Methods that transform the original network into a tighter and tighter representations

Size: px
Start display at page:

Download "Methods that transform the original network into a tighter and tighter representations"

Transcription

1 hapter

2 pproximation of inference: rc, path and i-consistecy Methods that transform the original network into a tighter and tighter representations all 00 IS 75 - onstraint Networks

3 rc-consistency X, Y, Z, T X < Y Y = Z T < Z X T X,, Y,,,,,, T < = < Z all 00 IS 75 - onstraint Networks

4 rc-consistency X, Y, Z, T X < Y Y = Z T < Z X T X T < Y < Z = all 00 IS 75 - onstraint Networks 4

5 all 00 IS 75 - onstraint Networks 5

6 R RX = {,,}, RY = {,,}, constriant reduces domain of X to R = {,}. R X X < Y all 00 IS 75 - onstraint Networks 6

7 i i π i ( Rij j ) all 00 IS 75 - onstraint Networks 7

8 !" all 00 IS 75 - onstraint Networks 8

9 # omplexity (Mackworth and reuder, 986): e = number of arcs, n variables,k values O ( enk (ek^, each loop, nk number of loops), best-case = ek, rc-consistency is: Ω( ek ) ) all 00 IS 75 - onstraint Networks 9

10 omplexity: O( ek ) est case O(ek), since each arc may be processed in O(k) all 00 IS 75 - onstraint Networks 0

11 $%&"" ' (%( &&" all 00 IS 75 - onstraint Networks

12 ) omplexity: O( ek ) (ounter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of pairs that (xi,ai) supports) all 00 IS 75 - onstraint Networks

13 * && Implement - distributedly. Node x_j sends the message to node x_i i h j i i π π i ( Rij j i ( Rij j ) ) Node x_i updates its domain: i π ( R ) i i ij j = i i h j i Messages can be sent asynchronously or scheduled in a topological order all 00 IS 75 - onstraint Networks

14 +, Example: a triangle graph-coloring with values. Is it arc-consistent? Is it consistent? It is not path, or -consistent. all 00 IS 75 - onstraint Networks 4

15 - all 00 IS 75 - onstraint Networks 5

16 - all 00 IS 75 - onstraint Networks 6

17 R ij omplexity: O(k^) est-case: O(t) Worst-case O(tk) R ij π ij ( Rik k Rkj ) all 00 IS 75 - onstraint Networks 7

18 -# omplexity: O( n 5 k 5 O(n^) triplets, each take O(k^) steps O(n^ k^) Max number of loops: O(n^ k^). ) all 00 IS 75 - onstraint Networks 8

19 -. omplexity: Optimal P-4: O( n k 5 O( n ) k ) (each pair deleted may add: n- triplets, number of pairs: O(n^ k^) size of Q is O(n^ k^), processing is O(k^)) all 00 IS 75 - onstraint Networks 9

20 $%&"& P- requires processings of each arc while P- may not an we do path-consistency distributedly? all 00 IS 75 - onstraint Networks 0

21 + all 00 IS 75 - onstraint Networks

22 /"" ' "" all 00 IS 75 - onstraint Networks

23 omplexity: for binary constraints i or arbitrary constraints: O((k) ) O( k i ) all 00 IS 75 - onstraint Networks

24 )!%&" all 00 IS 75 - onstraint Networks 4

25 + all 00 IS 75 - onstraint Networks 5

26 0"( x x π ( R }) x S S {x omplexity: O(t k), t bounds number of tuples. Relational arc-consistency: R π }( R S { x} S { x S x ) all 00 IS 75 - onstraint Networks 6

27 $%&""( {x+y+z <= 5, z >= } x<=, y<= Example of relational arc-consistency { G, G}, all 00 IS 75 - onstraint Networks 7

28 Global constraints: e.g., all-different constraints Special semantic constraints that appears often in practice and a specialized constraint propagation. Used in constraint programming. ounds-consistency: pruning the boundaries of domains o exercise 6 all 00 IS 75 - onstraint Networks 8

