Application of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Homogeneous Systems

Size: px
Start display at page:

Download "Application of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Homogeneous Systems"

Transcription

1 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog Alcto of Hghe Ode Detes of Lyuo Fuctos Stblty Alyss of Nole Homogeeous Systems Vhd Megol, d S. K. Y. Nesh Abstct--he Lyuo stblty lyss method fo ole dymc systems eeds oste defte fucto whose tme dete s t lest egte sem-defte the decto of the system s solutos. Howee megg the both oetes sgle fucto s chllegg ts. I ths e some le combto of hghe ode detes of the Lyuo fucto wth o-egte coeffcets s esulted. If the esultt summto s egte defte d ll the detes e decescet the the zeo equlbum stte of the ole system s symtotclly stble. If the hghe ode tme detes of the Lyuo fucto e ot welldefed, the some well-defed smooth fuctos my be used sted. I ths cse le combto of tme detes of ll fuctos, wth o-egte coeffcets, must be egte defte. he ew codtos e the efomed to be led fo stblty lyss of ole homogeeous systems. Some exmles e eseted to descbe the och. Idex ems--ole systems, stblty lyss, Lyuo fuctos, hghe ode detes, homogeeous systems. NOMENCLAUE A ge om o x(t,t 0,x 0) A tjectoy sttg t x(t 0) = x0 u he udele ble mes ecto qutty m V: ecto fucto of dmeso m (VF) φ K ( φ K ) φ s fucto of clss K(K fty) [] () (t,x) he -th totl tme dete of (t,x) fuc. b comoet-wse equlty I. INODUCION Cosde the followg -dmesol outoomous dymc system wth zeo equlbum stte (ZES): x = f(t,x) t 0, x () he dtge of the Lyuo method s the use of Lyuo fuctos (LF) o eegy le fuctos. he Lyuo stblty lyss method fo ufom symtotc stblty (u..s.) of ZES of ole dymc systems eeds loclly decescet (LD)loclly oste defte fucto (LPDF) (t, x) whose tme dete (t,x) s egte Musct eceed August 0, 008. Both uthos e wth the Electcl Egeeg Detmet, Aboueyh Buldg, Amb U. of ech. (eh Polytechc), eh, I. Vhd Megol (coesodg utho, hoe: (+98) ; fx: (+98) ; e-ml: hd_mey@yhoo.com, megol@ut.c.). S. K. Y. Nesh (hoe: ; e-ml: sh@ut.c.). defte the decto of the system s solutos. Whe the dete s egte semdefte, stblty the th symtotc stblty (.s.) follows. Whe the comlexty of ole system s cesed, selectg sutble LF hg t lest egte sem-defte dete s olg ts, See [] d []. Gudeso [] cosdeed the stblty lyss of (), usg LF (t,x) wth the equlty (m) (m ) (t,x) g m (t,,,, ), fo some oste tege m, whee ll the hghe ode detes () (t,x) wee comuted wth esect to tme t log the tjectoes of (). S/he comed ths equlty by ole co-system (m) (m ) u (t) = g m (t,u,u,,u ). If the m g m () s of clss W (o-decesg) d the co-system hs.s. ZES the the ZES of () s lso.s. he method uses secl Vecto Lyuo fuctos (VLF) V(t,x) = [ (t,x), (t,x),, m(t,x)] () ( ) defg (t,x) (t,x), fo =,,m, but oly the fst comoet of V(t,x) s oste defte fucto (PDF) d the othe comoets mght be defte. hs s dffeet fom ody VLFs wth ll oste sem-defte comoets d geetg le combto m = (t,x), > 0 whch s PDF, [4] d [5]. We cll the VLF used by Gudeso [], detes ecto Lyuo fucto (DVLF). he we geelze the defto d efe to y ecto fucto V(t,x) DVLF s f s hg fst comoet whch s PDF (t,x) d the emde comoets e ossbly defte fuctos. Butz [6] cosdeed the utoomous system x = f(x) togethe wth LPDF (x) stsfyg (x) + (x) + (x) < 0, x 0 ( 0 fo =,) d cocluded.s. of the ZES. he eous eseches [7] d [8] used dffeetl equlty V AV fo DVLF to lyse the stblty of ZES of (). he A mtx ws cotollble cocl fom wth Huwtz chctestc equto,.e. det(si A ) = 0. I [9] we exteded the esult of Butz [6] to lyse the u..s. of ZES of () usg the hghe ode tme detes of tme yg LPDF (t,x),.e. f m m (d dt ) (t,x) s egte defte whe ll = m 0, the the ZES of () s u..s.. he ew method could te ce of the cses whee the LPDF (t,x) d/o the systems e ot smooth eough d the hghe ode ISBN: IMECS 009

