Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω =

Size: px
Start display at page:

Download "Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω ="

Transcription

1 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 1 of 6 Rotational formulas: (1.1) The angular momentum L of a point mass m, moing with eloity is gien by the etor produt between its radius etor r and the linear momentum etor p. L r dθ ω dt p r m ru r dr m( u dt r + rωu θ ) Note that the ross produt between two parallel etors is. (1.) dθ Lmr ω mr ; u r uθ dt mr ω ) Moment of inertia: (1.3) N I mr r dm for the rotation of objets with mass m or dm around a fixed axis. i 1 i i total mass i Kineti energy of rotation: (1.4) 1 K I ω ; I I + Md A A m Angular momentum of a solid objet rotating around a fixed axis: (1.5) L IAω Wae partile relationships: hf m 4 a) E ω hf γhf (b) () p + m (1.6) Eery material partile with mass m has a frequeny f, a waelength λ, m h h and a momentum () p ( d) p λ λ m dω ω (1.7) Group eloity: g partile eloity Phase eloity: p d

2 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page of 6 4 ω ω E p + m m (1.8) p 1+ > P p (1.9) Osillations: af ) b( t) bx dampening The sum of the exterior fores on the spring is then: bf ) x bx mx or b b t m x ) + x + x ; ω ; xt ( ) Ae os( ω1t+ ϕ) m m m ( ) g m (1.1) simple pendulum: ω physial pendulum ω gr l I b t b m (1.11) xt () Ae os ω1t; ω1 ω 1 ; 4m Complex Numbers: (1.1) iθ zˆ Ae A θ + i θ a+ ib + b zz ˆˆ θ iθ zˆ a ib Ae A(osθ isin θ ) Wae equation: (1.13) (os sin ) ; with A a artan y 1 y ; y y( xt, ) x t (1.14) yxt (, ) ysin( x ωt+ ϕ) or i( x ωt+ ϕ) λ ω yxt ˆ(, ) ye ; λ f ; the term in (..) is alled the phase; T The relationship between waelength, frequeny, and speed is orret for all suh waes, whether they are mehanial, aousti, or eletromagneti, only if there is no dispersion. Dispersion indiates the fat that the eloity depends on λ. Then one must ω distinguish between phase eloity and group eloity d ω d A b a

3 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 3 of 6 a T µ ) ; waes on a string; tension diided by linear density B b) ; waes in a gas with bulmodulus B and density ρ ρ (1.15) 331m TC ) 1 + sound speed in air, also dependent on temperature T s 73 Y d) ; soundwae in a solid material with Young's modulus Y ρ Pressure waes: P ρ P 1 P ; x B t t (1.16) B ω Pxt (, ) P sin( x ωt+ ϕ); ρ π asxt ) (, ) smax os( x ωt); Pand s are out of phase by (1.17) bpxt ) (, ) P sin( x ωt) max P ρ ωs, where we put ω (1.18) max max Power 1 I ntensity I ρ ωs ross setional area A (1.19) ( ) (1.) I P ρ max Sound intensity: I 1 W β 1log deibels, db, with I 1 I m (1.1) In this way the threshold of hearing lies at deibels: 1 1 db 1 β 1log 1 log1 db 1

4 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 4 of 6 Doppler effet: soure moes, reeier is stationary; Doppler effet for sound, soure moes, obserer is stationary: s a) λ λ 1 soure approahing with speed s s (1.) b ) λ λ 1 + soure reeding with speed s To get from waelengths λ to frequenies f, we just remember the general relationship λf and λ f ; where is the speed of the wae. Doppler effet: reeier moes, soure is stationary The relationship between speed of sound and waelength is in the referene frame of the soure: λ f or a) f λ In the referene frame of the moing reeier, it is ' f ' ' b)' λ f ' or a) f' λ f As we hae ' ± V, we get: R ± VR VR ) f ' f f 1± The frequeny inreases when the reeier moes towards the stationary soure. Relatiisti Doppler effet for light: (1.3) Doppler effet for light (relatiisti): a) λ λ ; f f b) λ λ ; f f 1+ a)for a star approahing with the speed ; blue shift b)for a star reeding with the speed ; red shift 1+ Hubble onstant: One we now the speed of a galaxy we an approximate the distane R of the galaxy to our own with Hubble s formula:

5 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 5 of 6 R H.17m 15 (1.4) H ± 5%;1lightyear m s lightyears 8 8 m s lightyear R ltyr 3.ltyr ± 1.6ltyr s.17m.17 (1.5) Superposition (addition) of trigonometri funtions: θ θ1 θ + θ1 aa ) 1osθ1+ A1osθ A1os os θ θ1 θ + θ1 ba ) 1sinθ1+ A1sinθ A1os sin iθ θ θ θ zˆ1+ zˆ Ae + Ae Aos e θ + θ 1 i 1 i 1 1 ( ) ( ) ( ) i θ+ nπ zˆ re a+ ib os θ + nπ + isin θ + nπ has solutions: (1.6) 1 ( θ+ nπ) i ˆ z r e for n, Standing Waes: When waes are refleted they superimpose and under ertain onditions form standing waes. Standing waes on a string under tension, for example our on string instruments guitars, iolins, ellos, et. Two waes traeling in opposite diretions interfere aording to: Asin( x ωt) + Asin( x+ ωt) Aos( ωt) sin x (1.7) I f the string has length L, we must hae a alue for xl L sin L L nπ λn ; fn n; n een and odd integers. n L If we are dealing with a situation lie a solid bar, or a tube whih is open at (1.8) both ends we must hae a osine funtion whih has ± 1 alues for xl L os L ± 1 L nπ; λn ; fn n; n een and odd integers n L

6 FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 6 of 6 If we hae a system whih is losed at one end and open at the other, we must hae a sin L ± 1 at the open end, whih means that n+1 π n+1 4L L π L π λ ; f ( n+1 ), n,1,... n+1 4L n+1 n+1 n+1 λn+1 We get only odd numbers: 3 5 f1 ; f3 ; f5 ; et 4L 4L 4L Double slit experiment interferene: (1.9) dsin θ nλ yields a maximum for n, ± 1, ±...et Beats and group eloity: (1.3) Superposition of two waes with similar and ω ω y1+ y Aos x t sin x ωt phase group ω dω ω g ;p d Heisenberg s unertainty relationships: (1.31) x p and t E ; Equilibrium onditions: Sum of the exterior torques ; Sum of the exterior fores F l V StressModulus Strain Y ; P B (1.3) A l V N 1 i( x ωt) iϕ iϕ i3 ϕ i( N 1) ϕ i( x ωt) ilϕ (1.33) R ( 1... ) y e + e + e + e + + e e e We hae to reall the rules for a geometri series: N 1 N l x l a (1.34) sn ax ; x < 1 s ax x x MLaurin series: (1.35) l l l ( ) x ( ( ) ) d f ( x) ( ) f( x) f ; with f x! dx

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7 FW Phys 13 G:\13 leture\13 tests\forulas final3.dox page 1 of 7 dr dr r x y z ur ru (1.1) dt dt All onseratie fores derie fro a potential funtion U(x,y,z) (1.) U U U F gradu U,, x y z 1 MG 1 dr MG E K

More information

For circular motion with tangential acceleration we get:

For circular motion with tangential acceleration we get: FW Phys 13 E:\Exel files\h1-18 Fomulas eiew fo final4.do page 1 of 1 Last pinted 5/19/4 :4: PM Kinemati fomulas: x = a = onstant (1.1) = α = onstant Pojetile Motion: 1 The inemati equation eto t () = at

More information

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations Uniersidad Central de Venezuela From the SeletedWorks of Jorge A Frano June, Relatiisti Analysis of Doppler Effet and Aberration based on Vetorial Lorentz Transformations Jorge A Frano, Uniersidad Central

More information

Chapter 35. Special Theory of Relativity (1905)

Chapter 35. Special Theory of Relativity (1905) Chapter 35 Speial Theory of Relatiity (1905) 1. Postulates of the Speial Theory of Relatiity: A. The laws of physis are the same in all oordinate systems either at rest or moing at onstant eloity with

More information

Doppler Effect (Text 1.3)

Doppler Effect (Text 1.3) Doppler Effet (et 1.3) Consider a light soure as a soure sending out a tik eery 1/ν and these tiks are traeling forward with speed. tik tik tik tik Doppler Effet (et 1.3) Case 1. Obserer oing transersely.

