We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

Size: px
Start display at page:

Download "We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p"

Transcription

1 .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation of fields and soures is H γ + i (p m i e i A i) µ i B i + e i e j + everything else. (.) 8π r i r j i j H γ is the energy of the free field ω. µ is the magneti dipole moment µ e m i g is i and s i is the partile spin. Everything else ontains non-eletromagneti interations and fine and hyperfine struture. The interation term in our Hamiltonian has terms linear (H ) and quadrati (H ) in the E-B fields. H e m p A µ B ( e ) H A m (Coulomb gauge where A.) What are the relative strengths of the piees? We are thining about atomi transitions so non-relativisti eletrons and emssion or absorption of photons with energy harateristi of atomi biniding energy. e m p A µ B e m A Finally e m mv Eγ e m Eγ λ H λ eα (α m ) / αα 3 (m ) ( v α e E γ Eγ m () ) 3 m (.) α m (α m ) αα 4 m ( v ) 4 α m (.3) e m A e E ( γ v ) 4 m λ αα4 m α m.. Emission and absorption of photons Let s write the vetor potential field operator for future referene. A(x, t) ωv [a,λˆɛ λ e i( r ωt) + a,λˆɛλ e i( r ωt) ],λ (.4)

2 .. RADIATIVE TRANSITIONS The reation and annihilation operators onnet states that differ by preisely one photon of momentum and polarization λ. In partiular n + a λ n n + and n a λ n n Consider absorption of a photon by an atom transitioning from i to f. The annihilation operator omponent of the field operator is the only part that ontributes. f; n λ H i; n λ e f; n m ωv a,λe i( x ωt) p ɛ λ i; n i e n f e i( x) p ɛ λ i e iωt m ωv The annihilation gives zero for all but the photon and polarization in the initial state... Semi-lassial desription Let s revisit the semi-lassial desription. Then we said that a λ was a fourier oeffiient of the plane wave expansion of the vetor potential, rather than an annihilation operator. We ould write the absorption proess as nλ A ωv ɛ λe i( x ωt) The absorption probability is proportional to A. In the quantum theory the probablity sales linearly with n λ. Wors fine and the results are equivalent. What about the emission proess. Then we have something lie f; n λ + H i; n λ e f; n + m i e (n + ) m ωv Time dependent perturbation theory We have a hamiltonian H H + H I and state ωv a e i( x ωt),λ p ɛ λ i; n f e i( x) p ɛ λ i e iωt ψ(t) (t) u e ie t/ where H u E u

3 .. RADIATIVE TRANSITIONS Then substitution into Shrodinger s equation ċ m i H ψ i t ψ (H + H I ) ψ i ( ) t ie u u m (H + H I ) ψ iu m ( ) t ie u u m H I u e ie t/ m H I e i(em E )t/ i m t e iemt/ e ie t/ e iemt/ If at t the system is in the state l and if the perturbation is wea so that l () and all others are small, then ċ m i m H I l e i(em E l)t/ and m (t) t m H I (t ) l e i(em E l)/dt i If the time dependene of H I is sinusoidal then H I (t ) H I e ±iωt and Then m (t) i t m H I l e i((em E l)/ iω)dt m m H I l sin ((E m E l ω)/)t/ t[(e m E l ω)//] m H I l tπδ((e m E l ω)/) where we use Finally sin αx lim α αx δ(x) m m H I l πtδ(e m E l ω) and the transition rate is d dt m π m H I l δ(e m E l ω) To turn it into a real measureable rate we need to sum over all of the final states. For photons there are ρ V ddω (π) 3 d(ω) 3