2 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog tme detes of the LF e ot well-defed. We cosdeed moe geel fom of dffeetl equlty fo DVLF V(t,x), d the ZES of () would be u..s. s f m s m = (t,x) s egte defte d (t,x) < α( x ) fo α K d =,,,m. Now let us cosde the homogeeous ole systems whch cot wde gou of ole systems, d he bee oul dug the lst thee decde. A ce oety bout homogeeous systems s tht, they ct some how betwee le d ole systems. Also lot of subjects coceg the ole systems fst he bee led to homogeeous systems o e most elted to them, such s: cotollblty d locl oxmto [0], exoetl stblzto [], cotol by ddg owe tegto techque [], d fte tme stblzto []. he fst theoem of ths e summzes the m esults of [9] bout the hghe ode tme detes of LF wthout oof. he we focus o the lctos of ths theoem to stblty lyss of homogeeous ole systems. hs theoem s show to be useful oly fo stblty lyss of ole zeo degee homogeeous systems, hece ew theoem fo geel ole homogeeous systems s deeloed. We ssume the ede s fml wth the Lyuo stblty methods [-]. hs e s ogzed s follows. he elmy deftos d esults bout homogeeous systems e ge secto II. he m theoem o stblty lyss of homogeeous systems s eseted Secto III. Some exmles e ge IV. Cocludg ems e ge Secto V. II. HE PELIMINAY DEFINIIONS AND ESULS A. he Hghe Ode me Detes of LF If fucto (t,x) d the ole system () e smooth eough, the the hghe ode totl tme detes () (t,x), fo =,, log the solutos of () e (0) comuted tetely, usg ( (t,x) = (t,x) ) () ( ) ( ) (t,x) [ x] f(t,x) + t () Defto [9]: A bty scl fucto (t,x) (my be defte). s clled loclly decescet (LD) f thee exst > 0 d α K such tht fo eey x < (t, x) < α( x ) (4). s clled globlly decescet (GD) f (4) stsfes globlly. I the followg geel theoem fo lyzg the stblty of () s toduced. heoem [9]: Cosde the m-ecto C fucto V(t,x) of the fom () wth the followg oetes:. he fst comoet (t,x) of V(t,x) s dlly ubouded (U) d PDF,.e. (t,0) = 0, t 0 d thee exsts some φ K, such tht: (t, x) φ ( x ) x, t 0 (5). All the (t,x) comoets e GD,.e. thee exst α K fo =,,m such tht (t, x) α( x ) x, t 0 (6) ) If the followg dffeetl equlty stsfes fo ll (t,x) log the solutos of (): (7) 0 0 j 0 0 m, m,m 0 m m m m,m mm m φ( x ) whee φ K wth the dom of D φ = [0, + ) d A = [ j] m m s lowe tgul mtx wth the followg oetes: = 0, f < j (8) j > 0, f = j 0, f > j the the ZES of () s globlly ufomly symtotclly stble (g.u..s.). b) If the boe codtos hold oly loclly,.e. fo x < fo ge > 0 the the ZES of () s u..s. Coolly [9]: Cosde the smooth eough tme yg system () d smooth eough U d PDF (t,x). If the hghe ode detes () (t,x) fo ll = 0,,,m e GD d thee exst 0 fo =,,m d φ K such tht m () (t,x) φ ( x ), = x (9) he the ZES of () s g.u..s. ( ) Poof: use the heoem wth (t,x) (t,x) fo =,,m. em : Fo m = the boe coolly s educed to the Lyuo dect method fo the stblty lyss of the ZES of (). B. he Homogeeous Systems Cosde fucto : d the ecto feld f(t,x) of the ole system (), we befly ecll the oto of homogeety fo d f fom [4]: Fo sequece of oste weghts = (,, ), d o-egte ble λ 0, dlto s defed s le m λ (x) ( λ x,, λ x ). he the (t,x) fucto d the f(t,x) ecto feld e defed to be homogeeous of ode wth esect to (w..t.) the dlto λ, f (t, λ x) = λ (t,x) d f (t, λx) = λ λf (t,x) esectely. I ths cse we befly defe d f e - homogeeous of ode d symbolze wth H d f. he secl weghts = (,,,) e efeed s stdd weghts, hece (t,x) d f(t,x) e sd to be stdd homogeeous of ode f (t, λx) = λ (t,x) d f (t, λx) = λ + f (t,x) esectely. ISBN: IMECS 009

