Pebble Bed Heat Transfer Particle-to-Fluid Heat Convection

Size: px
Start display at page:

Download "Pebble Bed Heat Transfer Particle-to-Fluid Heat Convection"

Transcription

1 Pebble Bed Heat Transfer Particle-to-Fluid Heat Convection Raluca Scarlat Thermal Hydraulics Laboratory Department of Nuclear Engineering University of California, Berkeley Group Meeting 26 February 2009 Jaeger Tripaks

2 Outline 1. Porous Media 2. Pressure Drop and Flow Regimes in Packed Beds 3. Heat Transfer in Packed Beds 4. Planned Experimental Set-up 5. Deep-Burn TRU Fuel Modeling

3 Motivation Why we care: PB-AHTR, LIFE, and Deep Burn o core thermal-hydraulic analysis, and o fuel thermo-mechanical modeling Why others care: Solids Drying Bubbles: liquid-liquid or liquid-gas Solids dissolving Catalytic Reactions Coal combustion etc

4 Definitions: Sphere Packing RHOMBOHEDRAL SC BCC FCC PB-AHTR Packing: random 60% packing fraction

5 Definitions: Porous Bed Parameters

6 Momentum Equation: ΔP Correlation Ergun correlation: Other variants:

7 Momentum Equation: Flow Regimes Darcy Flow: Re<1 Local pore geometry effects only Wall channeling: u wall /u bulk 2, 1-2 d from the wall Entrance region: 3d; Developed region: periodic velocity profile Inertial flow: 1-10 < R < 150 Lower Re: more pronounced boundary layer in the pore Developing boundary layer in the pore (higher ΔP in entrance region): ΔP dependent on lateral & longitudinal pore dimensions Wider pores: more significant inertial effect Unsteady laminar flow: 150 < R < 300 Oscillations: frequency a few Hz, amplitude d/10 Possible oscillation cause: laminar wake instability Turbulent/unsteady chaotic flow: Re > 300 Turbulent mixing in the pores SC: vortex shedding observed. Rhombohedral: no vortex shedding observed. Forced circulation Natural circulation Re 1, u D u p = u D /ε u p = u D τ/ε

8 Energy Equation: Nu Correlation Wakao et al 1982» Nusselt number:» Prandtl number:» Reynolds number: By analogy w/ mass transfer:» Schmidt number:» Sherwood number:

9 Energy Equation: Nu Correlation Packed Beds Wakao et al 1982» Nusselt number:» Prandtl number:» Reynolds number: By analogy w/ mass transfer:» Schmidt number:» Sherwood number: Forced circulation Natural circulation Re 1, u D u p = u D /ε u p = u D τ/ε Inlet Pr Nu kf h 17,127 2,554 Outlet Pr Nu kf h 15,092 2,267

10 Energy Equation: Nu Correlation Packed Beds (Wakao et al.)

11 Literature Review by Wakao and Kaguei 1982 Packed Beds The sizes of the bubbles schematically represent the size of the parameter space (Pr or Sc x Re) covered by literature data. No data: Pr = 1 to 120 Little data & high uncertainty: Re < 50

12 Packed Beds Energy Equation: More Nu Correlations Disperse suspensions [1] Wakao et al, 1982 (data: 0.7< Pr < 1, 15 < Re < ) [6] [2] Ahmad and Yavanovich, 1994 [3] Wilson and Jacobs, 1993 (numerical model) [7] Single Particle [4] [5] Vliet and Leppert, 1961 (single sphere in water)

13 Energy Equation: More Nu Correlations Re = 66 Re = Forced circulation Natural circulation Re 1, u D u p = u D /ε u p = u D τ/ε Pr = 13 Pr = 20.9 Inlet Pr Nu kf h 17,127 2,554 Solid = packed bed, Dashed = disperse/fluidized, Dotted = Single Sphere Outlet Pr Nu kf h 15,092 2,267

14 Experimental Set-Ups Transient: Frequency response» Heat inlet gas with mesh, measure gas temp at inlet and outlet and calculate transfer function from the Fourier spectra [Littman et al] Shot response» Heat inlet gas in empty column, measure outlet gas temp at inlet and outlet and calculate transfer function from the response [Shen et al] Step change: Steady-State:» drop cold particles in a hot stream, measure gas outlet temperature as a function of time [Wamsley and Johanson] Water evaporation:» Fluidized bed of water-imbibed particles in hot gas, measure amount of water vapor [Ketterig et al]» Evaporation from droplets Fluidized bed of coal in air, measure bed (thermo-couple) and gas (suction thermocouple) temperatures [Walton et al] Induction heating