29 $%&""" = {,4,5,6} = {,4} = {,,4,5} = {,,4} E = {,4} lldiff (,,,,E} rc-consistency does nothing pply G to sol(,,,,e)? = {6}, = {}. lg: bipartite matching kn^.5 (Lopez-Ortiz, et. l, IJI-0 pp 45 ( fast and simple algorithm for bounds consistency of alldifferent constraint) all 00 IS 75 - onstraint Networks 9

30 0"" lldifferent Sum constraint Global cardinality constraint (a value can be assigned a bounded number of times) The cummulative constraint (related to scheduling tasks) all 00 IS 75 - onstraint Networks 0

31 all 00 IS 75 - onstraint Networks

32 "" all 00 IS 75 - onstraint Networks

33 "&& ( V ~) and () is arc-consistent relative to but not vice-versa rc-consistency achieved by resolution: res(( V ~),) = Given also ( V ), path-consistency means: res(( V ~),( V )) = ( V ) What can generalized arc-consistency do to cnfs? Relational arc-consistency rule = unit-resolution all 00 IS 75 - onstraint Networks

34 "&& If lex goes, then ecky goes: If hris goes, then lex goes: Query: Is it possible that hris goes to the party but ecky does not? Is propositional theory ϕ = {,,, } (or, ) (or, ) satisfiable? all 00 IS 75 - onstraint Networks 4

35 &&" && all 00 IS 75 - onstraint Networks 5

36 " "" "( Think about the following: G-i apply -i to the dual problem when singleton variables are explicit: the bi-partite representation. What is the complexity? Relational arc-consistency: imitate unit propagation. pply - on the dual problem where each subset of a scope is presented. Is unit propagation equivalent to -4? all 00 IS 75 - onstraint Networks 6

37 x [,0], x + arc by y = 0 adding y [5,5], consistency x + y x [,5], = 0, y y [5,9] 5 z [ 0,0], y + z path consistency x z 7 obtained by adding, x + y = 0, y z all 00 IS 75 - onstraint Networks 7

38 "" all 00 IS 75 - onstraint Networks 8

39 &" '& ) all 00 IS 75 - onstraint Networks 9

40 * && Implement - distributedly. i i π i ( Rij j ) Node x_j sends the message to node x_i h j i π i ( Rij j ) Node x_i updates its domain: i i h j i Generalized arc-consistency can be implemented distributedly: sending messages between constraints over the dual graph: R π }( R S { x} S { x S x ) all 00 IS 75 - onstraint Networks 40

41 all 00 IS 75 - onstraint Networks 4 G R R R 4 R R 5 R 6 *"" %&" G The message that R sends to R is R updates its relation and domains and sends messages to neighbors

42 * R- can be applied to the dual problem of any constraint network. G b) onstraint network all 00 IS 75 - onstraint Networks 4

43 all 00 IS 75 - onstraint Networks 4 G R R R 4 R R 5 R 6 G *"4&

44 all 00 IS 75 - onstraint Networks 44 G +# G h h h h h 4 h 5 h 4 h 5 4 h 4 h 6 4 h 6 h 5 6 h 4 5 h 5 h 5 h 6 R R R 4 R R 5 R 6

45 all 00 IS 75 - onstraint Networks 45 G R R R 4 R R 5 R 6 G #

46 all 00 IS 75 - onstraint Networks 46 G G h h h h h 4 h 5 h 4 h 5 4 h 4 h 6 4 h 6 h 5 6 h 4 5 h 5 h 5 h 6 R R R 4 R R 5 R 6 +.

