MATH 56A: STOCHASTIC PROCESSES CHAPTER 3

Size: px
Start display at page:

Download "MATH 56A: STOCHASTIC PROCESSES CHAPTER 3"

Transcription

1 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Plan for rest of semester (1) st week (8/31, 9/6, 9/7) Chap 0: Diff eq s an linear recursion (2) n week (9/11...) Chap 1: Finite Markov chains (3) r week (9/18...) Chap 1: Finite Markov chains (4) th week (9/25...) Chap 2: Countable Markov chains (5) th week (oct 3,4,5) Chap 3: Continuous time Markov chains (6) th week (oct 9,11,12) Ch 4: Stopping time (7) th week (oct 16,18,19) Ch 5: Martingales (8) th week (oct 23,25,26) Ch 6: Renewal processes (9) th week (oct 30,1,2) Ch 7: Reversible Markov chains (10) th week (nov 6,8,9 ) Ch 8: Weiner process (11) th week (nov 13,15,16) Ch 8: more (12) th week (nov 20,22) (short week) Ch 9: Stochastic integrals (13) th week (nov 27,29,30,4) (extra ay) Ch 9: more 3. Continuous Markov Chains The iea of continuous Markov chains is to make time continuous instea of iscrete. This iea only works when the system is not jumping back an forth at each step but rather moves graually in a certain irection making time continuous. On the first ay I iscusse the problem of converting to continuous time. In the iscrete Markov chain we have the transition matrix P with entries p(i, j) giving the probability of going from i to j in one unit of time. The n-th power, say P 5 has entries p 5 (i, j) = P(X 5 = j X 0 = i) We want to interpolate an figure out what happene for all positive time t. (Negative time is iscusse in Chapter 7.) We alreay know how to o that. You write: P = QDQ 1 Date: October 9,

2 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 where D is a iagonal matrix whose iagonal entries are the eigenvalues of P an Q is the matrix of right eigenvectors of P. The first eigenvector of P is 1 an the first right eigenvector is the column vector having all 1 s. If the eigenvalues are all positive then we can raise them to arbitrary values: P t = QD t Q 1 Usually you take logarithms. For example, if there are 3 states: D = = e e ln e ln 3 Then P t = e ta where A = Q(ln D)Q 1 = Q ln 2 0 Q ln 3 This uses: Theorem 3.1. P = QDQ 1 = Qe ln D Q 1 Q ln DQ 1 = e Proof. Let L = ln D then Conjugate by Q: D = e L := I + L + L2 2 + L3 3! + Qe L Q 1 = QQ 1 + QLQ 1 + QL2 Q 1 + QL3 Q ! This is equal to e QLQ 1 since QL n Q 1 = (QLQ 1 ) n. The other theorem I pointe out was: Theorem 3.2. t P t = P t A = AP t Proof. This is just term by term ifferentiation. t P t = Qt n L n Q 1 t n! = Qnt n 1 L n Q 1 n(n 1)! = QLQ 1 Qt n L n Q 1 = AP t n!

3 MATH 56A: STOCHASTIC PROCESSES CHAPTER Poisson processes. On the secon ay I explaine continuous Markov chains as generalizations of Poisson processes. A Poisson process is an event which occurs from time to time is time homogeneous (i.e., the probability that it will occur tomorrow is the same as the probability that it will occur toay) an the occurrences are inepenent The inepenence of occurrences of a Poisson event means that the probability of future occurrence is inepenent of both past an present. Markov processes are inepenent of the past. They epen only on the present. We will transform a Poisson processes so that it looks more like a Markov process. Here is an example where a Poisson event occurs three times in a time interval t = t 1 t 0. (We put t 0 = 0 in class so that t = t 1.) x + 3 x + 2 T x + 1 x a Poisson event (birth) occurs three times in a time interval each Poisson event (birth) gives a jump in the Markov state (total population) Figure 1. Poisson to Markov The Poisson process has one parameter λ calle the rate. This is measure in inverse time units (number of occurrences per unit time). Thus λ t is the expecte number of occurrences in any time interval of length t variables associate to a Poisson process. There are two ranom variables associate with a Poisson process:

4 4 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Poisson variable (nonnegative integer) X = number of occurrences in t P(X = k) = e λt 1 λk t k 1 k! Exponential variable (positive real) T = time until 1st occurrence P(event oes not occur) = P(event oes not occur) = P(X = 0) = e λt 1 = 1 λt 1 + λ2 t P(T > t 1) = e λt 1 P(event occurs) = P(event occurs in time t) = P(X 1) = 1 e λ t = λ t + o( t) P(T t) = 1 e λ t λ t Here the book uses the little oh notation o( t) to enote anything which vanishes faster than t: o( t) 0 as t 0 t Poisson to Markov. There are two changes we have to make to transform a Poisson process into a continuous time Markov process. a) Every time an event occurs, you nee to move to a new state in the Markov process. Figure 1 shows an example where the state is the total population: X t := population at time t = X 0 + #births #eaths b) The rate α(x) epens on the state x. For example, the rate at which population grows is proportional to the size of the population: α(x) = λx, λ : constant Notice that, when the rate increases, the events will occur more frequently an the waiting time will ecrease. So, there is the possibility of explosion, i.e., an infinite number of jumps can occur in a finite amount of time Definition of continuous Markov chain. This is from Lawler, p. 69. We nee to start with an infinitesmal generator A which is a matrix with entries α(x, y) for all states x, y S so that α(x, y) 0 for x y an α(x, x) 0 an so that the sum of the rows is zero: α(x, y) = 0 y S

5 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 5 We use the notation α(x) = α(x, x) = y x α(x, y) Definition 3.3. A continuous time Markov chain with infinitesmal generator A = (α(x, y)) is a function X : [0, ) S so that (1) X is right continuous. I.e., X t is equal to the limit of X t+ t as t goes to zero from the right (the positive sie). (2) P(X t+ t = x X t = x) = 1 α(x) t + o( t) (3) P(X t+ t = y X t = x) = α(x, y) t + o( t) for y x. (4) X t is time homogeneous (5) X t is Markovian (X t epens on X t but is inepenent of the state before time t.) I pointe out that the numbers α(x), α(x, y) were necessarily 0 an that α(x) = y x α(x, y) since X t+ t must be in some state. The (x, x) entry of the matrix A is α(x, x) = α(x). So, the rows of the matrix A a up to zero an all negative numbers lie on the iagonal probability istribution vector. At any time t we have a probability istribution vector telling what is the probability of being in each state. p x (t) := P(X t = x) This shoul not be confuse with the time epenent probability transition matrix: p t (x, y) := P(X t = y X 0 = x) Theorem 3.4. The time erivative of the probability istribution function p x (t) is given by t p x(t) = p y (t)α(y, x) y S In matrix notation this is p(t) = p(t)a t The unique solution of this ifferential equation is: p(t) = p(0)e ta This implies that P t := e ta is the time t probability transition matrix.

6 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Proof. The ifference p x (t + t) p x (t) is equal to the probability that the state moves into x minus the probability that it will move out of x in the time perio from t to t + t. So, p x (t+ t) p x (t) = P(X t+ t = x, X t = y x) P(X t+ t = y x, X t = x) = y x P(X t = y)p(x t+ t = x X t = y) y x P(X t = x)p(x t+ t = y X t = x) y x p y (t)α(y, x) t y x p x (t)α(x, y) t = y x p y (t)α(y, x) t p x (t)α(x) t = y p y (t)α(y, x) t So, p x (t + t) p x (t) p y (t)α(y, x) t y Take the limit as t 0 to get the theorem example. What is the probability that X 4 = 1 given that X 0 = 0 if the infinitesmal generator is ( ) 1 1 A =? 2 2 The answer is given by the (0, 1) entry of the matrix e 4A. The given information is that p(0) = (1, 0) an the question is: What is p 1 (4)? The solution in matrix terms is the secon coorinate of p(4) = (p 0 (4), p 1 (4)) = (1, 0)e 4A We worke out the example: Since the trace of A is 1+ 2 = 3 = an 1 = 0 we must have 2 = 3. So, A = QDQ 1 where ( ) 0 0 D = 0 3 an Q is the matrix of right eigenvectors of A: ( ) ( ) 1 1 2/3 1/3 Q =, Q = 1/3 1/3 The time 4 transition matrix is ( ) ( ) ( ) /3 1/3 e 4A = Qe 4D Q 1 = e 12 1/3 1/3