4 .. RADIATIVE TRANSITIONS states per unit energy ω in the interval ω ω + d(ω). Then ρ V ω dω (π) 3 3. So the transition probability per unit time into dω is where ρ must satisfy the delta funtion...3 Density of States w π m H I l ρ For spontaneous emission, we multiply by the density of states, that is the number of states per unit energy available to the final state photon with energy ω. Then ρ(e) V d 3 (π) 3 d(ω) V dωdω (π) 3 dω V dω (π) 3 What about absorption? Suppose the atom is in a avity with modes with frequenies orresponding to the interesting transition. Now put a single photon into eah mode. There is one and only one mode (and photon) that an exite the transition and be absorbed. Now put a seond photon into every mode. The absorption rate will inrease by a fator of two. The number of photons per unit energy is ρ V dω (π) 3 n..4 Quantum mehanial one photon transitions The lowest order interation hamiltonian for single photon transitions is H e m ωv p ˆɛλ ()e i( r ωt) (.5) The transition rates are given by the Golden rule Γ i f π e m f p ˆɛ λ ()e i( r) i δ(e i E f ) (.6) ωv and Spontaneous emission dγ i f π e m ωv f p ˆɛ λ ()e i( r i V dω (π) 3 Here the initial state is i; i atom γ and the final state is f, f atom λ fa λ. The differential transition rate is dγ π f; λ H i; ρ f () 4

5 .. RADIATIVE TRANSITIONS where the density of fnal photon states is ρ f V d 3 (π) 3 dω V (π) 3 dω Only the part of the interation hamiltonian proportional to the reation operator ontributes. And that ontribution is a single photon...5 Eletri Dipole transition We will need to evaluate f p ˆɛ λ ()e i( r) i. The energy of a photon emitted in an atomi transition is of order the binding energy α m. The wavelength λ α m. The size of the atom is of order a me mα. Therefore λ/a α, that is, the wavelength is muh bigger than the atom so that we an expand e i( r) + i r +... and eep only the lowest order term, namely. This is the dipole approximation. Then f p ˆɛ λ ()e i( r) i f p ˆɛ λ () i We use the fat that to rewrite [H, r] m [p, r] i p m f p i ˆɛ λ () m f [H, r] i ˆɛ λ () and sine initial and final states are eigenets of H with E i E f ω Spherial tensor f [H, r i ˆɛ λ () imω f r i ˆɛ λ () Let s wor in the spherial basis with unit vetors ˆɛ ± (ˆx ± iŷ), ˆɛ ẑ. and write r as a spherial tensor V ± (x ± iy) r 3 Y ±, V z r 3 Y Let s onsider λ + and in the θ diretion with respet to the z-axis of the atom, and the matrix element nf, l f, m f V ˆɛ + ˆɛ λ+ () The polarization vetor ˆɛ + () (ˆx +iŷ ) where ˆx and ŷ are the unit vetors in the oordinate system with ẑ. Then ˆɛ + () (ˆx os θ + ẑ sin θ + iŷ). (We assume that the angle θ is about the ŷ axis.) Now nf, l f, m f V n i, l i, m i ˆɛ + ˆɛ λ+ () n f, l f, m f V n i, l i, m i ( + os θ) 5

6 .. RADIATIVE TRANSITIONS Similarly nf, l f, m f V ˆɛ ˆɛ λ+ () n f, l f, m f V sin θ nf, l f, m f V n i, l i, m i ˆɛ ˆɛ λ+ () n f, l f, m f V n i, l i, m i ( os θ) The total rate from n i, l)i, m i to final state n f, l f, m f with a photon into angle θ with polarization + is proportional to dγ dω n f, l f, m f V ( + os θ) + + n f, l f, m f V sin θ + n f, l f, m f V ( os θ) (.7) Remembering the Wigner Ehart theorem nf, j f, m f V q n i, j i, m i jf, m f q,, j i, m i n f, j f V n i, j i where j f, m f q,, j i, m i is a Clebsh-Gordon oeffiient. The C-G oeffiient is zero unless m f + m i and j i + q j f j i q. Evidently only one term in Equation.7 is non-zero for any given hoie of initial and final state. Also, the dipole operator has odd parity so the expetation value is nonzero only if initial and final states have opposite parity. We onlude that l ±. Let s suppose m f m i +. Then only the first term in Equation.7 ontributes. Sum over photon polarizatons, dγ dω n f, l i ±, m i + V n i, l i, m i ( ( + os θ) + ( os θ) ) sin θdθ 4 and integrate over photon diretions. Γ n f, l i ±, m i + V 8π 3 (.8) Next we might sum over all m f + possible final states. That will involve the other terms in Equ..7. But they are all related (aording to WignerEhart) by Clebsh-Gordon oeffiients so it won t be too painful. And if the inital state is P and the final state S, the only final state is m f. We might also average over initial states. But if the final state has l, then by symmetry the rate from l, m i, ± must all be the same. Matrix element Next we want to evaluate nf, l f, m f V q n i, l i, m i Initial and final atomi states are x n i R ni (r)y mi l i (θ, φ), and x n f R nf (r)y m f l f (θ, φ) and Vq r 3 Y q (θ, φ). Then nf, l f, m f V q n i, l i, m i r 3 R ni (r)rn f 6 Y m f l f (θ, φ)y q (θ, φ)y mi l i (θ, φ)dω (.9)

