Part 3 (Networks and their Surrounding Contexts) Ref: Chapter 4 of [Easley & Kleinberg]. 3 1 / 33 External Factors ffecting Network Evolution Homophily: basic principle: We tend to be similar

More information

On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks

On the Linear Threshold Model for Diffusion of Innovations in Multiplex Social Networks On the Linear Threshold Model for Diffusion of Innoations in Multiplex Social Networks Yaofeng Desmond Zhong 1, Vaibha Sriastaa 2 and Naomi Ehrich Leonard 1 Abstract Diffusion of innoations in social networks

More information

A Fast Approximation for Influence Maximization in Large Social Networks

A Fast Approximation for Influence Maximization in Large Social Networks A Fast Approximation for Influence Maximization in Large Social Networks ABSTRACT Jong-Ryul Lee Dept. of Computer Science, KAIST 29 Daehak-ro, Yuseong-gu, Daejeon, Korea jrlee@islab.kaist.ac.kr This paper

More information

Computational Complexity

Computational Complexity Computational Complexity Ref: Algorithm Design (Ch 8) on Blackboard Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Famous complexity classes u NP (non-deterministic polynomial

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Spreading and Influence on social networks Computational Social Science D-GESS

More information

From Competition to Complementarity: Comparative Influence Diffusion and Maximization

From Competition to Complementarity: Comparative Influence Diffusion and Maximization From Competition to Complementarity: Comparative Influence Diffusion and Maximization ei Lu University of British Columbia Vancouver, B.C., Canada welu@cs.ubc.ca ei Chen Microsoft Research Beijing, China

More information

On Multiset Selection with Size Constraints

On Multiset Selection with Size Constraints On Multiset Selection with Size Constraints Chao Qian, Yibo Zhang, Ke Tang 2, Xin Yao 2 Anhui Province Key Lab of Big Data Analysis and Application, School of Computer Science and Technology, University

More information

Diffusion of information and social contagion

Diffusion of information and social contagion Diffusion of information and social contagion Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

arxiv: v4 [cs.si] 21 May 2017

arxiv: v4 [cs.si] 21 May 2017 Submitted to manuscript 2017 No Time to Observe: Adaptive Influence Maximization with Partial Feedback Jing Yuan Shaojie Tang The University of Texas at Dallas arxiv:1609.00427v4 [cs.si] 21 May 2017 Although

More information

Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate

Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate Microsoft Research Technical Report MSR-TR-2010-137 October 2010 Wei Chen Alex Collins Rachel Cummings Te Ke Zhenming

More information

CONTAINMENT OF MISINFORMATION PROPAGATION IN ONLINE SOCIAL NETWORKS WITH GIVEN DEADLINE

CONTAINMENT OF MISINFORMATION PROPAGATION IN ONLINE SOCIAL NETWORKS WITH GIVEN DEADLINE Association for Information Systems AIS Electronic Library (AISeL) PACIS 2014 Proceedings Pacific Asia Conference on Information Systems (PACIS) 2014 CONTAINMENT OF MISINFORMATION PROPAGATION IN ONLINE

More information

Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences

Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences Minimum-sized Positive Influential Node Set Selection for Social Networks: Considering Both Positive and Negative Influences Jing (Selena) He, Shouling Ji, Xiaojing Liao, Hisham M. Haddad, Raheem Beyah

More information

Personalized Social Recommendations Accurate or Private

Personalized Social Recommendations Accurate or Private Personalized Social Recommendations Accurate or Private Presented by: Lurye Jenny Paper by: Ashwin Machanavajjhala, Aleksandra Korolova, Atish Das Sarma Outline Introduction Motivation The model General

More information

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context

Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Viewing the minimum dominating set and maximum coverage problems motivated by word of mouth marketing in a problem decomposition context Anand Narasimhamurthy, Pádraig Cunningham, and Derek Greene School

More information

Finding central nodes in large networks

Finding central nodes in large networks Finding central nodes in large networks Nelly Litvak University of Twente Eindhoven University of Technology, The Netherlands Woudschoten Conference 2017 Complex networks Networks: Internet, WWW, social

More information

In Search of Influential Event Organizers in Online Social Networks

In Search of Influential Event Organizers in Online Social Networks In Search of Influential Event Organizers in Online Social Networks ABSTRACT Kaiyu Feng 1,2 Gao Cong 2 Sourav S. Bhowmick 2 Shuai Ma 3 1 LILY, Interdisciplinary Graduate School. Nanyang Technological University,

More information

Time sensitive influence maximization in social networks

Time sensitive influence maximization in social networks Time sensitive influence maximization in social networks Mohammadi, A, Saraee, MH and Mirzaei, A http://dx.doi.org/10.1177/0165551515602808 Title Authors Type URL Time sensitive influence maximization

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

General Threshold Model for Social Cascades: Analysis and Simulations

General Threshold Model for Social Cascades: Analysis and Simulations General Threshold Model for Social Cascades: Analysis and Simulations Jie Gao, Golnaz Ghasemiesfeh, Stony Brook University Grant Schoenebeck, Fang-Yi Yu, University of Michigan Social behaviors and choices

