Math 597/697: Solution 5

Size: px
Start display at page:

Download "Math 597/697: Solution 5"

Transcription

1 Math 597/697: Solution 5 The transition between the the ifferent states is governe by the transition matrix P = 4 0 5, () an v 0 = /4, v = 5, v 2 = /3, v 3 = /5 Hence the generator is given by (2) 2 The state space consists of all pairs (m, n) of nonnegative integers The time until a given pair of male an female prouces an offspring is an exponential RV with parameter λ If the population at time consists of m males an n females there are nm possible pairs an hence we obtain v (m,n) = λmn, (3) q (m,n)(m+,n) = pλmn, q (m,n)(m,n+) = ( p)λmn (4) P (m,n)(m+,n) = p, P (m,n)(m,n+) = ( p) (5) 3 (a) The number of computers X t in operating conition at time t is either 0,, 2 an the number of computers operating is either 0 if X t = 0 or if X t = or 2 The rate of failure of the operating computer is an the rate of repair is λ There is only one repair facility so that at most one computer can be repaire at a time We fin an v 0 = λ, v = λ +, v 2 = (6) P 0 =, P 0 = λ +, P 2 = λ λ +, P 2 = (7)

2 Hence the generator is λ λ 0 λ λ 0 The backwar equations are, for j = 0,, 2, (8) t P 0j = λ(p 0j P j ), (9) t P j = (P 0j P j ) λ(p j P 2j ), (0) t P 2j = (P j P 2j ), () an the forwar equations are t P j0 = λp j0 + P j, (2) t P j = λp j0 (λ + )P j + P j2, (3) t P j2 = λp j P j2 (4) The stationary istribution is π j = (λ/) j + (λ/) + (λ/) 2 (5) It is also a limiting istribution since the state space is finite an the chain is irreucible In the long run, the proportion of time when the system is operating (ie in state or 2) is (λ/) + (λ/) 2 + (λ/) + (λ/) 2 (6) (b) The ifference with (a) is that the two computers can be in operation at the same time an so the rate of failures when X t = 2 is twice the rate of (a) v 0 = λ, v = λ +, v 2 = 2 (7) Then λ λ 0 λ λ 0 2 2, (8) 2

3 an the stationary istribution is in that case π j = j! (λ/)j + (λ/) + 2 (λ/)2 (9) an so, in the long run, the proportion of time when the system is operating (ie in state or 2) is (λ/) + 2 (λ/)2 + (λ/) + 2 (λ/)2 (20) (c) Let us consier first the case (a) We compute the expecte time to reach 0 starting from 2 We write T = T 2 + T 0 where T 2 is the first time the chain reach state stating from state 2 an T 0 is the first time the chain reach state 0 starting from Clearly T 2 is an exponential RV with mean To compute E[T 0] we conition on the event A where the first transition is to 0 (probability /(λ + ) or the event B where the first transition is to 2 (probability λ/(λ + ) Since the first transition occurs in average after a time /(λ + ) we fin E[T 0 A] = E[T 0 B] = λ +, (2) λ + + E[T 2] + E[T 0 ] (22) an so, E[T 0 ] = = λ + + λ + ( + λ ) + λ λ + (E[T 2] + E[T 0 ]) (23) λ λ + E[T 0]) (24) Solving gives E[T 0 ] = + λ an E[T ] = 2+ λ In case (b) one fins λ 2 instea 4 Each component is an on/off system with generator ( λi λ i i i ) (25) 3

4 For each component the stationary an limiting istribution is for i = A, B, π (i) i 0 =, π (i) λ i = (26) λ i + i λ i + i By inepenence the stationary istribution of the two componentsystem is π (A) i π (B) j (a) If the components are working in parallel the is operating if at least of the components is in state 0, hence the esire probability is π (A) π (B) = λ A λ B (λ A + A )(λ B + B ) (27) (b) If the components are working in series, both must work for the system to be operating, hence the esire probability is π (A) 0 π (B) 0 = A B (λ A + A )(λ B + B ) (28) 5 Consier a continuous time branching process efine as follows A organism lifetime is exponential with parameter λ an upon eath, it leaves k offspring with probability p k, k 0 The organisms act inepenently of each other We assume that p = 0 so that, at eath, there are no transition from a state into itself Let X t be the population at time t A transition occurs when an organism ies an if there are n organisms the average time until a eath is /nλ an so v n = nλ When an organism ies it is replace by 0, 2, 3, 4, organisms an therefore we have P nn = p 0 P nn+ = p 2, P nn+k = p k+ (29) Therefore the generator is given by λp 0 λ λp 2 λp 3 0 2λp 0 2λ 2λp 2 (30) The backwar equations are t P 0j = 0, (3) 4