7 .. RADIATIVE TRANSITIONS r 3 R ni (r)r n f (q + )(l i + ) l i q; l i q : l f l i q; m i l i q; l f m f (l f + ) (.) Note that the triple produt of spherial harmonis enfores the Wigner-Ehart seletion rules. Again if the initial state is l i, m i and the final state l f, m f then and nf,, V n i,, 3 r 3 R ni (r)rn (3)(3) f ; ; 3 () r 3 R ni (r)rn (3)(3) f 3 () r 3 R ni (r)r n f where ; ; Note that if the atom were in a magneti field, then it would be polarized and the levels might be split there would be a orrelation between diretion, energy, and polarization. 7

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

11 Radiation in Non-relativistic Systems

11 Radiation in Non-relativistic Systems Radiation in Non-relativisti Systems. Basi equations This first setion will NOT make a non-relativisti approximation, but will examine the far field limit. (a) We wrote down the wave equations in the ovariant

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k p. 59 Rate of Absorption and Stimulated Emission The rate of absorption indued by the field is π w k ( ω) ω E 0 ( ) k ˆ µ δω ( k ω) The rate is learly dependent on the strength of the field. The variable

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

8.333: Statistical Mechanics I Problem Set # 4 Due: 11/13/13 Non-interacting particles

8.333: Statistical Mechanics I Problem Set # 4 Due: 11/13/13 Non-interacting particles 8.333: Statistial Mehanis I Problem Set # 4 Due: 11/13/13 Non-interating partiles 1. Rotating gas: Consider a gas of N idential atoms onfined to a spherial harmoni trap in three dimensions, i.e. the partiles

More information

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006 Cherenkov Radiation Bradley J. Wogsland August 3, 26 Contents 1 Cherenkov Radiation 1 1.1 Cherenkov History Introdution................... 1 1.2 Frank-Tamm Theory......................... 2 1.3 Dispertion...............................

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Lecture 15 (Nov. 1, 2017)

Lecture 15 (Nov. 1, 2017) Leture 5 8.3 Quantum Theor I, Fall 07 74 Leture 5 (Nov., 07 5. Charged Partile in a Uniform Magneti Field Last time, we disussed the quantum mehanis of a harged partile moving in a uniform magneti field

More information

Quantization of the E-M field

Quantization of the E-M field April 6, 20 Lecture XXVI Quantization of the E-M field 2.0. Electric quadrupole transition If E transitions are forbidden by selection rules, then we consider the next term in the expansion of the spatial

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non relativisti ase 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials in Lorentz Gauge Gaussian units are: r 2 A 1 2 A 2 t = 4π 2 j

More information

Introduction to Quantum Chemistry

Introduction to Quantum Chemistry Chem. 140B Dr. J.A. Mak Introdution to Quantum Chemistry Without Quantum Mehanis, how would you explain: Periodi trends in properties of the elements Struture of ompounds e.g. Tetrahedral arbon in ethane,

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Energy Gaps in a Spacetime Crystal

Energy Gaps in a Spacetime Crystal Energy Gaps in a Spaetime Crystal L.P. Horwitz a,b, and E.Z. Engelberg a Shool of Physis, Tel Aviv University, Ramat Aviv 69978, Israel b Department of Physis, Ariel University Center of Samaria, Ariel

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000 At the question period after a Dirac lecture at the University of Toronto, somebody in the audience remarked: Professor Dirac, I do not understand how you derived the formula on the top left side of the

More information

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII .. LAMB SHFT REVSTED April, 5 Lecture XXV Quantization of the E-M field. Lamb Shift revisited We discussed the shift in the energy levels of bound states due to the vacuum fluctuations of the E-M fields.