3 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog Fo mx the -homogeeous -om s defed by, = ( x ). It s cle tht, H, whle ths s ot tue om, becuse t does t stsfy the tgul equlty. Cosdeg -homogeeous LF the Lyuo dect method fo the stblty lyss of ge -homogeeous ecto feld s usul ts the ltetue [5]. I the followg we cocette o the lctos of hghe ode tme detes of -homogeeous LFs to - homogeeous systems. Exmle [9]: Cosde the followg ole dymc system: x = x (0) x = x x( b+ x x + x ) wth the followg metes = 0., b =. () whch s cotuous t x = x = 0 d hs ZES. hs system s obously of the stdd zeo ode homogeeous fom. Let us ewte the dymc equto (0) the ol coodte fom (t) d (t) usg x = cos C d x = s S : = S [S + bs + C ( )] () = S C (b + S )SC Usg the LF cddte (x) = x + x =, oe hs (x) = = S [S + bs + C ( )] () whch s defte fo the mete lues (), d thus the Lyuo dect method fls og g.u..s. of ZES usg ths LF. he hghe ode tme detes of (x) fucto would be s follows: (x) = (x) + (x) = [ C.74C (4) C +.8C + C + S (9.6.68C 7.C.4C )] 4 ( x ) = [ C C 0.48C 7.C C + 4.4C.96C 6.8C + S ( C C.8C C + 9.8C +.78C.6C 8C )] (5) hese detes wll be used the stblty lyss. Note () tht (x) fo ech = 0,,, s eodc fucto oly of. It ws show [9] fo =, =.4, = tht () (x) < 0 (6) = () Hece = (x) s egte defte d the codtos of Coolly e stsfed fo the ole utoomous system (0) d thus the ZES s g.u..s. I the boe exmle the ole system ws homogeeous of zeo ode, d ll the hghe ode detes of LF (x) (see eq. ()-(5)) wee homogeeous of ode two. he heomeo of sme ode of homogeety fo () (x) s ot ccdetl, d t s cosequece of the followg mott fct bout the - homogeety: Lemm [0]: If the fucto (t,x) H d the ecto feld f(t,x) w..t. some dlto λ, the the scl multlcto f +, d the totl tme dete of log the solutos of f,.e. (t,x) H +. heefoe by () ducto [(t,x)] f (t,x) + d (t,x) H + fo =,,. I the eous exmle (x) H d f (x) 0, d () thus (x) H + 0 fo =,,. heefoe y le combtos of () (x) fo seel e homogeeous fuctos of ode two, d we could esly obt ths sg usg the ol coodte. Howee the followg em shows some dffcultes fo homogeeous ole systems of ode > 0. em : If the ole system s homogeeous of ode > 0, the the hghe ode detes of homogeeous LF (x) e homogeeous of dffeet ode d we c ot esly deteme the sg of the le combtos. Moeoe ths cse t could be show tht f m () (x) < 0 x 0 d = 0 the (x) 0 ey e the og, becuse the fst dete domtes the othe detes ey smll eghbohood of zeo (see Lemm ). hus the Lyuo dect method s useful fo ths cse, d the heoem s megless fo homogeeous ole systems of ode > 0. III. HE MAIN ESULS It ws show the eous secto tht the heoem s ot useful fo stblty lyss of ole homogeeous systems of ode > 0. He we do some smll chges heoem d me t useful fo stblty lyss of ole homogeeous systems of bty ode. Fo smlcty we cosde oly utoomous cse,.e. the followg ole system: x = f(x), x (7) Let f fo some > 0 (7) d x s ge homogeeous om w..t. ge dlto λ, defe the followg ole system: f(x) x, x 0 x = f(x) = (8) 0, x = 0 It s cle tht f 0 d f(x) s cotuous t zeo. he descbed mg fom ole system (7) to the ole system (8) ws fst used [4] fo mlemetg the t homogeeous coes stblty lyss, but we use ths mg fo dffeet uose. Lemm : he ZES of (7) s g.u..s. ff the ZES of (8) s g.u..s. Poof: It s cle fom the defto tht y ole homogeeous system of o-egte ode such s (7) d (8) hs ZES. Moeoe sce x 0 fo x 0, the the ole system (7) hs ot y o-zeo equlbum ot ff the othe system (8) hs ot ethe. Moeoe the soluto cues of both systems cocde wth ech othe, but wth dffeet eloctes t ech ot. Hece ISBN: IMECS 009