47 +. R R R R G R 5 R 6 G all 00 IS 75 - onstraint Networks 47

48 h 5 + h 4 h R R h h h 4 R h h 5 4 h 6 4 h 4 h R G R 5 5 h 5 h 5 h 6 R 6 6 h 4 6 h 5 G all 00 IS 75 - onstraint Networks 48

49 + R R R R G R 5 R 6 G all 00 IS 75 - onstraint Networks 49

50 h 5 +) h 4 h R R h h h 4 R h h 5 4 h 6 4 h 4 h R G R 5 5 h 5 h 5 h 6 R 6 G 6 h 4 6 h 5 all 00 IS 75 - onstraint Networks 50

51 +) R R R R G R 5 R 6 G all 00 IS 75 - onstraint Networks 5

52 +5 R h h h 4 h 5 h 4 h R R h h 5 4 h 6 4 h 4 h R G R 5 5 h 5 h 5 h 6 R 6 G 6 h 4 6 h 5 all 00 IS 75 - onstraint Networks 5

53 +5 R R R R G R 5 R 6 G all 00 IS 75 - onstraint Networks 5

Consistency algorithms. Chapter 3

Consistency algorithms. Chapter 3 Consistency algorithms Chapter Fall 00 Consistency methods pproximation of inference: rc, path and i-consistecy Methods that transform the original network into tighter and tighter representations Fall

More information

Consistency algorithms

Consistency algorithms Consistency algorithms Chapter SQ 00 rc-consistency X, Y, Z, T X Y Y = Z T Z X T X,, Y,,,,,, T = Z SQ 00 rc-consistency X, Y, Z, T X Y Y = Z T Z X T X T Y Z = SQ 00 rc-consistency Sound < < Incomplete

More information

Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter

Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter Reasoning with Deterministic and Probabilistic graphical models Class 2: Inference in Constraint Networks Rina Dechter Road Map n Graphical models n Constraint networks Model n Inference n Search n Probabilistic

More information

Min-Max Message Passing and Local Consistency in Constraint Networks

Min-Max Message Passing and Local Consistency in Constraint Networks Min-Max Message Passing and Local Consistency in Constraint Networks Hong Xu, T. K. Satish Kumar, and Sven Koenig University of Southern California, Los Angeles, CA 90089, USA hongx@usc.edu tkskwork@gmail.com

More information

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Andrés Sicard-Ramírez Universidad EAFIT Semester 2018-2 Introduction Equivalences DFA NFA -NFA RE Finite Automata and Regular

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Announcements. Solution to Assignment 3 is posted Assignment 4 is available. c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25

Announcements. Solution to Assignment 3 is posted Assignment 4 is available. c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25 Announcements Solution to Assignment 3 is posted Assignment 4 is available c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25 Review: So far... Constraint satisfaction problems defined in terms

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 6, March 7, 2013 David Sontag (NYU) Graphical Models Lecture 6, March 7, 2013 1 / 25 Today s lecture 1 Dual decomposition 2 MAP inference

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Constraint Satisfaction Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell Constraint Satisfaction Problems The

More information

Figure 1: Bayesian network for problem 1. P (A = t) = 0.3 (1) P (C = t) = 0.6 (2) Table 1: CPTs for problem 1. C P (D = t) f 0.9 t 0.

Figure 1: Bayesian network for problem 1. P (A = t) = 0.3 (1) P (C = t) = 0.6 (2) Table 1: CPTs for problem 1. C P (D = t) f 0.9 t 0. Probabilistic Artificial Intelligence Solutions to Problem Set 3 Nov 2, 2018 1. Variable elimination In this exercise you will use variable elimination to perform inference on a bayesian network. Consider

More information

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012 Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Search and Lookahead Enforcing consistency is one way of solving constraint networks:

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Exam 1. Problem 1: True or false

Exam 1. Problem 1: True or false Exam 1 Problem 1: True or false We are told that events A and B are conditionally independent, given a third event C, and that P(B C) > 0. For each one of the following statements, decide whether the statement

More information

FACTOR GRAPH OF NON-COMMUTATIVE RING

FACTOR GRAPH OF NON-COMMUTATIVE RING International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 9, Issue 6, November - December 2018, pp. 178 183, Article ID: IJARET_09_06_019 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=9&itype=6

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

arxiv:math/ v1 [math.lo] 5 Mar 2007

arxiv:math/ v1 [math.lo] 5 Mar 2007 Topological Semantics and Decidability Dmitry Sustretov arxiv:math/0703106v1 [math.lo] 5 Mar 2007 March 6, 2008 Abstract It is well-known that the basic modal logic of all topological spaces is S4. However,