7 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 7 So, the answer is 2 + e 12 = P 4 = 3 2 2e 12 3 p 1 (4) = 1 e e e equilibrium istribution, positive recurrence. An equilibrium istribution oes not change with time. In other wors, the time erivative is zero: π(t) = π(t)a = 0 t So, π(t) = π(0) is the left eigenvector of A normalize by: π(x) = 1 x S Since π oes not change with time, we forget the t an write π(x) for π x (t). Recall that irreucible Markov chains are positive recurrent if an only if there is an equilibrium istribution. The example above is irreucible an finite, therefore positive recurrent. The equilibrium istribution is π = (2/3, 1/3) birth-eath chain. Definition 3.5. A birth-eath chain is a continuous Markov chain with state space S = {0, 1, 2, 3, } (representing population size) an transition rates: α(n, n + 1) = λ n, α(n, n 1) = µ n, α(n) = λ n + µ n representing births an eaths which occur one at a time. Notice that the total flow between the set of states {0, 1, 2,, n} to the states {n + 1, n + 2, } is given by the birth rate λ n an the eath rate µ n+1. So, π(n) is an equilibrium if an only if Solving for π(n + 1) gives: π(n + 1) = π(n)λ n = π(n + 1)µ n+1 λ n µ n+1 π(n) = λ nλ n 1 µ n+1 µ n π(n 1) = = λ nλ n 1 λ 0 µ n+1 µ n µ 1 π(0) If we can normalize these numbers we get an equilibrium istribution. So, 3

8 8 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Theorem 3.6. The birth-eath chain is positive recurrent if an only if λ n λ n 1 λ 0 < µ n+1 µ n µ birth an explosion. If there is no eath, the birth-eath chain is obviously transient. The population is going to infinity but how fast? Suppose that T n is the time that the population stays in state n. Then (when µ n = 0) T n is exponential with rate λ n. So, Theorem 3.7. a) If < then explosion occurs with probability one. b) If 1 λ n 1 λ n E(T n ) = 1 λ n = then the probability of explosion is zero. For example, in the Yule process with λ n = nλ, explosion will not occur since 1 = 1 λ n λn = 1 1 λ n = 3.9. transient birth-eath chains. Recall that an irreucible Markov chain is transient if an only if there is a right eigenvector of P with entries converging to zero corresponing to eigenvector 1. In the continuous time case, this is the same as a right eigenvector of A corresponing to eigenvalue 0. So, we want numbers a(n) such that a(n 1)µ n + a(n)( λ n µ n ) + a(n + 1)λ n = 0 This equation can be rewritten as [a(n + 1) a(n)]λ n = [a(n) a(n 1)]µ n [a(n + 1) a(n)] = µ n [a(n) a(n 1)] = µ nµ n 1 µ 1 [a(1) a(0)] λ n λ n λ n 1 λ 1 a(k + 1) is the sum of these numbers: k k µ n µ n 1 µ 1 a(k+1) = a(0)+ [a(n+1) a(n)] = a(0)+ [a(1) a(0)] λ n λ n 1 λ 1 Theorem 3.8. A birth-eath chain is transient if an only if k µ n µ n 1 µ 1 < λ n λ n 1 λ 1 Proof. Let L be this limit. Let a(0) = 1 an a(1) = 1 1/L. Then a(k + 1) given by the above formula will converge to zero. Conversely, if the a(k + 1) goes to zero, the infinite sum must converge.