5 t P j = λ (p 0 P 0j + p 2 P 2j + p 3 P 3j + P j ), (32) (33) t P nj = nλ (p 0 P n j + p 2 P n+j + p 3 P n+2j + P nj ) (34) an the forwar equations are t P j0 = λp 0 P j, (35) t P j = λp j + 2λp 0 P j2, (36) t P j2 = λp 2 P j + 2λP j2 + 3λp 0 P j3, (37) t P j3 = λp 3 P j + 2λp 2 P j2 3λP j3 + 4λp 0 λp j3, (38) (39) In case of binary splitting we have if the probability of eath without offspring is p λp λ λ( p) 0 0 2λp 2λ 2λ( p) (40) As ones sees from the matrix A the Markov chain is not irreucible, 0 is an absorbing state an all other states are transient The istribution π = (, 0, 0, 0, ) is a stationary state, which escribe the situation where noboy lives Note that the transition matrix P ij is given by a ranom walk, so one might expect that if p < /2 every initial istribution will converge to π while if p /2 there will be a positive probability to escape to infinity 6 Consier the M/M/ queue with arrival rate λ an service rate (a) The M/M/ queue is a Birth an Death process with λ n = λ 5

6 an n = n Hence the generator is λ λ λ λ λ 2 λ λ 3 λ (4) (b) Using the general solution for the stationary an limiting istribution for a Birth an Death process (the M/M/ is irreucible) one fins λ n λ 0 λ n + = + n= n n! n= n = e(λ/) (42) an so ) n e (λ/) (43) π n = n! ( λ The M/M/ is positive recurrent an the stationary istribution is Poisson with parameter λ/ (c) Since we have P {X t+h = n + X t = n} = λh + o(h), (44) P {X t+h = n X t = n} = nh + o(h), (45) P {X t+h = n X t = n} = ( λh nh) + o(h),(46) E [X t+h X t = n] (47) = (n + )λh + (n )nh + n( λh nh) + o(h),(48) = λh nh + n + o(h) (49) an Therefore an E [X t+h ] = λh he [X t ] + E [X t ] + o(h) (50) t E [X t] = λ E [X t ] (5) E [X t ] = E [X 0 ] e t + λ ( e t) (52) 6

7 7 Consier a queuing system with one single server, arrival rate λ an serving rate (a) When N customers are in the system, the arriving customers give up an o no enter the system So the state space is {0,,, N}, the generator is λ λ 0 0 λ λ 0 0 (53) 0 0 λ λ 0 0 The limiting istribution can be foun using the general formula for the birth an eath process with λ n = 0 for n N One fins for 0 j N π j = (λ/) j + N k= (λ/) k = (λ/) j ( (λ/)) λ (λ/) N+ N+ λ = (54) (b) When n customers are in the system, an arriving customer will join the system with probability /(n + ) We have n = for n an λ n = λ/(n + ) for 0n 0 Then λ n λ 0 λ n + = + n= n n! n= n = e(λ/) (55) an the stationary istribution is Poisson with parameter λ/ 8 Consier a Yule process (pure birth with linear growth) an let T i be the time it takes for a population of size i to reach i + (a) Since it is a pure birth process T i is exponential with rate iλ (b) Let us suppose we have n components with ii exponential lifetime X i The RV max(x,, X n ) is the time it takes for the n components to fail Starting with n components, the time until the first failure is the minimum of n exponential RV with parameter λ which is an exponential RV T n with parameter nλ By the memoryless property of the exponential, the time between the first failure an the secon failure is, again, the minimum of 7