15 Experimental Set-Up that We re Considering Transient, Step Change

16 Experimental Set-Up that We re Considering Transient, Step Change Scaling Geometric scaling coefficient: ξ. Subscript m = model. Momentum and Energy Equation Similarity: Quasi Steady State: St m = Strouhal n. = Lumped capacity model for the sphere: Key assumptions High pebble conductivity => lumped capacity model (no conduction in the sphere) High pebble heat capacity relative to fluid => quasi-steady state heat flow from the spheres Forced Natural circulation circulation Re 1, u D u p = u D /ε u p = u D τ/ε Inlet Pr Nu kf h 17,127 2,554 Outlet Pr Nu kf h 15,092 2,267 Scaling St m Bi m T m (Pr=Pr m ) 57 oc 85 oc ΔT f /ΔT o 3.0% 10% ΔTs/ΔT o 2.4% 9.0% Subscript m = model.

17 Experimental Set-Up that We re Considering Transient, Step Change Scaling Momentum and Energy Equation Similarity: Quasi Steady State: Lumped capacity model for the sphere: Challenges Compared to the gas experiments, the oil has a high volumetric heat capacity => Harder to have quasisteady state at low Reynolds Compared to the low Pr experiments, we have a higher Nu and h => Harder to disregard conduction in the spheres at high Reynolds Forced Natural circulation circulation Re 1, u D u p = u D /ε u p = u D τ/ε Inlet Pr Nu kf h 17,127 2,554 Outlet Pr Nu kf h 15,092 2,267 Scaling St m Bi m T m (Pr=Pr m ) 57 oc 85 oc ΔT f /ΔT o 3.0% 10% ΔTs/ΔT o 2.4% 9.0% Subscript m = model.

18 Summary We need to characterize overall heat transfer coefficients in pebble beds, for 10 < Pr < 30 Should we characterize local heat transfer coefficients for pebble beds, to be able to couple with Deep Burn? The Fuel Thermo-Mechanical model will be highly flexible possibly use for PB-AHTR, LIFE?

19 Presentation Comments 1. Add hexagonal packing 2. Hydraulic conductivity in RELAP: permeability and hydraulic diameter 3. Mills Heat Transfer book: HTU 4. Periodically developed flow: Graetz number 5. Hollow spheres: blown glass, dimples 6. Natural circulation in a packed bed: what sets of experiments does it makes sense to design? 7. Options for heating pebbles: larger heated pebble; check Grashoff number (may not have to match it if buoyancy effects are insignificant see Archimedes number). PBMR test facility uses square array See s from Ronen

20 References [1] Principles of Convective Heat Transfer, Kaviany Ch 5: Solid-Fluid Systems with Large Specific Interfacial Area [2] Principles of Heat Transfer in Porous Media, Kaviany Ch 7: Two-Medium Treatment [3] Heat and Mass Transfer in Packed Beds, Wakao and Kaguei Ch 2: Fluid Dispersion Coefficients Ch 6: Thermal Response Measurements Ch 4: Particle-to-Fluid mass transfer coefficients Ch 8: Particle-to-Fluid heat transfer coefficients [4] Heat Transfer Handbook, Bejan and Kraus 2003 Ch 19: External Convection to Spheres [5] Handbook of Heat Transfer, Rohsenow, Warren, Cho 1998 Ch 9: Heat Transfer in Porous Media Ch 13: Heat Transfer in Packed and Fluidized Beds

21 DB OVERVIEW Deep Burn Fuel Cycle Analysis Core and Fuel Analysis Spent Fuel Management Fuel Cycle Integration Fuel Development TRU Fuel Modeling TRU Fuel Qualification HTR Fuel Recycle DEEP BURN PROJECT OBJECTIVES Provide cost-effective recycle options for LWR spent fuel that will utilize minimal reprocessing and also rapidly and significantly reduce spent fuel TRU stockpiles (particularly the weaponsusable fraction). Ensure that the HTR will consistently be embraced as an important part of any large nuclear growth global scenarios (both for oncethrough and recycle options). PARTICIPANTS Universities:, UN Las Vegas, Texas A&M, Georgia Tech, Penn State, Idaho State, University of Wisconsin, University of Tennessee National Laboratories: Idaho, Oakridge, Los Alamos, Argonne, LOGOS Private Entities: General Atomics, Graftech, Studsvik Multi-Scale Thermo- Mechanical Analysis TRU FUEL MODELING Multi-Scale Neutronic Analysis TRISO Fuel Performance Model