More information

On shredders and vertex connectivity augmentation

On shredders and vertex connectivity augmentation On shredders and vertex connectivity augmentation Gilad Liberman The Open University of Israel giladliberman@gmail.com Zeev Nutov The Open University of Israel nutov@openu.ac.il Abstract We consider the

More information

Multi-Agent Systems. Bernhard Nebel, Felix Lindner, and Thorsten Engesser. Summer Term Albert-Ludwigs-Universität Freiburg

Multi-Agent Systems. Bernhard Nebel, Felix Lindner, and Thorsten Engesser. Summer Term Albert-Ludwigs-Universität Freiburg Multi-Agent Systems Albert-Ludwigs-Universität Freiburg Bernhard Nebel, Felix Lindner, and Thorsten Engesser Summer Term 2017 Course outline 1 Introduction 2 Agent-Based Simulation 3 Agent Architectures

More information

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018 Graphical Models Clique trees & Belief Propagation Siamak Ravanbakhsh Winter 2018 Learning objectives message passing on clique trees its relation to variable elimination two different forms of belief

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

SOLVING FINITE-DOMAIN LINEAR CONSTRAINTS IN PRESENCE OF THE ALLDIFFERENT

SOLVING FINITE-DOMAIN LINEAR CONSTRAINTS IN PRESENCE OF THE ALLDIFFERENT Logical Methods in Computer Science Vol. 12(3:5)2016, pp. 1 28 www.lmcs-online.org Submitted Jul. 31, 2015 Published Sep. 5, 2016 SOLVING FINITE-DOMAIN LINEAR CONSTRAINTS IN PRESENCE OF THE ALLDIFFERENT

More information

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Rani M. R, Mohith Jagalmohanan, R. Subashini Binary matrices having simultaneous consecutive

More information

COMPSCI 276 Fall 2007

COMPSCI 276 Fall 2007 Exact Inference lgorithms for Probabilistic Reasoning; OMPSI 276 Fall 2007 1 elief Updating Smoking lung ancer ronchitis X-ray Dyspnoea P lung cancer=yes smoking=no, dyspnoea=yes =? 2 Probabilistic Inference

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

Basic graph theory 18.S995 - L26.

Basic graph theory 18.S995 - L26. Basic graph theory 18.S995 - L26 dunkel@math.mit.edu http://java.dzone.com/articles/algorithm-week-graphs-and no cycles Isomorphic graphs f(a) = 1 f(b) = 6 f(c) = 8 f(d) = 3 f(g) = 5 f(h) = 2 f(i) = 4

More information

Solutions to Exercises

Solutions to Exercises 1/13 Solutions to Exercises The exercises referred to as WS 1.1(a), and so forth, are from the course book: Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011,

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February)

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February) Algorithms and Data Structures 016 Week 5 solutions (Tues 9th - Fri 1th February) 1. Draw the decision tree (under the assumption of all-distinct inputs) Quicksort for n = 3. answer: (of course you should

More information

Lifted Inference: Exact Search Based Algorithms

Lifted Inference: Exact Search Based Algorithms Lifted Inference: Exact Search Based Algorithms Vibhav Gogate The University of Texas at Dallas Overview Background and Notation Probabilistic Knowledge Bases Exact Inference in Propositional Models First-order

More information

Generalized Micro-Structures for Non-Binary CSP

Generalized Micro-Structures for Non-Binary CSP Generalized Micro-Structures for Non-Binary CSP Achref El Mouelhi LSIS - UMR CNRS 7296 Aix-Marseille Université Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France) achref.elmouelhi@lsis.org

More information

Qualifying Exam Logic August 2005

Qualifying Exam Logic August 2005 Instructions: Qualifying Exam Logic August 2005 If you signed up for Computability Theory, do two E and two C problems. If you signed up for Model Theory, do two E and two M problems. If you signed up