8 n exponential RV with parameter λ which is is an exponential RV T n with parameter (n )λ Hence max(x,, X n ) = T n + T n + + T (56) (c) We have, by (b), an inepenence P {T + T 2 + T n < t} = P {max(x,, X n ) < t} = P {X < t} P {X n < t} = ( e λt ) n (57) () Since X t is a pure birth process the Markov chain X t only makes transition from j to j + So T + +T n is the time necessary to reach n starting from an P {T + + T n < t} is the probability that X t n P n (t) = P {X t = n X 0 = } = P {X t n X 0 = } P {X t n + X 0 = } = P {T + + T n < t} P {T + + T n < t} = ( e λt ) n ( e λt ) n = e λt ( e λt ) n (58) Hence P {X t = n X 0 = } has a geometric istribution with parameter e λt (e) By () X t conitione on {X 0 = } is a geometric ranom variable By efinition of a Birth process, the iniviuals reprouce inepenently of each other, an therefore X t conitione on {X 0 = m} is the sum of m geometric ranom variables The sum of m geometric RV with parameters p is calle a negative binomial RV with parameters (m, p) A geometric RV is the number of inepenent trials necessary to obtain one success, so that a negative binomial RV is the number of trials necessary to obtain exactly m successes The probability istribution of the negative binomial RV is, for k m, (at least m trials are necessary) p(k) = ( ) k p m ( p) k m (59) m 8

9 The combinatorial factor is obtaine by noting that the last trial must be a success an by counting the number of ways of having the remaining m successes Therefore we obtain, for n m ( ) n P mn (t) = (e λt ) m ( e λt ) n m (60) m 9

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Plan for rest of semester (1) st week (8/31, 9/6, 9/7) Chap 0: Diff eq s an linear recursion (2) n week (9/11...) Chap 1: Finite Markov chains (3) r week (9/18...)

More information

STAT 380 Continuous Time Markov Chains

STAT 380 Continuous Time Markov Chains STAT 380 Continuous Time Markov Chains Richard Lockhart Simon Fraser University Spring 2018 Richard Lockhart (Simon Fraser University)STAT 380 Continuous Time Markov Chains Spring 2018 1 / 35 Continuous

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Continuous Time Markov Chains Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 2015 Outline Introduction Continuous-Time Markov

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

LECTURE #6 BIRTH-DEATH PROCESS

LECTURE #6 BIRTH-DEATH PROCESS LECTURE #6 BIRTH-DEATH PROCESS 204528 Queueing Theory and Applications in Networks Assoc. Prof., Ph.D. (รศ.ดร. อน นต ผลเพ ม) Computer Engineering Department, Kasetsart University Outline 2 Birth-Death

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Continuous time Markov chains

Continuous time Markov chains Continuous time Markov chains Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ October 16, 2017

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical CDA5530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic ti process X = {X(t), t T} is a collection of random variables (rvs); one

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

An M/G/1 Retrial Queue with Priority, Balking and Feedback Customers

An M/G/1 Retrial Queue with Priority, Balking and Feedback Customers Journal of Convergence Information Technology Volume 5 Number April 1 An M/G/1 Retrial Queue with Priority Balking an Feeback Customers Peishu Chen * 1 Yiuan Zhu 1 * 1 Faculty of Science Jiangsu University

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling Norwegian University of Science and Technology Department of Mathematical Sciences Page of 7 English Contact during examination: Øyvind Bakke Telephone: 73 9 8 26, 99 4 673 TMA426 Stochastic processes

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1 Advanced Markovian queues Bulk input queue M [X] /M/ Bulk service queue M/M [Y] / Erlangian queue M/E k / Bulk input queue M [X] /M/ Batch arrival, Poisson process, arrival rate λ number of customers in

More information

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains ECE-517: Reinforcement Learning in Artificial Intelligence Lecture 4: Discrete-Time Markov Chains September 1, 215 Dr. Itamar Arel College of Engineering Department of Electrical Engineering & Computer

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Queu(e)ing theory Queu(e)ing theory is the branch of mathematics devoted to how objects (packets in a network, people in a bank, processes in a CPU etc etc) join and leave

More information

STATS 3U03. Sang Woo Park. March 29, Textbook: Inroduction to stochastic processes. Requirement: 5 assignments, 2 tests, and 1 final