More information

Time Constrained Influence Maximization in Social Networks

Time Constrained Influence Maximization in Social Networks Time Constrained Influence Maximization in Social Networks Bo Liu Facebook Menlo Park, CA, USA bol@fb.com Gao Cong, Dong Xu School of Computer Engineering Nanyang Technological University, Singapore {gaocong,

More information

Inhibiting the Diffusion of Contagions in Bi-Threshold Systems: Analytical and Experimental Results

Inhibiting the Diffusion of Contagions in Bi-Threshold Systems: Analytical and Experimental Results Inhibiting the Diffusion of Contagions in Bi-Threshold Systems: Analytical and Experimental Results Chris J. Kuhlman, V. S. Anil Kumar, Madhav Marathe, Samarth Swarup, Gaurav Tuli Virginia Bioinformatics

More information

Influence Maximization with Viral Product Design

Influence Maximization with Viral Product Design Influence Maximization with Viral Product Design Abstract Product design and viral marketing are two popular concepts in the marketing literature that, although following different paths, aim at the same

More information

Social Networks with Competing Products

Social Networks with Competing Products Social Networks with Competing Products Krzysztof R. Apt CWI, Amsterdam, the Netherlands and University of Amsterdam Evangelos Markakis Athens University of Economics and Business, Athens, Greece Abstract

More information

Measuring Social Influence Without Bias

Measuring Social Influence Without Bias Measuring Social Influence Without Bias Annie Franco Bobbie NJ Macdonald December 9, 2015 The Problem CS224W: Final Paper How well can statistical models disentangle the effects of social influence from

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 13 Submodularity (cont d) CS 101.2 Andreas Krause Announcements Homework 2: Due Thursday Feb 19 Project milestone due: Feb 24 4 Pages, NIPS format:

More information

KINETICS OF SOCIAL CONTAGION. János Kertész Central European University. SNU, June

KINETICS OF SOCIAL CONTAGION. János Kertész Central European University. SNU, June KINETICS OF SOCIAL CONTAGION János Kertész Central European University SNU, June 1 2016 Theory: Zhongyuan Ruan, Gerardo Iniguez, Marton Karsai, JK: Kinetics of social contagion Phys. Rev. Lett. 115, 218702

More information

Modeling Social Media Memes as a Contagious Process

Modeling Social Media Memes as a Contagious Process Modeling Social Media Memes as a Contagious Process S.Towers 1,, A.Person 2, C.Castillo-Chavez 1 1 Arizona State University, Tempe, AZ, USA 2 Some University, Nowhereville, NE, USA E-mail: smtowers@asu.edu

More information

On Threshold Models over Finite Networks

On Threshold Models over Finite Networks On Threshold Models over Finite Networks Elie M. Adam, Munther A. Dahleh, Asuman Ozdaglar Abstract We study a model for cascade effects over finite networks based on a deterministic binary linear threshold

More information

Influence Maximization in Continuous Time Diffusion Networks

Influence Maximization in Continuous Time Diffusion Networks Manuel Gomez-Rodriguez 1,2 Bernhard Schölkopf 1 1 MPI for Intelligent Systems and 2 Stanford University MANUELGR@STANFORD.EDU BS@TUEBINGEN.MPG.DE Abstract The problem of finding the optimal set of source

More information

Approximability of Adaptive Seeding under Knapsack Constraints

Approximability of Adaptive Seeding under Knapsack Constraints Approximability of Adaptive Seeding under Knapsack Constraints Aviad Rubinstein UC Berkeley aviad@cs.berkeley.edu Lior Seeman Cornell Univeristy lseeman@cs.cornell.edu May 6, 2015 Yaron Singer Harvard

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE

Cost and Preference in Recommender Systems Junhua Chen LESS IS MORE Cost and Preference in Recommender Systems Junhua Chen, Big Data Research Center, UESTC Email:junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming Abstract In many recommender systems (RS), user

More information

Models of Communication Dynamics for Simulation of Information Diffusion

Models of Communication Dynamics for Simulation of Information Diffusion Models of Communication Dynamics for Simulation of Information Diffusion Konstantin Mertsalov, Malik Magdon-Ismail, Mark Goldberg Rensselaer Polytechnic Institute Department of Computer Science 11 8th

More information

1 Equilibrium Comparisons

1 Equilibrium Comparisons CS/SS 241a Assignment 3 Guru: Jason Marden Assigned: 1/31/08 Due: 2/14/08 2:30pm We encourage you to discuss these problems with others, but you need to write up the actual homework alone. At the top of

More information

WITH the popularity of online social networks, viral. Boosting Information Spread: An Algorithmic Approach. arxiv: v3 [cs.

WITH the popularity of online social networks, viral. Boosting Information Spread: An Algorithmic Approach. arxiv: v3 [cs. 1 Boosting Information Spread: An Algorithmic Approach Yishi Lin, Wei Chen Member, IEEE, John C.S. Lui Fellow, IEEE arxiv:1602.03111v3 [cs.si] 26 Jun 2017 Abstract The majority of influence maximization

More information

Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate

Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate Wei Chen Alex Collins Rachel Cummings Te Ke Zhenming Liu David Rincon Xiaorui Sun Yajun Wang Wei Wei Yifei Yuan

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information