22 Uranium TRU= kg /yr Deep Burn Fuel Cycle Deep Burn Recycle Deep Burn Power Reactor LWR Spent Fuel Recycle Fission Product Ultimate Disposal Fuel particles, fuel compacts, fuel blocks UREX FP FP = 800 kg/yr for 0.6 GW Transuranics DB-TRISO FAB

23 Advanced Nuclear Reactors PBMR (Exelon/PBMR) Pebble Bed Modular Reactor Fuel Compact: Sphere Coolant: He, 800 o C MHR (General Atomics) Modular Helium Reactor Fuel Compact: Cylinder in prismatic graphite block Coolant: He, 900 o C PB-AHTR () Pebble Bed Advanced High Temperature Reactor Fuel Compact: Sphere Coolant: FLiBe (BeF-LiF), 700 o C

24 Nuclear Fuel: TRISO Micro-Particles <1000 m Bullets Fuel Kernel ( m in diameter) Example composition: PuO 1.7 (85 mol %), Am 2 O 3 (9 mol %), Np oxide (5 mol%), and Cm 2 O 3 (1 mol %) Buffer layer (porous carbon <1000 layer, m 50% TD, 100 m) Attenuates fission recoils Provides void volume for fission gases and kernel swelling Inner Pyrocarbon (IPyC, 82-90% TD, 35 m) Retains gaseous fission products Provides structural support for SiC Shrinks during irradiation, holding SiC in compression Silicon Carbide (SiC, ~ 100% TD, 35 m) Primary load-bearing layer Retains gas and metal fission products (except Ag) Outer Pyrocarbon (OPyC, 82-90% TD, 40 m) Provides structural support for SiC Fission product barrier in particles with defective SiC Prevents SiC damage during fuel element fabrication o Particles retain the fission products: advantageous for proliferation-resistance, and ultimate-disposal of spent fuel. o 10,000 particles in a graphite matrix form a fuel compact (cm-sized cylinder or sphere): reduced energy and materials inputs for fuel fabrication vs. conventional LWR.

25 Thermo-Mechanical Model Fuel Scale Thermo- Mechanical Model A. Pebble Fuel B. Prismatic Fuel (MHR) 1. Temperature-dependent TRISO properties, for a given temperature and irradiation history 2. Power profile in the fuel element, at a given location in the core (from neutronic model) 3. Thermal boundary conditions (from full core thermal hydraulic model). Constraints Peak stress Peak temperature Thermal gradient across TRISO Objective Maximum power per TRISO 1. Steady-state and transient temperature profile. 2. Induced Material Stresses TRISO Scale Models * Thermo-Mechanical * Fuel Performance Multi-Scale Neutronic Analysis

26 Thermo-Mechanical Model Micro-Scale: A packed sphere array with an initial set of boundary conditions will be used to compute the temperature and burn-up dependent effective thermo-mechanical properties. These results will feed into the model at the fuel element scale. Fuel Element Scale: A homogeneous fuel element model (pebble, or cylindrical fuel compact) will be used to calculate the thermal profile, and the thermal stresses. These results will feed back into the boundary conditions for the micro-scale model. Full Core Temperature Profile: A full core temperature profile is needed as an input for neutronic analysis, and it will be generated based onthe results of the fuel element model.

27 Modeling Tools COMSOL

28 Modeling Tools COMSOL

29 Modeling Tools COMSOL

30 Modeling Tools COMSOL

31 Deep Burn Work in Progress Import segments of SolidWorks model in COMSOL/Ansys Ansys vs. COMSOL Compiling temperature and Burn-up dependent material properties Identify best method to couple the multi-scale models: material property homogenization

A Specialized Thermal-hydraulic Code with Porous Media Model and SIMPLEC Algorithm for PB-FHRs

A Specialized Thermal-hydraulic Code with Porous Media Model and SIMPLEC Algorithm for PB-FHRs A Specialized Thermal-hydraulic Code with Porous Media Model and SIMPLEC Algorithm for PB-FHRs Yanzhi E, Yang Zou, and Hongjie Xu Shanghai Institute of Applied Physics, Chinese Academy of Sciences Jialuo

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

22.06 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS

22.06 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS 22.6 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS Short Questions (1% each) a) The specific power in a UO 2 pellet of a certain LWR is q"'=2 W/cm 3. The fuel 235 U enrichment is 4 % by weight.