STATS 3U03. Sang Woo Park. March 29, Textbook: Inroduction to stochastic processes. Requirement: 5 assignments, 2 tests, and 1 final STATS 3U03 Sang Woo Park March 29, 2017 Course Outline Textbook: Inroduction to stochastic processes Requirement: 5 assignments, 2 tests, and 1 final Test 1: Friday, February 10th Test 2: Friday, March

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Markov Chains in Continuous Time

Markov Chains in Continuous Time Chapter 23 Markov Chains in Continuous Time Previously we looke at Markov chains, where the transitions betweenstatesoccurreatspecifietime- steps. That it, we mae time (a continuous variable) avance in

More information

reversed chain is ergodic and has the same equilibrium probabilities (check that π j =

reversed chain is ergodic and has the same equilibrium probabilities (check that π j = Lecture 10 Networks of queues In this lecture we shall finally get around to consider what happens when queues are part of networks (which, after all, is the topic of the course). Firstly we shall need

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 19: Poisson Process Abhay Parekh UC Berkeley March 31, 2011 1 1 Logistics 2 Review 3 Poisson Processes 2 Logistics 3 Poisson Process A continuous version

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Lent Term 2010/11 R. J. Gibbens Problem sheet William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

Lecturer: Olga Galinina

Lecturer: Olga Galinina Renewal models Lecturer: Olga Galinina E-mail: olga.galinina@tut.fi Outline Reminder. Exponential models definition of renewal processes exponential interval distribution Erlang distribution hyperexponential

More information

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling F An Introduction to Stochastic Modeling Fourth Edition Mark A. Pinsky Department of Mathematics Northwestern University Evanston, Illinois Samuel Karlin Department of Mathematics Stanford University Stanford,

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Markov Model. Model representing the different resident states of a system, and the transitions between the different states

Markov Model. Model representing the different resident states of a system, and the transitions between the different states Markov Model Model representing the different resident states of a system, and the transitions between the different states (applicable to repairable, as well as non-repairable systems) System behavior

More information

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 Name STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 There are five questions on this test. DO use calculators if you need them. And then a miracle occurs is not a valid answer. There

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Lecture 4a: Continuous-Time Markov Chain Models

Lecture 4a: Continuous-Time Markov Chain Models Lecture 4a: Continuous-Time Markov Chain Models Continuous-time Markov chains are stochastic processes whose time is continuous, t [0, ), but the random variables are discrete. Prominent examples of continuous-time

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 295 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 16 Queueing Systems with Two Types of Customers In this section, we discuss queueing systems with two types of customers.

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 495 Renato Feres Probability background for continuous time Markov chains This long introduction is in part about topics likely to have been covered in math 3200 or math

More information

Stochastic Models in Computer Science A Tutorial

Stochastic Models in Computer Science A Tutorial Stochastic Models in Computer Science A Tutorial Dr. Snehanshu Saha Department of Computer Science PESIT BSC, Bengaluru WCI 2015 - August 10 to August 13 1 Introduction 2 Random Variable 3 Introduction

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015 Markov chains c A. J. Ganesh, University of Bristol, 2015 1 Discrete time Markov chains Example: A drunkard is walking home from the pub. There are n lampposts between the pub and his home, at each of

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

1 IEOR 4701: Continuous-Time Markov Chains

1 IEOR 4701: Continuous-Time Markov Chains Copyright c 2006 by Karl Sigman 1 IEOR 4701: Continuous-Time Markov Chains A Markov chain in discrete time, {X n : n 0}, remains in any state for exactly one unit of time before making a transition (change

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system.

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system. 8. Preliminaries L, L Q, W, W Q L = average number of customers in the system. L Q = average number of customers waiting in queue. W = average number of time a customer spends in the system. W Q = average

More information

Lecture 21. David Aldous. 16 October David Aldous Lecture 21

Lecture 21. David Aldous. 16 October David Aldous Lecture 21 Lecture 21 David Aldous 16 October 2015 In continuous time 0 t < we specify transition rates or informally P(X (t+δ)=j X (t)=i, past ) q ij = lim δ 0 δ P(X (t + dt) = j X (t) = i) = q ij dt but note these