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.2: Classical Concepts Review of Particles and Waves

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.2: Classical Concepts Review of Particles and Waves Modern Physics Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.: Classical Concepts Reiew of Particles and Waes Ron Reifenberger Professor of Physics Purdue Uniersity 1 Equations of

More information

Special Relativity Entirely New Explanation

Special Relativity Entirely New Explanation 8-1-15 Speial Relatiity Entirely New Eplanation Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAEL, HOLON 54-54855 Introdution In this paper I orret a minor error in Einstein's theory of Speial Relatiity,

More information

, an inverse square law.

, an inverse square law. Uniform irular motion Speed onstant, but eloity hanging. and a / t point to enter. s r θ > θ s/r t / r, also θ in small limit > t/r > a / r, entripetal aeleration Sine a points to enter of irle, F m a

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Special Relativity Electromagnetic and Gravitation combined Into one theory

Special Relativity Electromagnetic and Gravitation combined Into one theory --5 Speial Relatiity Eletromagneti and Graitation ombined Into one theory Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAE, HOON 54-54855 Introdution In this paper, I try to ombine Eletromagneti

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

High Energy Astrophysics

High Energy Astrophysics High Energ Astrophsis Essentials Giampaolo Pisano Jodrell Bank Centre for Astrophsis - Uniersit of Manhester giampaolo.pisano@manhester.a.uk - http://www.jb.man.a.uk/~gp/ Februar 01 Essentials - Eletromagneti

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /.

τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /. Muons on the moon Time ilation using ot prouts Time ilation using Lorentz boosts Cheking the etor formula Relatiisti aition of eloities Why you an t eee the spee of light by suessie boosts Doppler shifts

More information

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer Apeiron, Vol. 7, No., Otober Doppler-Voigt-Einstein Selforganization The ehanism for Information Transfer Jiří Stáek Laboratory of Diffusion Proesses Prague, Czeh Republi Email: staek@olny.z Doppler-Voigt-Einstein

More information

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc.

Chapter 14 Waves and Sound. Copyright 2010 Pearson Education, Inc. Chapter 14 Waes and Sound Units of Chapter 14 Types of Waes Waes on a String Harmonic Wae Functions Sound Waes Sound Intensity The Doppler Effect We will leae out Chs. 14.5 and 14.7-14.9. 14-1 Types of

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Wave Motion Wave and Wave motion Wave is a carrier of energy Wave is a form of disturbance which travels through a material medium due to the repeated periodic motion of the particles of the medium about

More information

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation)

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation) Announements Reading for Monda:. -.5 HW 3 is posted. Due net Wed. noon. The Frida was a TYPO! IT I DUE WEDNEDAY! Toda s lass Lorent transformation Doppler shift First Midterm is on the 6 th. Will oer relatiit

More information

πx 4πR and that of the entire sphere is therefore the mass

πx 4πR and that of the entire sphere is therefore the mass Answers to test yoursel questions Topi 9 9 imple harmoni motion They are not simple harmoni beause as shown in the textboo the restoring ore whereas opposite to, is not proportional to the isplaement away

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect.

Lecture 18. Sound Waves: Intensity, Interference, Beats and Doppler Effect. Lecture 18 Sound Waes: Intensity, Interference, Beats and Doppler Effect. Speed of sound Speed of soun in air, depends on temperature: = (331 + 0.60 T ) m/s where T in C Sound intensity leel β = 10log

More information

Physics 11 Chapter 15/16 HW Solutions

Physics 11 Chapter 15/16 HW Solutions Physics Chapter 5/6 HW Solutions Chapter 5 Conceptual Question: 5, 7 Problems:,,, 45, 50 Chapter 6 Conceptual Question:, 6 Problems:, 7,, 0, 59 Q5.5. Reason: Equation 5., string T / s, gies the wae speed

More information

arxiv:physics/ Oct 2002

arxiv:physics/ Oct 2002 Dedution of Lorentz Transformation from the eistene of absolute rest. Dedution of the speed of light in any frame of referene. Rodrigo de Abreu Centro de Eletrodinâmia e Departamento de Físia do IST Abstrat

More information

The Thomas Precession Factor in Spin-Orbit Interaction

The Thomas Precession Factor in Spin-Orbit Interaction p. The Thomas Preession Fator in Spin-Orbit Interation Herbert Kroemer * Department of Eletrial and Computer Engineering, Uniersity of California, Santa Barbara, CA 9306 The origin of the Thomas fator

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

PHYS1169: Tutorial 8 Solutions

PHYS1169: Tutorial 8 Solutions PHY69: Tutorial 8 olutions Wae Motion ) Let us consier a point P on the wae with a phase φ, so y cosϕ cos( x ± ωt) At t0, this point has position x0, so ϕ x0 ± ωt0 Now, at some later time t, the position

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

Class Average = 71. Counts Scores

Class Average = 71. Counts Scores 30 Class Average = 71 25 20 Counts 15 10 5 0 0 20 10 30 40 50 60 70 80 90 100 Scores Chapter 12 Mechanical Waves and Sound To describe mechanical waves. To study superposition, standing waves, and interference.