4 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog we cosde the soluto cues of both systems s emeteztos of ech othe. he hse otts of the two systems e equlet d some qultte efomces such s g.u..s. of ZES e equlet. Now cosde ge C fucto g(x), we wt to come the tme dete g(x) log the solutos of (7) d (8) t ech ot x. hs s smly doe, by usg (), (7) d (8). Let t d t be the tme bles (7) d (8) esectely, d thus dg(x) dt = [ g(x) x] f(x) = (9) [ g(x) x] f (x) x = dg(x) x dt Let us ew tht both systems (7) d (8) e equlet usg the sme stte ecto x d the ble tme sclg (deedg o stte), becuse dx dt = f(x) = f (x) x = (dx dt) x dt = x dt (0) he eltosh (0) shows the eltty of tme sclg two systems. It deeds o the homogeeous om of the stte ecto x. Also (0) ges ew teetto of (9). Sce f 0, the heoem my be helful og the g.u..s. of ZES of (8). A. he M heoem he followg theoem coces the stblty lyss of (7), d uses (0) d Lemm ts oof. heoem : Cosde the ole homogeeous system (7) ( f ) d m-ecto C fucto V(x) = [ (x), (x),, m(x)]. If the followg codtos e stsfed:. (x) s U, PDF.. All (x) e GD d H fo =,,m.. the followg dffeetl equlty stsfes fo detes log the solutos of (7): j 0 0 x () m, m,m 0 m m m m,m mm m m+ whee m+ (x) H s PDF d A = [ j] m m s mtx wth the oety (8), the the ZES of (7) s g.u..s. Poof: Usg (9) yelds (d dt) x d dt fo the = tme detes of ech (x) log the solutos of (7) d (8). Moeoe mlemetg H d f yelds (d dt) H + fo =,,m. Ech tem () s homogeeous fucto of ode +. Ddg () by x d usg (d dt) x = d dt esults the followg eltosh, comoet se: A dv(x) dt [ (x),, (x), (x)] () m m+ Hece the codtos of heoem e stsfed fo g.u..s. of ZES of (8). Usg Lemm esults the g.u..s. of ZES of (7). B. he homogeeous ol coodte Although the heoem s lcble fo bty ode homogeeous systems, but we eed some desgg tools to fd the useful (x) fuctos fo ge ole system. I the eous exmle we used the ol coodte. he usul ol coodte s useful oly fo stdd ole homogeeous systems, but ot fo geel homogeety. Hee ew ol coodte w..t. ge weghts = (, ) fo = s toduced. We desgte to ech ot x = [x,x ] (, ) s - ol coodte. Cosdeg ge -homogeeous om, let () x = C x = S Defg u [C,S ] we he u, (C ) + (S ) = d u = x =, d thus x, = d H. Moeoe ech (x) H d f(x) could be decomosed s: (x) = (u ) (4) f(x) = f(u ) he decomosto of d s ey mott d wll be used ths e. Dffeettg () w..t. tme d solg fo d we obt: c s ( ) 0 c 0 x = 0 ( ) s c x 0 s (5) Usg (7) d (4) we he x = f(x) = f(u ) = f(u ). Substtutg ths to (5) yelds: + c s ( ) 0 c 0 = f(u ) ( (6) 0 s c ) 0 s he lst equto s the -ol dffeetl equto of the ole system wth f(x). he exteso of -ol coodtes to > s stghtfowd; Just set x = C fo =,, whee = C =. C. heoem Imlemetto A mott questo s : How to use the -ol coodtes to mlemet the heoem? Aswe: Usg the ssumto f(x) d the -ol coodtes we he x,=. I ou ocedue of mlemetg the heoem, we Costuct () oe ow fte othe. Let us be t the th teto,.e. (x) j fo j=,,, e eously defed d we m to fd (x) fo j=,, d costuct the 'th ow of + d j j j j = + (),.e. (x) (x) o equletly ISBN: IMECS 009