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

United States Nuclear Regulatory Commission US-NRC, USA

United States Nuclear Regulatory Commission US-NRC, USA TRISO-coated particle fuel phenomenon identification and ranking tables (PIRTS) for fission product transport due to manufacturing, operations and accidents S.D. Rubin United States Nuclear Regulatory

More information

Two-temperature method for heat transfer process in a pebble fuel

Two-temperature method for heat transfer process in a pebble fuel Two-temperature method for heat transfer process in a pebble fuel YU Dali 1, and PENG Minjun 2 1. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University,

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR GP Greyvenstein and HJ van Antwerpen Energy Systems Research North-West University, Private

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

VHTR Thermal Fluids: Issues and Phenomena

VHTR Thermal Fluids: Issues and Phenomena VHTR Thermal Fluids: Issues and Phenomena www.inl.gov Technical workshop at PHYSOR 2012: Advanced Reactor Concepts April 15, 2012 Knoxville, TN Gerhard Strydom Idaho National Laboratory (INL) Overview

More information

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer Diffusion 051333 Unit operation in gro-industry III Department of Biotechnology, Faculty of gro-industry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of

More information

Coolant Flow and Heat Transfer in PBMR Core With CFD

Coolant Flow and Heat Transfer in PBMR Core With CFD Heikki Suikkanen GEN4FIN 3.10.2008 1/ 27 Coolant Flow and Heat Transfer in PBMR Core With CFD Heikki Suikkanen Lappeenranta University of Technology Department of Energy and Environmental Technology GEN4FIN

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels

Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels Jian Yang Min Zeng Qiuwang Wang 1 e-mail: wangqw@mail.xjtu.edu.cn State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi an Jiaotong University, Xi an,

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Fluid Flow, Heat Transfer and Boiling in Micro-Channels L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in Micro-Channels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of

More information

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Prepared By: Kwangwon Ahn Prepared For: 22.314 Prepared On: December 7 th, 2006 Comparison of Silicon Carbide and Zircaloy4 Cladding during

More information

Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation

Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation Journal of Physics: Conference Series PAPER OPEN ACCESS Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation To cite this article: I Husnayani

More information

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION.

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. Pablo León, José Martínez-Val, Alberto Abánades and David Saphier. Universidad Politécnica de Madrid, Spain. C/ J. Gutierrez Abascal Nº2, 28006

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

Tritium Management in FHRs

Tritium Management in FHRs Tritium Management in FHRs Ongoing and Planned Activities in Integrated Research Project Led by Georgia Tech Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Experiments,

More information

Modelling interfacial heat transfer in a 2-phase flow in a packed bed

Modelling interfacial heat transfer in a 2-phase flow in a packed bed Modelling interfacial heat transfer in a 2-phase flow in a paced bed Dariusz ASENDRYCH, Paweł NIEGODAJEW Institute of Thermal Machinery Częstochowa University of Technology, Poland 1 Outline Motivation

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

More information

Effect of Fuel Particles Size Variations on Multiplication Factor in Pebble-Bed Nuclear Reactor

Effect of Fuel Particles Size Variations on Multiplication Factor in Pebble-Bed Nuclear Reactor International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 Effect of Fuel Particles Size Variations on Multiplication Factor in Pebble-Bed Nuclear Reactor Luka Snoj,

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres

COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres COMSOL Multiphysics Simulation of 3D Single- hase Transport in a Random Packed Bed of Spheres A G. Dixon *1 1 Department of Chemical Engineering, Worcester Polytechnic Institute Worcester, MA, USA *Corresponding

More information

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers Advanced Computational Methods and Experiments in Heat Transfer XIII 133 A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers F. Yang, K. Mohrlok, U.