Markov Chains in Continuous Time

Markov Chains in Continuous Time Chapter 23 Markov Chains in Continuous Time Previously we looke at Markov chains, where the transitions betweenstatesoccurreatspecifietime- steps. That it, we mae time (a continuous variable) avance in

More information

Math 597/697: Solution 5

Math 597/697: Solution 5 Math 597/697: Solution 5 The transition between the the ifferent states is governe by the transition matrix 0 6 3 6 0 2 2 P = 4 0 5, () 5 4 0 an v 0 = /4, v = 5, v 2 = /3, v 3 = /5 Hence the generator

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

PES 1120 Spring 2014, Spendier Lecture 36/Page 1

PES 1120 Spring 2014, Spendier Lecture 36/Page 1 PES 0 Spring 04, Spenier ecture 36/Page Toay: chapter 3 - R circuits: Dampe Oscillation - Driven series R circuit - HW 9 ue Wenesay - FQs Wenesay ast time you stuie the circuit (no resistance) The total

More information

Statistics 992 Continuous-time Markov Chains Spring 2004

Statistics 992 Continuous-time Markov Chains Spring 2004 Summary Continuous-time finite-state-space Markov chains are stochastic processes that are widely used to model the process of nucleotide substitution. This chapter aims to present much of the mathematics

More information

Topic 7: Convergence of Random Variables

Topic 7: Convergence of Random Variables Topic 7: Convergence of Ranom Variables Course 003, 2016 Page 0 The Inference Problem So far, our starting point has been a given probability space (S, F, P). We now look at how to generate information

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 6. Renewal Mathematically, renewal refers to a continuous time stochastic process with states,, 2,. N t {,, 2, 3, } so that you only have jumps from x to x + and

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 0. Chapter 0 I reviewed basic properties of linear differential equations in one variable. I still need to do the theory for several variables. 0.1. linear differential

More information

(implicitly assuming time-homogeneity from here on)

(implicitly assuming time-homogeneity from here on) Continuous-Time Markov Chains Models Tuesday, November 15, 2011 2:02 PM The fundamental object describing the dynamics of a CTMC (continuous-time Markov chain) is the probability transition (matrix) function:

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 7. Reversal This chapter talks about time reversal. A Markov process is a state X t which changes with time. If we run time backwards what does it look like? 7.1.

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 2A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 2A EECS 6B Designing Information Devices an Systems II Spring 208 J. Roychowhury an M. Maharbiz Discussion 2A Secon-Orer Differential Equations Secon-orer ifferential equations are ifferential equations of

More information

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col Review of Linear Algebra { E18 Hanout Vectors an Their Inner Proucts Let X an Y be two vectors: an Their inner prouct is ene as X =[x1; ;x n ] T Y =[y1; ;y n ] T (X; Y ) = X T Y = x k y k k=1 where T an

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Jointly continuous distributions and the multivariate Normal

Jointly continuous distributions and the multivariate Normal Jointly continuous istributions an the multivariate Normal Márton alázs an álint Tóth October 3, 04 This little write-up is part of important founations of probability that were left out of the unit Probability

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015 Markov chains c A. J. Ganesh, University of Bristol, 2015 1 Discrete time Markov chains Example: A drunkard is walking home from the pub. There are n lampposts between the pub and his home, at each of

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Stochastic Processes (Week 6)

Stochastic Processes (Week 6) Stochastic Processes (Week 6) October 30th, 2014 1 Discrete-time Finite Markov Chains 2 Countable Markov Chains 3 Continuous-Time Markov Chains 3.1 Poisson Process 3.2 Finite State Space 3.2.1 Kolmogrov

More information

Homework set 3 - Solutions

Homework set 3 - Solutions Homework set 3 - Solutions Math 495 Renato Feres Problems 1. (Text, Exercise 1.13, page 38.) Consider the Markov chain described in Exercise 1.1: The Smiths receive the paper every morning and place it

More information

Introduction to Markov Processes

Introduction to Markov Processes Introuction to Markov Processes Connexions moule m44014 Zzis law Gustav) Meglicki, Jr Office of the VP for Information Technology Iniana University RCS: Section-2.tex,v 1.24 2012/12/21 18:03:08 gustav

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs.

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs. Linear ODEs Linear ODEs Existence of solutions to linear IVPs Resolvent matrix Autonomous linear systems p. 1 Linear ODEs Types of systems Definition (Linear ODE) A linear ODE is a ifferential equation

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Problem Set 8

Problem Set 8 Eli H. Ross eross@mit.edu Alberto De Sole November, 8.5 Problem Set 8 Exercise 36 Let X t and Y t be two independent Poisson processes with rate parameters λ and µ respectively, measuring the number of

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

Math 251 Notes. Part I.