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

3. Poisson Processes (12/09/12, see Adult and Baby Ross)

3. Poisson Processes (12/09/12, see Adult and Baby Ross) 3. Poisson Processes (12/09/12, see Adult and Baby Ross) Exponential Distribution Poisson Processes Poisson and Exponential Relationship Generalizations 1 Exponential Distribution Definition: The continuous

More information

TMA 4265 Stochastic Processes

TMA 4265 Stochastic Processes TMA 4265 Stochastic Processes Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Solution - Exercise 9 Exercises from the text book 5.29 Kidney transplant T A exp( A ) T B exp(

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

Continuous Time Processes

Continuous Time Processes page 102 Chapter 7 Continuous Time Processes 7.1 Introduction In a continuous time stochastic process (with discrete state space), a change of state can occur at any time instant. The associated point

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia). wkc/course/part2.pdf

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia).  wkc/course/part2.pdf PART II (3) Continuous Time Markov Chains : Theory and Examples -Pure Birth Process with Constant Rates -Pure Death Process -More on Birth-and-Death Process -Statistical Equilibrium (4) Introduction to

More information

Math Homework 5 Solutions

Math Homework 5 Solutions Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram

More information

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin Queuing Networks Florence Perronnin Polytech Grenoble - UGA March 23, 27 F. Perronnin (UGA) Queuing Networks March 23, 27 / 46 Outline Introduction to Queuing Networks 2 Refresher: M/M/ queue 3 Reversibility

More information

T. Liggett Mathematics 171 Final Exam June 8, 2011

T. Liggett Mathematics 171 Final Exam June 8, 2011 T. Liggett Mathematics 171 Final Exam June 8, 2011 1. The continuous time renewal chain X t has state space S = {0, 1, 2,...} and transition rates (i.e., Q matrix) given by q(n, n 1) = δ n and q(0, n)

More information

Promotion and Application of the M/M/1/N Queuing System

Promotion and Application of the M/M/1/N Queuing System Mathematica Aeterna, Vol 2, 2012, no 7, 609-616 Promotion and Application of the M/M/1/N Queuing System Quanru Pan School of Mathematics and Physics, Jiangsu University of science and technology, Zhenjiang,

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

A review of Continuous Time MC STA 624, Spring 2015

A review of Continuous Time MC STA 624, Spring 2015 A review of Continuous Time MC STA 624, Spring 2015 Ruriko Yoshida Dept. of Statistics University of Kentucky polytopes.net STA 624 1 Continuous Time Markov chains Definition A continuous time stochastic

More information

Fault-Tolerant Computing

Fault-Tolerant Computing Fault-Tolerant Computing Motivation, Background, and Tools Slide 1 About This Presentation This presentation has been prepared for the graduate course ECE 257A (Fault-Tolerant Computing) by Behrooz Parhami,

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Random Walk on a Graph

Random Walk on a Graph IOR 67: Stochastic Models I Second Midterm xam, hapters 3 & 4, November 2, 200 SOLUTIONS Justify your answers; show your work.. Random Walk on a raph (25 points) Random Walk on a raph 2 5 F B 3 3 2 Figure

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Problem Set 8

Problem Set 8 Eli H. Ross eross@mit.edu Alberto De Sole November, 8.5 Problem Set 8 Exercise 36 Let X t and Y t be two independent Poisson processes with rate parameters λ and µ respectively, measuring the number of

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Markovian N-Server Queues (Birth & Death Models)

Markovian N-Server Queues (Birth & Death Models) Markovian -Server Queues (Birth & Death Moels) - Busy Perio Arrivals Poisson (λ) ; Services exp(µ) (E(S) = /µ) Servers statistically ientical, serving FCFS. Offere loa R = λ E(S) = λ/µ Erlangs Q(t) = number

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

AN M/M/1 QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Madan, Department of Statistics, College of Science, Yarmouk University, Irbid, Jordan

AN M/M/1 QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Madan, Department of Statistics, College of Science, Yarmouk University, Irbid, Jordan REVISTA INVESTIGACION OPERACIONAL Vol., No., AN M/M/ QUEUEING SYSTEM WITH INTERRUPTED ARRIVAL STREAM K.C. Maan, Department of Statistics, College of Science, Yarmouk University, Irbi, Joran ABSTRACT We

More information