More information

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder 326 Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder Qiusheng LIU, Katsuya FUKUDA and Zheng ZHANG Forced convection transient

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission CFD4NRS2010 A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields G Zigh and J Solis U.S. Nuclear Regulatory Commission Abstract JA Fort Pacific Northwest National

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

FORCED CONVECTION AND EFFECTIVE TRANSPORT PROPERTIES IN PACKED BEDS

FORCED CONVECTION AND EFFECTIVE TRANSPORT PROPERTIES IN PACKED BEDS Proceedings 24* NZ Geothermal Workshop 2002 FORCED CONVECTION AND EFFECTIVE TRANSPORT PROPERTIES IN PACKED BEDS A.V. GORINE, R.A. V.A. Geothermal Institute, University of Auckland, New Zealand of Thermophysics

More information

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy.

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy. THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM Alberto Peña 1, Fernando Legarda 1, Harmut Wider 2, Johan Karlsson 2 1 University of the Basque Country Nuclear Engineering and

More information

G. K. Miller D. A. Petti J. T. Maki. April 22-24, HTR 2002 Conference

G. K. Miller D. A. Petti J. T. Maki. April 22-24, HTR 2002 Conference INEEL/CON-01-01553 PREPRINT Development Of An Integrated Performance Model For Triso-Coated Gas Reactor Particle Fuel G. K. Miller D. A. Petti J. T. Maki April 22-24, 2002 HTR 2002 Conference This is a

More information

MODULE 3: MASS TRANSFER COEFFICIENTS

MODULE 3: MASS TRANSFER COEFFICIENTS MODULE 3: MASS TRANSFER COEFFICIENTS LECTURE NO. 4 3.4.3 Correlation of mass transfer coefficients for single cylinder Bedingfield and Drew (1950) studied the sublimation from a solid cylinder into air

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT J. H.ZHANG, L.XIONG, N.X.WANG and W ZHOU Department of reactor physics, Shanghai institute of applied physics, Chinese academy of

More information

EXPERIMENTAL STUDY OF THE CONVECTIVE HEAT TRANSFER COEFFICIENT IN A PACKED BED AT LOW REYNOLDS NUMBERS

EXPERIMENTAL STUDY OF THE CONVECTIVE HEAT TRANSFER COEFFICIENT IN A PACKED BED AT LOW REYNOLDS NUMBERS EXPERIMENTAL STUDY OF THE CONVECTIVE HEAT TRANSFER COEFFICIENT IN A PACKED BED AT LOW REYNOLDS NUMBERS Souad. MESSAI 1*, Mohammed EL GANAOUI 2, Jalila. SGHAIER 3, Ali. BELGHITH 3 1 Institut Supérieur des

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Jordan Cox for the degree of Master of Science in Nuclear Engineering presented on September 16, 2015. Title: Scaling of the Chinese HTR-PM Reactor Design for Licensing and

More information

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM,

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR Project High-Temperature Reactor Neutronic Issues and Ways to Resolve Them P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR PROJECT MISSION

More information

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING HIGH TEMPERATURE THERMAL HYDRAULICS MODELING OF A MOLTEN SALT: APPLICATION TO A MOLTEN SALT FAST REACTOR (MSFR) P. R. Rubiolo, V. Ghetta, J. Giraud, M. Tano Retamales CNRS/IN2P3/LPSC - Grenoble Workshop

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR

USA HTR NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL TESTING REACTOR Proceedings of HTR2008 4 th International Topical Meeting on High Temperature Reactors September 28-October 1, 2008, Washington, D.C, USA HTR2008-58155 NEUTRONIC CHARACTERIZATION OF THE SAFARI-1 MATERIAL

More information

NEW TECHNIQUES DEDICATED TO THE CHARACTERIZATION OF INNOVATIVE FUELS

NEW TECHNIQUES DEDICATED TO THE CHARACTERIZATION OF INNOVATIVE FUELS ARWIF 2005, Oak Ridge, February 16-18, 2005 NEW TECHNIQUES DEDICATED TO THE CHARACTERIZATION OF INNOVATIVE FUELS Virginie BASINI (1), François CHAROLLAIS (2), Denis ROCHAIS (3), Doriane HELARY (4), Marc

More information

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films Lecture Topics Transient Droplet Vaporization Convective Vaporization Liquid Circulation Transcritical Thermodynamics Droplet Drag and Motion Spray Computations Turbulence Effects Topics in Other Lectures

More information

APPLIED FLUID DYNAMICS HANDBOOK

APPLIED FLUID DYNAMICS HANDBOOK APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

THERMAL HYDRAULIC MODELING OF THE LS-VHTR

THERMAL HYDRAULIC MODELING OF THE LS-VHTR 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 THERMAL HYDRAULIC MODELING OF