More information

Multi-join Query Evaluation on Big Data Lecture 2

Multi-join Query Evaluation on Big Data Lecture 2 Multi-join Query Evaluation on Big Data Lecture 2 Dan Suciu March, 2015 Dan Suciu Multi-Joins Lecture 2 March, 2015 1 / 34 Multi-join Query Evaluation Outline Part 1 Optimal Sequential Algorithms. Thursday

More information

Energy minimization via graph-cuts

Energy minimization via graph-cuts Energy minimization via graph-cuts Nikos Komodakis Ecole des Ponts ParisTech, LIGM Traitement de l information et vision artificielle Binary energy minimization We will first consider binary MRFs: Graph

More information

Variational algorithms for marginal MAP

Variational algorithms for marginal MAP Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek

More information

Inference and Representation

Inference and Representation Inference and Representation David Sontag New York University Lecture 5, Sept. 30, 2014 David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 1 / 16 Today s lecture 1 Running-time of

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

CHAPTER 3 LOW DENSITY PARITY CHECK CODES

CHAPTER 3 LOW DENSITY PARITY CHECK CODES 62 CHAPTER 3 LOW DENSITY PARITY CHECK CODES 3. INTRODUCTION LDPC codes were first presented by Gallager in 962 [] and in 996, MacKay and Neal re-discovered LDPC codes.they proved that these codes approach

More information

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule.

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule. Computat onal iology Lecture 12 Physical Mapping physical map of a DN tells the location of precisely defined sequences along the molecule. Restriction mapping: mapping of restriction sites of a cutting

More information

Loopy Belief Propagation for Bipartite Maximum Weight b-matching

Loopy Belief Propagation for Bipartite Maximum Weight b-matching Loopy Belief Propagation for Bipartite Maximum Weight b-matching Bert Huang and Tony Jebara Computer Science Department Columbia University New York, NY 10027 Outline 1. Bipartite Weighted b-matching 2.

More information

CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding

CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding Tim Roughgarden October 29, 2014 1 Preamble This lecture covers our final subtopic within the exact and approximate recovery part of the course.

More information

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum:

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum: Topics in Algorithms Exercises 1 Generation of Basic Combinatorial Objects 1.1 Generation of Subsets 1. Consider the sum: (ε 1,...,ε n) {0,1} n f(ε 1,..., ε n ) (a) Show that it may be calculated in O(n)

More information

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei COMPSCI 650 Applied Information Theory Apr 5, 2016 Lecture 18 Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei 1 Correcting Errors in Linear Codes Suppose someone is to send

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 4: Query Optimization Query Optimization Cost estimation Strategies for exploring plans Q min CS 347 Notes 4 2 Cost Estimation Based on

More information

Fast Sorting and Selection. A Lower Bound for Worst Case

Fast Sorting and Selection. A Lower Bound for Worst Case Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 0 Fast Sorting and Selection USGS NEIC. Public domain government image. A Lower Bound

More information

Fundamental Algorithms 11

Fundamental Algorithms 11 Technische Universität München WS 2013/14 Institut für Informatik Worksheet Scientific Computing in Computer Science 20.01.2014 Fundamental Algorithms 11 Exercise 1 Hypergraphs A hypergraph extends the

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Computational Complexity of Inference

Computational Complexity of Inference Computational Complexity of Inference Sargur srihari@cedar.buffalo.edu 1 Topics 1. What is Inference? 2. Complexity Classes 3. Exact Inference 1. Variable Elimination Sum-Product Algorithm 2. Factor Graphs

More information

Symmetry Breaking Ordering Constraints

Symmetry Breaking Ordering Constraints Symmetry Breaking Ordering Constraints PhD dissertation Uppsala University, Sweden, March 2004 Zeynep KIZILTAN Università di Bologna, Italy URL: http://lia.deis.unibo.it/~zk/ Overview Brief Background

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

Maxime GUILLAUD. Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris

Maxime GUILLAUD. Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris 1/21 Maxime GUILLAUD Alignment Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris maxime.guillaud@huawei.com http://research.mguillaud.net/ Optimisation Géométrique sur les Variétés