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now?

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now? Physis 07 Problem. If the speed of light were smaller than it is, would relatiisti phenomena be more or less onspiuous than they are now? All of the phenomena of speial relatiity depend upon the fator

More information

1169T2/2001. Question 1 ( marks)

1169T2/2001. Question 1 ( marks) 1169T2/2001 1 Question 1 ( marks) a) Write the equations of two traelling waes, y 1 (x,t) and y 2 (x,t), which, when they superpose, produce a standing wae. State the amplitude, waelength and frequency

More information

PHYS 2020 Spring 2012 Announcements

PHYS 2020 Spring 2012 Announcements PHYS 2020 Spring 2012 Announements Continuing to adjust the shedule to relet the progress o the letures: HW #7 is now due Mon. Apr 9 1 Chapter 24 Eletromagneti Waes Next 3 hapters on the behaior o light

More information

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix Eletromagneti Theory Prof. Ruiz, UNC Asheille, dotorphys on YouTube Chapter B Notes. Speial Relatiity B1. The Rotation Matrix There are two pairs of axes below. The prime axes are rotated with respet to

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts Today: eiew of Eam: Tomorrow, 7:30-9:00pm, DUANE GB30 You an bring paper (etter format written on both sides with whateer you think might help you during the eam. But you annot bring the tetbook or leture

More information

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course Journal of heoretis Vol.5- Guest Commentary Relatiisti hermodynamis for the Introdutory Physis Course B.Rothenstein bernhard_rothenstein@yahoo.om I.Zaharie Physis Department, "Politehnia" Uniersity imisoara,

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Physics 207 Lecture 28

Physics 207 Lecture 28 Goals: Lecture 28 Chapter 20 Employ the wae model Visualize wae motion Analyze functions of two ariables Know the properties of sinusoidal waes, including waelength, wae number, phase, and frequency. Work

More information

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq

10. Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, Eq CHAPER 5: Wae Motion Responses to Questions 5. he speed of sound in air obeys the equation B. If the bulk modulus is approximately constant and the density of air decreases with temperature, then the speed

More information

Physics: Dr. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9

Physics: Dr. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9 Physics: D. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9 NAME:... POINTS:... D. Fitz Wilhelm, Diablo Valley College, Physics Depatment Phone: (95) 671-7309 Extension: 403 Midtem 3a,

More information

How the Thrust of Shawyer s Thruster can be Strongly Increased

How the Thrust of Shawyer s Thruster can be Strongly Increased How the Thrust of Shawyer s Thruster an be Strongly Inreased Fran De Aquino Professor Emeritus of Physis, Maranhao State Uniersity, UEMA. Titular Researher (R) of National Institute for Spae Researh, INPE

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Chapter 39 Relativity

Chapter 39 Relativity Chapter 39 Relatiity from relatie motion to relatiity 39. The Priniple of Galilean Relatiity The laws of mehanis mst be the same in all inertial frames of referene. Galilean spae-time transformation eqations

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

On the quantitative effects

On the quantitative effects International Journal of Modern Physis and Appliation 4; (): 8-4 Published online September, 4 (http://www.aasit.org/journal/ijmpa) On the quantitatie effets Chang-Wei Hu Beijing Relatiity Theory Researh

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Beams on Elastic Foundation

Beams on Elastic Foundation Professor Terje Haukaas University of British Columbia, Vanouver www.inrisk.ub.a Beams on Elasti Foundation Beams on elasti foundation, suh as that in Figure 1, appear in building foundations, floating

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waes and Sound 16.1 The Nature of Waes 1. A wae is a traeling disturbance. 2. A wae carries energy from place to place. 16.1 The Nature of Waes Transerse Wae 16.1 The Nature of Waes Longitudinal