5 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog (x) (x) (7) j + j j( ) = + Accodg to the ssumto (x) j H, (x) j H +, theefoe fo j =,, the fuctos + j 0 ( (x) ) H (7) e deedet of,.e. they e ow eodc fuctos oly of. Hece usg umecl methods such s lottg (x) + esus, oe c fd le j 0 combto of them d ew fucto ( + (x) ) H such tht (7) stsfes. IV. SOME EXAMPLES Exmle : he ole system x x (8) x = x s stdd homogeeous of ode two,.e. f. Smlly to Exmle we chge (8) to the ol dffeetl equtos. Whe = = d = e used, the -ol coodtes fo stdd homogeety, cocde wth the usul ol coodtes. Substtutg u = [C,S ], =, = =, d = fo (6) we he: 0 C S C (9) = S C 0 S Let x = to ly heoem fo ths exmle. Sttg wth (x) = x + x =, we use the followg secl fom of () fo stblty lyss: (0) 0 0 = 0 0 m m m m,m mm m m+ Hece fo =,,,m (x) (x) (x) () + (x) = Substtutg (9) to () we he fo =,,,m C S C () + (x) = S C S All the hghe ode detes e well-defed, C eeywhee d belog to H, e.g. (x) C () (x) = = C S S We cosdeed the mete lues 0. A =, d comuted (x) usg () s well. Although (x) s PDF, but fo ths metes (x) s ot egte defte, d thus the Lyuo dect method fls to oe g.u..s. of ZES of (8). We he foud umeclly tht (x) (x) 4(x) s egte fucto oly of (see (7) fo ou method). Lettg m =, the eltosh (0) (d thus ()) s stsfed. Moeoe ll (x) e GD, d thus the ZES of (8) s g.u..s. Exmle : he ole system x 0 x x + x x = 5 0 x = (4) x x + x x s -homogeeous of ode two w..t. weghts = (, ) = (,),.e. f, becuse ( λx ) + ( λ x ) f( λ x) = 5 ( λx ) + ( λx ) ( λ x ) 0 λ x+ x = λ λ f(x) = 5 λ 0 λ x+ x x We use the -ol coodto (x,x ) = ( cos, s ) d the -homogeeous om 6 6,6 x = x + x = fo ths system. Substtutg (, ) = (,), = 6, u [ = C,S ] d = to (6) the we obt the -ol dffeetl equto s follows: / 0 C S C (5) = C 0 S C S he PDF 6 6 6,6 = + = (x) x x x d the equto (0) wll be used to stblty lyss of ZES of (4) usg heoem. substtutg (5) to () we wll he fo =,,,m / C S C (6) + (x) = C S C S All the hghe ode detes e well-defed, C eeywhee d belog to H 6. We he cosdeed the mete lues 0 A =, d fo ths metes (x) s ot egte defte, theefoe the Lyuo dect method fls to oe g.u..s. of ZES of (4). Lettg m =, (x) = (x) fo =, e comuted. he we he foud umeclly tht + (x) (x) 4(x) s egte fucto oly of (see (7) fo ou method), d thus (x) + 60 (x) 4(x) s egte defte. Moeoe ll (x) e GD, d thus the ZES of (4) s g.u..s. V. CONCLUSION he ew method toduced ths e s befly summzed s follows: Suose the.s. of ZES of ge homogeeous dymc system usg the Lyuo dect method s ude cosdeto. Fst oe tes to guess the coect homogeeous LF cddte wth egte defte fst ode dete. If the fst ode LF dete ws ot egte defte, the the Lyuo dect method s fled usg the ge LF, ee f the LF cddte s chose ey exetly. ISBN: IMECS 009