More information

HEAT EXCHANGER. Objectives

HEAT EXCHANGER. Objectives HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers

More information

Multidimensional CFD Modeling of a Liquid Salt Pebble Bed Heat Transfer Loop

Multidimensional CFD Modeling of a Liquid Salt Pebble Bed Heat Transfer Loop University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2014 Multidimensional CFD Modeling of a Liquid Salt Pebble Bed Heat Transfer Loop Richard

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Excerpt from the Proceedings of the COMSOL Conference 8 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan *,, Hamid Mehdizadeh

More information

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature

Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate with Ramped Temperature Journal of Applied Science and Engineering, Vol. 19, No. 4, pp. 385392 (2016) DOI: 10.6180/jase.2016.19.4.01 Finite Element Analysis of Heat and Mass Transfer past an Impulsively Moving Vertical Plate

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations L. Makaum, P.v.Z. Venter and M. van Eldik Abstract Refrigerants

More information

Thermal Dispersion and Convection Heat Transfer during Laminar Transient Flow in Porous Media

Thermal Dispersion and Convection Heat Transfer during Laminar Transient Flow in Porous Media Thermal Dispersion and Convection Heat Transfer during Laminar Transient Flow in Porous Media M.G. Pathak and S.M. Ghiaasiaan GW Woodruff School of Mechanical Engineering Georgia Institute of Technology,

More information

CFD Modeling of Tilt Induced Cooling Losses in Inertance Tube Pulse Tube Cryocoolers

CFD Modeling of Tilt Induced Cooling Losses in Inertance Tube Pulse Tube Cryocoolers CFD Modeling of Tilt Induced Cooling Losses in Inertance Tube Pulse Tube Cryocoolers T.I. Mulcahey 1, T.J. Conrad 1,2, S.M. Ghiaasiaan 1 1 Cryo Lab, Georgia Institute of Technology Atlanta, GA 30332 2

More information

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD HEFAT 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 8 July Malta ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD Nawaf

More information

Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module 2018 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China and the UK Plasma Science and Technology (11pp) https://doi.org/10.1088/2058-6272/aab54a Design

More information

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER Int. J. Chem. Sci.: 1(4), 14, 1487-1499 ISSN 97-768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Dmitriy Guzei 1, *, Maxim Pryazhnikov 1, Andrey Minakov 1,, and Vladimir Zhigarev 1

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou

STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET. N. Vetcha, S. Smolentsev and M. Abdou STABILITY ANALYSIS FOR BUOYANCY-OPPOSED FLOWS IN POLOIDAL DUCTS OF THE DCLL BLANKET N. Vetcha S. Smolentsev and M. Abdou Fusion Science and Technology Center at University of California Los Angeles CA

More information

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Excerpt from the Proceedings of the COMSOL Conference 9 Boston Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes Daoyun Song *1, Rakesh K. Gupta 1 and Rajendra P. Chhabra

More information

School on Physics, Technology and Applications of Accelerator Driven Systems (ADS) November 2007

School on Physics, Technology and Applications of Accelerator Driven Systems (ADS) November 2007 1858-36 School on Physics, Technology and Applications of Accelerator Driven Systems (ADS) 19-30 November 2007 Thermal Hydraulics of Heavy Liquid Metal Target for ADS. Part I Polepalle SATYAMURTHY BARC

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL

FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL FORCED CONVECTION IN A SELF HEATING POROUS CHANNEL: LOCAL THERMAL NONEQUILIBIUM MODEL by Azzedine ABDEDOU 1,2*, Khedidja BOUHADEF 2 and Rachid BENNACER 3 1 Département du Génie Mécanique, Faculté de Génie

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Principles of Convective Heat Transfer

Principles of Convective Heat Transfer Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 1, pp. 139-145, 016. Selected papers from the 7 th International Exergy, Energy and Environment Symposium, IEEE7-015 Available online at www.jafmonline.net,

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed 18.1 Introduction A typical packed bed is a cylindrical column that is filled with a

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Comparison of 2 Lead-Bismuth Spallation Neutron Targets

Comparison of 2 Lead-Bismuth Spallation Neutron Targets Comparison of 2 Lead-Bismuth Spallation Neutron Targets Keith Woloshun, Curtt Ammerman, Xiaoyi He, Michael James, Ning Li, Valentina Tcharnotskaia, Steve Wender Los Alamos National Laboratory P.O. Box

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information