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

(Newton s 2 nd Law for linear motion)

(Newton s 2 nd Law for linear motion) PHYSICS 3 Final Exaination ( Deeber Tie liit 3 hours Answer all 6 questions You and an assistant are holding the (opposite ends of a long plank when oops! the butterfingered assistant drops his end If

More information

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation VII. Relatiisti optis eletromagneti fields in inertial frames of referene VII. Relatiisti optis Eletromagneti fields in inertial frames of referene Galilean transformation Before 1900 the spae and time

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

UDC DAMAGE DIAGNOSTICS IN A VERTICAL BAR ON THE ELASTIC SUSPENDER WITH CONCENTRATED MASS

UDC DAMAGE DIAGNOSTICS IN A VERTICAL BAR ON THE ELASTIC SUSPENDER WITH CONCENTRATED MASS 1 UDC 534113 DAAGE DIAGNOSTICS IN A VERTICAL BAR ON THE ELASTIC SUSPENDER WITH CONCENTRATED ASS A Ilgamov, BZ Sultanov, AN Tazhitdinov, AG Khakimov Institute of ehanis, Ufa Branh RAS, Ufa, Russia Using

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

Chapter 16 Mechanical Waves

Chapter 16 Mechanical Waves Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k A possible mechanism to explain wae-particle duality L D HOWE No current affiliation PACS Numbers: 0.50.-r, 03.65.-w, 05.60.-k Abstract The relationship between light speed energy and the kinetic energy

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time!

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time! CHAPTER Speial Theory of Relatiity. The Need for Aether. The Mihelson-Morley Eperiment.3 Einstein s Postulates.4 The Lorentz Transformation.5 Time Dilation and Length Contration.6 Addition of Veloities.7

More information

Chapter 28 Special Relativity

Chapter 28 Special Relativity Galilean Relatiity Chapter 8 Speial Relatiity A passenger in an airplane throws a ball straight up. It appears to oe in a ertial path. The law of graity and equations of otion under unifor aeleration are

More information

Physics 43 HW 2 Chapter 39 Problems given from 7 th Edition

Physics 43 HW 2 Chapter 39 Problems given from 7 th Edition Physis 3 HW Chater 39 Problems gien from 7 th Edition Problems:, 7,, 9, 1, 0,,, 9, 33, 35, 3, 0, 5,. How fast must a meter stik be moing if its length is measured to shrink to 0.500 m? P39. L = L L Taking

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Introduction to Relativistic Mechanics and the Concept of Mass

Introduction to Relativistic Mechanics and the Concept of Mass Introdution to Relatiisti Mehanis and the Conept of Mass Gron Tudor Jones Uniersity of Birmingham CRN HST014 Introdution to relatiisti kinematis and the onept of mass Mass is one of the most fundamental

More information

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA HDRONIC JOURNL 24, 113-129 (2001) THE REFRCTION OF LIGHT IN STTIONRY ND MOVING REFRCTIVE MEDI C. K. Thornhill 39 Crofton Road Orpington, Kent, BR6 8E United Kingdom Reeived Deember 10, 2000 Revised: Marh

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

1. SUPERPOSITION OF WAVES WHEN TWO WAVES OCCUPY THE SAME AREA IN SPACE THEY FORM A NEW WAVE WHICH IS THE MATHEMATICAL SUM OF THE TWO SEPARATE WAVES.

1. SUPERPOSITION OF WAVES WHEN TWO WAVES OCCUPY THE SAME AREA IN SPACE THEY FORM A NEW WAVE WHICH IS THE MATHEMATICAL SUM OF THE TWO SEPARATE WAVES. FW C:\hysis\13 leture\h 18 interferene dse standin rous.dox ae 1 of 13 1. SUPERPOSITION OF WAVES WHEN TWO WAVES OCCUPY THE SAME AREA IN SPACE THEY FORM A NEW WAVE WHICH IS THE MATHEMATICAL SUM OF THE TWO

More information

Introduction to Quantum Chemistry

Introduction to Quantum Chemistry Chem. 140B Dr. J.A. Mak Introdution to Quantum Chemistry Without Quantum Mehanis, how would you explain: Periodi trends in properties of the elements Struture of ompounds e.g. Tetrahedral arbon in ethane,

More information

Physics 4C Spring 2016 Test 3

Physics 4C Spring 2016 Test 3 Physics 4C Spring 016 Test 3 Name: June 1, 016 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must gie your answer in terms of the ariables gien

More information

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday!