6 Poceedgs of the Itetol MultCofeece of Egees d Comute Scetsts 009 Vol II IMECS 009, Mch 8-0, 009, Hog Kog By the use of heoem, some oxmtos of the hghe ode tme detes of the LF e used to comeste the ole of o-egte defteess of the LF fst ode dete the stblty lyss. Some exmles e ge to show the ldty of the och. EFEENCES [] M. Vdysg, Nole Systems Alyss, Petce Hll, d Ed, 99. [] H. K. Khll, Nole systems, hd ed., 00. []. W. Gudeso, A Comso Lemm fo Hghe Ode jectoy Detes, Poceedgs of the Amec Mthemtcl Socety, Vol. 7, No., , 97. [4] V. M. Mtoso, Method of ecto Luo fuctos of tecoected systems wth dstbuted metes (suey) ( uss), Atomt elemeh, ol.,. 6 75, 97. [5] S. G. Neseso, W.M. Hddd, O the stblty d cotol of ole dymcl systems ecto Lyuo fuctos, IEEE scto o Automtc Cotol, ol. 5, o., 006. [6] A. Butz, Hghe ode detes of Luo fuctos, IEEE sctos o Automtc Cotol (Coesodece), Vol. 4,. -, 969. [7] V. Megol, d S. K. Y. Nesh, Exteso of Hghe Ode Detes of Lyuo Fuctos Stblty Alyss of Nole Systems, Acceted to the Amb Joul of Scece d echology, 008. [8] V. Megol, d S. K. Y. Nesh, A New heoem o Hghe Ode Detes of Lyuo Fuctos, Acceted to the ISA sctos, Elsee, 008. [9] V. Megol, d S. K. Y. Nesh, Hghe Ode detes of Lyuo Fucto Aoch fo Stblty Alyss of Nole Systems, submtted to Systems d Cotol Lettes, 008. [0] H. Hemes, Nlotet oxmtos of cotol systems d dstbutos, SIAM Joul Cotol Otmzto, ol. 4, o. 4,. 7-76, July 986. [].. M Closey,.M. Muy, Noholoomc systems d exoetl coegece: Some Alyss tools, Poceedg of the d Cof. o Decso d Cotol, , S Atoo, exs, Dec 99. [] C. Q, W. L, A cotuous feedbc och to globl stog stblzto of ole systems, IEEE s. O Automtc Cotol, Vol. 46, No. 7, , July 00 [] S.P. Bht, D.S. Beste, Fte-tme stblty of homogeeous systems, Poc. Amec Cotol Cof.,. 5-54, Jue 997. [4] M. Kws, Homogeeous feedbc stblzto, : New eds Systems heoy, G. Cote, A. M. Pedo d B. Wym eds., Pogess Systems d Cotol heoy, ol. 7 (99) [5] L. ose, Homogeeous Lyuo fucto fo homogeeous cotuous ecto feld, Systems d Cotol Lettes 9, , Noth-Holld, 99. ISBN: IMECS 009

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu Itetol Joul of Resech (IJR) e-issn: 2348-6848, - ISSN: 2348-795X Volume 3, Issue 5, Mch 26 Avlble t htt://tetoljoulofesechog Studyg the Poblems of Multle Itegls wth Mle Ch-Hue Yu Detmet of Ifomto Techology,

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Adjacent Vertex Distinguishing Edge Colouring of Cactus Graphs

Adjacent Vertex Distinguishing Edge Colouring of Cactus Graphs ISSN: 77-374 ISO 9:8 etfed Itetol Joul of Egeeg d Iote Techology (IJEIT) Volue 3 Issue 4 Octobe 3 Adcet Vetex Dstgushg Edge oloug of ctus Ghs Nsee Kh Mdhugl Pl Detet of Mthetcs Globl Isttute of Mgeet d

More information

Chapter 17. Least Square Regression

Chapter 17. Least Square Regression The Islmc Uvest of Gz Fcult of Egeeg Cvl Egeeg Deptmet Numecl Alss ECIV 336 Chpte 7 Lest que Regesso Assocte Pof. Mze Abultef Cvl Egeeg Deptmet, The Islmc Uvest of Gz Pt 5 - CURVE FITTING Descbes techques

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. CURVE FITTING Descbes techques to ft cuves (cuve fttg) to dscete dt to obt temedte estmtes. Thee e two geel ppoches fo cuve fttg: Regesso: Dt ehbt sgfct degee of sctte. The stteg s to deve sgle cuve tht

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property Appled Mthemtcs 4: -5 DOI: 59/m4 Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety N Sthumoothy K Pydhs Rmu Isttute fo Advced study Mthemtcs Uvesty of Mds Che 6 5 Id Astct I ths ppe complete