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 8 February 004 Today in Physis 8: dispersion Motion of bound eletrons in matter and the frequeny dependene of the dieletri onstant Dispersion relations Ordinary and anomalous dispersion

More information

Vector Field Theory (E&M)

Vector Field Theory (E&M) Physis 4 Leture 2 Vetor Field Theory (E&M) Leture 2 Physis 4 Classial Mehanis II Otober 22nd, 2007 We now move from first-order salar field Lagrange densities to the equivalent form for a vetor field.

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

V. Interacting Particles

V. Interacting Particles V. Interating Partiles V.A The Cumulant Expansion The examples studied in the previous setion involve non-interating partiles. It is preisely the lak of interations that renders these problems exatly solvable.

More information

Phys 561 Classical Electrodynamics. Midterm

Phys 561 Classical Electrodynamics. Midterm Phys 56 Classial Eletrodynamis Midterm Taner Akgün Department of Astronomy and Spae Sienes Cornell University Otober 3, Problem An eletri dipole of dipole moment p, fixed in diretion, is loated at a position

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame

Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame letrodnamis in Uniforml Rotating Frames as Viewed from an Inertial Frame Adrian Sfarti Universit of California, 387 Soda Hall, UC erele, California, USA egas@paell.net (Reeived 3 rd Feruar, 7; Aepted 3

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018 Priniple Conepts behind IBM Q D. Stanil, Quantum Computing Seminar, 15 Feb 018 V. Bouhiat, et al, Quantum Coherene with a Single Cooper Pair, Physia Sripta, Vol. T76, 165-170 (1998) A. Blais, et al, Cavity

More information

19 Lecture 19: Cosmic Microwave Background Radiation

19 Lecture 19: Cosmic Microwave Background Radiation PHYS 652: Astrophysis 97 19 Leture 19: Cosmi Mirowave Bakground Radiation Observe the void its emptiness emits a pure light. Chuang-tzu The Big Piture: Today we are disussing the osmi mirowave bakground

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

A model for measurement of the states in a coupled-dot qubit

A model for measurement of the states in a coupled-dot qubit A model for measurement of the states in a oupled-dot qubit H B Sun and H M Wiseman Centre for Quantum Computer Tehnology Centre for Quantum Dynamis Griffith University Brisbane 4 QLD Australia E-mail:

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

Properties of Quarks

Properties of Quarks PHY04 Partile Physis 9 Dr C N Booth Properties of Quarks In the earlier part of this ourse, we have disussed three families of leptons but prinipally onentrated on one doublet of quarks, the u and d. We

More information

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is Dira s equation We onstrut relativistially ovariant equation that takes into aount also the spin The kineti energy operator is H KE p Previously we derived for Pauli spin matries the relation so we an

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Ayan Kumar Bandyopadhyay

Ayan Kumar Bandyopadhyay Charaterization of radiating apertures using Multiple Multipole Method And Modeling and Optimization of a Spiral Antenna for Ground Penetrating Radar Appliations Ayan Kumar Bandyopadhyay FET-IESK, Otto-von-Guerike-University,

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry 9 Geophysis and Radio-Astronomy: VLBI VeryLongBaseInterferometry VLBI is an interferometry tehnique used in radio astronomy, in whih two or more signals, oming from the same astronomial objet, are reeived

More information

Math 220A - Fall 2002 Homework 8 Solutions

Math 220A - Fall 2002 Homework 8 Solutions Math A - Fall Homework 8 Solutions 1. Consider u tt u = x R 3, t > u(x, ) = φ(x) u t (x, ) = ψ(x). Suppose φ, ψ are supported in the annular region a < x < b. (a) Find the time T 1 > suh that u(x, t) is