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday! Physis D Letre Slides Letre : Jan 11th 00 Viek Sharma UCSD Physis First Qiz This Friday! Bring a Ble Book, allator; hek battery Make sre yo remember the ode nmber for this ose gien to yo (reord it some

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

y (m)

y (m) 4 Spring 99 Problem Set Optional Problems Physics February, 999 Handout Sinusoidal Waes. sinusoidal waes traeling on a string are described by wae Two Waelength is waelength of wae?ofwae? In terms of amplitude

More information

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the Reiew 3 Final Exam A common final exam time is scheduled d for all sections of Phsics 31 Time: Wednesda December 14, from 8-10 pm. Location for section 00 : BPS 1410 (our regular lecture room). This information

More information

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery Doppler Eet Doppler Eet Relatiity and Astrophysis Leture 0 Terry Herter Outline Doppler Shit The Expanding Unierse Hubble s disoery Reading Spaetime Physis: Chapter 4 Problem L-, page (due today/monday)

More information

Get Solution of These Packages & Learn by Video Tutorials on SOUND WAVES

Get Solution of These Packages & Learn by Video Tutorials on  SOUND WAVES Get Solution of These Packages & Learn by Video Tutorials on www.mathsbysuhag.com. PROPAGATION OF SOUND WAVES : Sound is a mechanical three dimensional and longitudinal wae that is created by a ibrating

More information

Gravity from the Uncertainty Principle.

Gravity from the Uncertainty Principle. Gravity from the Unertainty Priniple. M.E. MCulloh Otober 29, 2013 Abstrat It is shown here that Newton's gravity law an be derived from the unertainty priniple. The idea is that as the distane between

More information

Today in Physics 218: review I

Today in Physics 218: review I Today in Physis 8: review I You learned a lot this semester, in priniple. Here s a laundrylist-like reminder of the first half of it: Generally useful things Eletrodynamis Eletromagneti plane wave propagation

More information

EF 152 Exam 2 - Fall, 2017 Page 1 Version: A Copy 260

EF 152 Exam 2 - Fall, 2017 Page 1 Version: A Copy 260 EF 152 Exam 2 - Fall, 2017 Page 1 Version: A Copy 260 Name: Seat Assignment: Specify your EXAM ID on the right. Use 000 if you do not know your exam ID. Circle your TEAM SECTION 11:10 12:40 2:10 TA216

More information

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan Leture 17 Phys. 7: Waves and Light Physis Departent Yarouk University 1163 Irbid Jordan Dr. Nidal Ershaidat http://taps.yu.edu.jo/physis/courses/phys7/le5-1 Maxwell s Equations In 187, Jaes Clerk Maxwell's

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Relativity. Chapter 26. Quick Quizzes

Relativity. Chapter 26. Quick Quizzes Chater 6 elatiity Quik Quizzes. (a). Less time will hae assed for you in your frame of referene than for your emloyer bak on Earth. Thus, to maximize your ayhek, you should hoose to hae your ay alulated

More information

SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION

SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION OUTLINE OF THE LESSON REMINDER SPECIAL RELATIVITY: BEAMING, RELATIVISTIC LARMOR FORMULA CYCLOTRON EMISSION SYNCHROTRON POWER AND SPECTRUM EMITTED

More information

Wave Equation in One Dimension: Vibrating Strings and Pressure Waves

Wave Equation in One Dimension: Vibrating Strings and Pressure Waves BENG 1: Mathematical Methods in Bioengineering Lecture 19 Wave Equation in One Dimension: Vibrating Strings and Pressure Waves References Haberman APDE, Ch. 4 and Ch. 1. http://en.wikipedia.org/wiki/wave_equation

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL CENTRIPETAL FORCE This tutorial examines the relationship between inertia and acceleration. On completion of this tutorial you should be able

More information

Journal of Theoretics Vol.4-4

Journal of Theoretics Vol.4-4 Journal of Theoretis ol.4-4 Cherenko s Partiles as Magnetons Dipl. Ing. Andrija Radoić Nike Strugara 3a, 3 Beograd, Yugoslaia Eail: andrijar@eunet.yu Abstrat: The artile will show that the forula for Cherenko

More information