More information

Multi-coloring and Mycielski s construction

Multi-coloring and Mycielski s construction Multi-coloring and Mycielski s construction Tim Meagher Fall 2010 Abstract We consider a number of related results taken from two papers one by W. Lin [1], and the other D. C. Fisher[2]. These articles

More information

Definable Graphs and Dominating Reals

Definable Graphs and Dominating Reals May 13, 2016 Graphs A graph on X is a symmetric, irreflexive G X 2. A graph G on a Polish space X is Borel if it is a Borel subset of X 2 \ {(x, x) : x X }. A X is an anticlique (G-free, independent) if

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

Petri nets. s 1 s 2. s 3 s 4. directed arcs.

Petri nets. s 1 s 2. s 3 s 4. directed arcs. Petri nets Petri nets Petri nets are a basic model of parallel and distributed systems (named after Carl Adam Petri). The basic idea is to describe state changes in a system with transitions. @ @R s 1

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

The core of solving constraint problems using Constraint Programming (CP), with emphasis on:

The core of solving constraint problems using Constraint Programming (CP), with emphasis on: What is it about? l Theory The core of solving constraint problems using Constraint Programming (CP), with emphasis on: l Modeling l Solving: Local consistency and propagation; Backtracking search + heuristics.

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem

Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem IITM-CS6845: Theory Toolkit February 08, 2012 Lecture 19 : Reed-Muller, Concatenation Codes & Decoding problem Lecturer: Jayalal Sarma Scribe: Dinesh K Theme: Error correcting codes In the previous lecture,

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Graph Theorizing Peg Solitaire. D. Paul Hoilman East Tennessee State University

Graph Theorizing Peg Solitaire. D. Paul Hoilman East Tennessee State University Graph Theorizing Peg Solitaire D. Paul Hoilman East Tennessee State University December 7, 00 Contents INTRODUCTION SIMPLE SOLVING CONCEPTS 5 IMPROVED SOLVING 7 4 RELATED GAMES 5 5 PROGENATION OF SOLVABLE

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Fuzzy and Rough Sets Part I

Fuzzy and Rough Sets Part I Fuzzy and Rough Sets Part I Decision Systems Group Brigham and Women s Hospital, Harvard Medical School Harvard-MIT Division of Health Sciences and Technology Aim Present aspects of fuzzy and rough sets.

More information

arxiv: v3 [math.ds] 21 Jan 2018

arxiv: v3 [math.ds] 21 Jan 2018 ASYMPTOTIC BEHAVIOR OF CONJUNCTIVE BOOLEAN NETWORK OVER WEAKLY CONNECTED DIGRAPH XUDONG CHEN, ZUGUANG GAO, AND TAMER BAŞAR arxiv:1708.01975v3 [math.ds] 21 Jan 2018 Abstract. A conjunctive Boolean network

More information

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H Cuts Cuts A cut C is a subset of the global history of H C = h c 1 1 hc 2 2...hc n n A cut C is a subset of the global history of H The frontier of C is the set of events e c 1 1,ec 2 2,...ec n n C = h

More information

Convergence Analysis of the Variance in. Gaussian Belief Propagation

Convergence Analysis of the Variance in. Gaussian Belief Propagation 0.09/TSP.204.2345635, IEEE Transactions on Signal Processing Convergence Analysis of the Variance in Gaussian Belief Propagation Qinliang Su and Yik-Chung Wu Abstract It is known that Gaussian belief propagation

More information

Math 5490 Network Flows

Math 5490 Network Flows Math 90 Network Flows Lecture 8: Flow Decomposition Algorithm Stephen Billups University of Colorado at Denver Math 90Network Flows p./6 Flow Decomposition Algorithms Two approaches to modeling network

More information

Lecture 4 : Introduction to Low-density Parity-check Codes

Lecture 4 : Introduction to Low-density Parity-check Codes Lecture 4 : Introduction to Low-density Parity-check Codes LDPC codes are a class of linear block codes with implementable decoders, which provide near-capacity performance. History: 1. LDPC codes were