Math 251 Notes. Part I. Math 251 Notes. Part I. F. Patricia Meina May 6, 2013 Growth Moel.Consumer price inex. [Problem 20, page 172] The U.S. consumer price inex (CPI) measures the cost of living base on a value of 100 in the

More information

A review of Continuous Time MC STA 624, Spring 2015

A review of Continuous Time MC STA 624, Spring 2015 A review of Continuous Time MC STA 624, Spring 2015 Ruriko Yoshida Dept. of Statistics University of Kentucky polytopes.net STA 624 1 Continuous Time Markov chains Definition A continuous time stochastic

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

SOLUTIONS for Homework #3

SOLUTIONS for Homework #3 SOLUTIONS for Hoework #3 1. In the potential of given for there is no unboun states. Boun states have positive energies E n labele by an integer n. For each energy level E, two syetrically locate classical

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential 20. Derivatives of compositions: the chain rule At the en of the last lecture we iscovere a nee for the erivative of a composition. In this lecture we show how to calculate it. Accoringly, let P have omain

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

05 The Continuum Limit and the Wave Equation

05 The Continuum Limit and the Wave Equation Utah State University DigitalCommons@USU Founations of Wave Phenomena Physics, Department of 1-1-2004 05 The Continuum Limit an the Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Some Examples. Uniform motion. Poisson processes on the real line

Some Examples. Uniform motion. Poisson processes on the real line Some Examples Our immeiate goal is to see some examples of Lévy processes, an/or infinitely-ivisible laws on. Uniform motion Choose an fix a nonranom an efine X := for all (1) Then, {X } is a [nonranom]

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7.

1 dx. where is a large constant, i.e., 1, (7.6) and Px is of the order of unity. Indeed, if px is given by (7.5), the inequality (7. Lectures Nine an Ten The WKB Approximation The WKB metho is a powerful tool to obtain solutions for many physical problems It is generally applicable to problems of wave propagation in which the frequency

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

Self-normalized Martingale Tail Inequality

Self-normalized Martingale Tail Inequality Online-to-Confience-Set Conversions an Application to Sparse Stochastic Banits A Self-normalize Martingale Tail Inequality The self-normalize martingale tail inequality that we present here is the scalar-value

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

Problem Sheet 2: Eigenvalues and eigenvectors and their use in solving linear ODEs

Problem Sheet 2: Eigenvalues and eigenvectors and their use in solving linear ODEs Problem Sheet 2: Eigenvalues an eigenvectors an their use in solving linear ODEs If you fin any typos/errors in this problem sheet please email jk28@icacuk The material in this problem sheet is not examinable

More information

5 Eigenvalues and Diagonalization

5 Eigenvalues and Diagonalization Linear Algebra (part 5): Eigenvalues and Diagonalization (by Evan Dummit, 27, v 5) Contents 5 Eigenvalues and Diagonalization 5 Eigenvalues, Eigenvectors, and The Characteristic Polynomial 5 Eigenvalues

More information

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018 Math 456: Mathematical Modeling Tuesday, March 6th, 2018 Markov Chains: Exit distributions and the Strong Markov Property Tuesday, March 6th, 2018 Last time 1. Weighted graphs. 2. Existence of stationary

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Physics 2112 Unit 5: Electric Potential Energy

Physics 2112 Unit 5: Electric Potential Energy Physics 11 Unit 5: Electric Potential Energy Toay s Concept: Electric Potential Energy Unit 5, Slie 1 Stuff you aske about: I on't like this return to mechanics an the potential energy concept, but this

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx Math 53 Notes on turm-liouville equations Many problems in physics, engineering, an chemistry fall in a general class of equations of the form w(x)p(x) u ] + (q(x) λ) u = w(x) on an interval a, b], plus

More information

Lecture 2: Correlated Topic Model

Lecture 2: Correlated Topic Model Probabilistic Moels for Unsupervise Learning Spring 203 Lecture 2: Correlate Topic Moel Inference for Correlate Topic Moel Yuan Yuan First of all, let us make some claims about the parameters an variables

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information