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Spectral Continuity: (p, r) - Α P And (p, k) - Q

Spectral Continuity: (p, r) - Α P And (p, k) - Q IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

Lattice planes. Lattice planes are usually specified by giving their Miller indices in parentheses: (h,k,l)

Lattice planes. Lattice planes are usually specified by giving their Miller indices in parentheses: (h,k,l) Ltte ples Se the epol ltte of smple u ltte s g smple u ltte d the Mlle des e the oodtes of eto oml to the ples, the use s ey smple lttes wth u symmety. Ltte ples e usully spefed y gg the Mlle des petheses:

More information

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS FORMULA BOOKLET Fom Septembe 07 Issued 07 Mesuto Pue Mthemtcs Sufce e of sphee = 4 Ae of cuved sufce of coe = slt heght Athmetc Sees S l d

More information

Theory of Finsler spaces with ( λβ, ) Metric

Theory of Finsler spaces with ( λβ, ) Metric Theoy of Fsle sces wth ( λβ ) Metc Dhed Thu Kll Multle us Thuv Uvesty Kll DhdhNel E-l: dhedthuc@lco ABTRAT The of ths e s to toduce d study the cocet of ( ) theoes hve ee woout fo ( ) etc whee (x)y s oe

More information

Transmuted Generalized Lindley Distribution

Transmuted Generalized Lindley Distribution Itetol Joul of Memtcs Teds d Techology- olume9 Numbe Juy 06 Tsmuted Geelzed Ldley Dstbuto M. Elghy, M.Rshed d A.W.Shwk 3, Buydh colleges, Deptmet of Memtcl Sttstcs, KSA.,, 3 Isttute of Sttstcl Studes d

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE Jou of Eee d Ntu Scece Mühed e Fe Be De S 5/4 SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A EYL SPACE N KOFOĞLU M S Güze St Üete, Fe-Edeyt Füte, Mtet Böüü, Beştş-İSTANBUL Geş/Receed:..4 Ku/Accepted:

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

A Unified Formula for The nth Derivative and The nth Anti-Derivative of the Bessel Function of Real Orders

A Unified Formula for The nth Derivative and The nth Anti-Derivative of the Bessel Function of Real Orders Aec Joul of Aled Mthetc d Stttc 5 Vol 3 No 3-4 Avlble ole t htt://ubceubco/j/3/3/3 Scece d Educto Publhg DOI:69/j-3-3-3 A Ufed Foul fo The th Devtve d The th At-Devtve of the eel Fucto of Rel Ode Mhe M

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Moments of Generalized Order Statistics from a General Class of Distributions

Moments of Generalized Order Statistics from a General Class of Distributions ISSN 684-843 Jol of Sttt Vole 5 28. 36-43 Moet of Geelzed Ode Sttt fo Geel l of Dtto Att Mhd Fz d Hee Ath Ode ttt eod le d eel othe odel of odeed do le e ewed el e of geelzed ode ttt go K 995. I th e exlt

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Synthesis of Stable Takagi-Sugeno Fuzzy Systems

Synthesis of Stable Takagi-Sugeno Fuzzy Systems Sytess of Stle Tk-Sueo Fuzzy Systems ENATA PYTELKOVÁ AND PET HUŠEK Deptmet of Cotol Eee Fculty of Electcl Eee, Czec Teccl Uvesty Teccká, 66 7 P 6 CZECH EPUBLIC Astct: - Te ppe dels t te polem of sytess

More information

Chapter #2 EEE State Space Analysis and Controller Design

Chapter #2 EEE State Space Analysis and Controller Design Chpte EEE8- Chpte # EEE8- Stte Spce Al d Cotolle Deg Itodcto to tte pce Obevblt/Cotollblt Modle ede: D D Go - d.go@cl.c.k /4 Chpte EEE8-. Itodcto Ae tht we hve th ode te: f, ', '',.... Ve dffclt to td

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS VOL. 5 NO. JULY ISSN 89-8 RN Joul of Egeeg d ppled Sceces - s Resech ulshg Netok RN. ll ghts eseved..pouls.com SETIC -SLINE COLLOCTION METHOD FOR SIXTH ORDER OUNDRY VLUE ROLEMS K.N.S. Ks Vsdhm d. Mul Ksh