More information

Global constraints and decompositions

Global constraints and decompositions Global constraints and decompositions Christian Bessiere Univ Montpellier, CNRS (joined work with E. Hebrard, B. Hnich, G. Katsirelos, Z. Kiziltan, N. Narodytska C.G. Quimper, T. Walsh) Outline Background

More information

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics EECS 281A / STAT 241A Statistical Learning Theory Solutions to Problem Set 2 Fall 2011 Issued: Wednesday,

More information

Locally triangular graphs and normal quotients of n-cubes

Locally triangular graphs and normal quotients of n-cubes Locally triangular graphs and normal quotients of n-cubes Joanna B. Fawcett The University of Western Australia 15 February, 2016 The triangular graph T n for n 2: Vertices 2-subsets of {1,...,n}. Adjacency

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 5 Routing Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

Hardness of Embedding Metric Spaces of Equal Size

Hardness of Embedding Metric Spaces of Equal Size Hardness of Embedding Metric Spaces of Equal Size Subhash Khot and Rishi Saket Georgia Institute of Technology {khot,saket}@cc.gatech.edu Abstract. We study the problem embedding an n-point metric space

More information

Distributed Optimization over Random Networks

Distributed Optimization over Random Networks Distributed Optimization over Random Networks Ilan Lobel and Asu Ozdaglar Allerton Conference September 2008 Operations Research Center and Electrical Engineering & Computer Science Massachusetts Institute

More information

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht

PAC Learning. prof. dr Arno Siebes. Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht PAC Learning prof. dr Arno Siebes Algorithmic Data Analysis Group Department of Information and Computing Sciences Universiteit Utrecht Recall: PAC Learning (Version 1) A hypothesis class H is PAC learnable

More information

Minimum cost transportation problem

Minimum cost transportation problem Minimum cost transportation problem Complements of Operations Research Giovanni Righini Università degli Studi di Milano Definitions The minimum cost transportation problem is a special case of the minimum

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

Lecture Notes on Ordered Proofs as Concurrent Programs

Lecture Notes on Ordered Proofs as Concurrent Programs Lecture Notes on Ordered Proofs as Concurrent Programs 15-317: Constructive Logic Frank Pfenning Lecture 24 November 30, 2017 1 Introduction In this lecture we begin with a summary of the correspondence

More information

arxiv: v1 [cs.dc] 4 Oct 2018

arxiv: v1 [cs.dc] 4 Oct 2018 Distributed Reconfiguration of Maximal Independent Sets Keren Censor-Hillel 1 and Mikael Rabie 2 1 Department of Computer Science, Technion, Israel, ckeren@cs.technion.ac.il 2 Aalto University, Helsinki,

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture http://www.ee.washington.edu/people/faculty/bilmes/classes/ee_spring_0/ Prof. Jeff Bilmes University of

More information

d 2 -coloring of a Graph

d 2 -coloring of a Graph d -coloring of a Graph K. Selvakumar and S. Nithya Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 67 01, Tamil Nadu, India E-mail: selva 158@yahoo.co.in Abstract A subset S of

More information

The Complexity of a Reliable Distributed System

The Complexity of a Reliable Distributed System The Complexity of a Reliable Distributed System Rachid Guerraoui EPFL Alexandre Maurer EPFL Abstract Studying the complexity of distributed algorithms typically boils down to evaluating how the number

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM (FP1) The exclusive or operation, denoted by and sometimes known as XOR, is defined so that P Q is true iff P is true or Q is true, but not both. Prove (through

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Generalized Loopy 2U: A New Algorithm for Approximate Inference in Credal Networks

Generalized Loopy 2U: A New Algorithm for Approximate Inference in Credal Networks Generalized Loopy 2U: A New Algorithm for Approximate Inference in Credal Networks Alessandro Antonucci, Marco Zaffalon, Yi Sun, Cassio P. de Campos Istituto Dalle Molle di Studi sull Intelligenza Artificiale

More information

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e E. You are also given a minimum cost spanning tree (MST) T. For one particular edge

More information