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION #A4 INTEGERS 1 (01) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION Ygu Deg Key Laboatoy of Mathematcs Mechazato, NCMIS, Academy of Mathematcs ad Systems Scece, Chese Academy of Sceces, Bejg,

More information

Fuel- or Time-Optimal Transfers Between Coplanar, Coaxial Ellipses. Using Lambert s Theorem. Chang-Hee Won

Fuel- or Time-Optimal Transfers Between Coplanar, Coaxial Ellipses. Using Lambert s Theorem. Chang-Hee Won Fuel- o Te-Optl Tsfes Betwee Copl, Col Ellpses Usg Lbet s Theoe Chg-Hee Wo Electocs Telecouctos Resech Isttute, Tejo 05-600, Republc of Koe Abstct Uoubtely, u-fuel -te obt tsfe e the two jo gols of the

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

A Deterministic Model for Channel Capacity with Utility

A Deterministic Model for Channel Capacity with Utility CAPTER 6 A Detestc Model fo Chel Cct wth tlt 6. todcto Chel cct s tl oeto ssocted wth elble cocto d defed s the hghest te t whch foto c be set ove the chel wth btl sll obblt of eo. Chel codg theoes d the

More information

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function vlle t htt:vu.edu l. l. Mth. ISSN: 93-9466 Vol. 3 Iue Jue 8. 8 36 Pevouly Vol. 3 No. lcto d led Mthetc: Itetol Joul M Cet Exo Foule Ivolvg c logue o Fox -Fucto S.. Puoht etet o c-scece Mthetc College o

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Reflection from a surface depends on the quality of the surface and how much light is absorbed during the process. Rays

Reflection from a surface depends on the quality of the surface and how much light is absorbed during the process. Rays Geometc Otcs I bem o lgt s ow d s sot wvelegt comso to te dmeso o y obstcle o etue ts t, te ts bem my be teted s stgt-le y o lgt d ts wve oetes o te momet goed. I ts oxmto, lgt ys e tced toug ec otcs elemet

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations

For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Ju 008 UA08598 TABLE

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures Chpt Rcpocl Lttc A mpott cocpt o lyzg podc stuctus Rsos o toducg cpocl lttc Thoy o cystl dcto o x-ys, utos, d lctos. Wh th dcto mxmum? Wht s th tsty? Abstct study o uctos wth th podcty o Bvs lttc Fou tsomto.

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

CREEP TRANSITION STRESSES OF ORTHOTROPIC THICK-WALLED CYLINDER UNDER COMBINED AXIAL LOAD UNDER INTERNAL PRESSURE UDC

CREEP TRANSITION STRESSES OF ORTHOTROPIC THICK-WALLED CYLINDER UNDER COMBINED AXIAL LOAD UNDER INTERNAL PRESSURE UDC FACA UNIVERSIAIS Sees: Mechcl Egeeg Vol. 11, N o 1, 013, pp. 13-18 CREEP RANSIION SRESSES OF ORHOROPIC HICK-WALLED CYLINDER UNDER COMBINED AXIAL LOAD UNDER INERNAL PRESSURE UDC 6.07. Pkj hku Deptmet of

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

An Analysis of Brand Selection

An Analysis of Brand Selection (IJCS) Itetol Joul of dvced Comute Scece d lctos Vol. o. 8 lss of Bd Selecto Kuho Tkesu College of Busess dmstto Tokoh Uvest 5 Oouch Fuj Ct Shuok -8 J uk Hguch Fcult of Busess dmstto Setsu Uvest -8 Iked-kmch

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed.

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed. CIVL 33 Appomto d Ucett J.W. Hule, R.W. Mee 8. IMPLE LINEAR REGREION tupd s foeve, goce c be fed. Do Wood uppose we e gve set of obsevtos (, ) tht we beleve to be elted s f(): Lookg t the plot t ppes tht

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

On The Circulant K Fibonacci Matrices

On The Circulant K Fibonacci Matrices IOSR Jou of Mthetcs (IOSR-JM) e-issn: 78-578 p-issn: 39-765X. Voue 3 Issue Ve. II (M. - Ap. 07) PP 38-4 www.osous.og O he Ccut K bocc Mtces Sego co (Deptet of Mthetcs Uvesty of Ls Ps de G C Sp) Abstct:

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information