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

New Potential of the. Positron-Emission Tomography

New Potential of the. Positron-Emission Tomography International Journal of Modern Physis and Appliation 6; 3(: 39- http://www.aasit.org/journal/ijmpa ISSN: 375-387 New Potential of the Positron-Emission Tomography Andrey N. olobuev, Eugene S. Petrov,

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Electromagnetic radiation

Electromagnetic radiation 5584 5585 8 Eletromagneti radiation 5586 5587 5588 5589 8. Solution of Maxwell equations with external urrent The eletromagneti field generated by an external (expliitly given) four-urrent J µ (x) is given

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

Angular Distribution of Photoelectrons during Irradiation of Metal Surface by Electromagnetic Waves

Angular Distribution of Photoelectrons during Irradiation of Metal Surface by Electromagnetic Waves Journal of Modern Physis, 0,, 780-786 doi:0436/jmp0809 Published Online August 0 (http://wwwsirporg/journal/jmp) Angular Distribution of Photoeletrons during Irradiation of Metal Surfae by letromagneti

More information

The concept of the general force vector field

The concept of the general force vector field The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. 22-79, Perm, Russia E-mail: intelli@list.ru A hypothesis is suggested that the lassial eletromagneti and gravitational

More information

Hidden Momentum in a Spinning Sphere

Hidden Momentum in a Spinning Sphere Hidden Momentum in a Spinning Sphere 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 8544 (August 16, 212; updated June 3, 217 A spinning sphere at rest has zero

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Classical Diamagnetism and the Satellite Paradox

Classical Diamagnetism and the Satellite Paradox Classial Diamagnetism and the Satellite Paradox 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 (November 1, 008) In typial models of lassial diamagnetism (see,

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect Copyright c 2018 by Robert G. Littlejohn Physics 221B Spring 2018 Notes 34 The Photoelectric Effect 1. Introduction In these notes we consider the ejection of an atomic electron by an incident photon,

More information

The Unified Geometrical Theory of Fields and Particles

The Unified Geometrical Theory of Fields and Particles Applied Mathematis, 014, 5, 347-351 Published Online February 014 (http://www.sirp.org/journal/am) http://dx.doi.org/10.436/am.014.53036 The Unified Geometrial Theory of Fields and Partiles Amagh Nduka

More information

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Aelerator Physis Partile Aeleration G. A. Krafft Old Dominion University Jefferson Lab Leture 4 Graduate Aelerator Physis Fall 15 Clarifiations from Last Time On Crest, RI 1 RI a 1 1 Pg RL Pg L V Pg RL

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

QM1 - Tutorial 1 The Bohr Atom and Mathematical Introduction

QM1 - Tutorial 1 The Bohr Atom and Mathematical Introduction QM - Tutorial The Bohr Atom and Mathematical Introduction 26 October 207 Contents Bohr Atom. Energy of a Photon - The Photo Electric Eect.................................2 The Discrete Energy Spectrum

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle Brazilian Journal of Physis, vol. 9, no. 3, September, 1999 51 Classial and Quantum Mehanis of a Charged Partile in Osillating Eletri and Magneti Fields V.L.B. de Jesus, A.P. Guimar~aes, and I.S. Oliveira

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Hidden Momentum in a Current Loop

Hidden Momentum in a Current Loop 1 Problem Hidden Momentum in a Current Loop Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 (June 0, 2012; updated May 9, 2018) Disuss the momentum of a loop of eletrial

More information

PHYS 2020 Spring 2012 Announcements

PHYS 2020 Spring 2012 Announcements PHYS 2020 Spring 2012 Announements Continuing to adjust the shedule to relet the progress o the letures: HW #7 is now due Mon. Apr 9 1 Chapter 24 Eletromagneti Waes Next 3 hapters on the behaior o light

More information

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix MODELING MATTER AT NANOSCALES 4 Introdution to quantum treatments 403 Eigenvetors and eigenvalues of a matrix Simultaneous equations in the variational method The problem of simultaneous equations in the

More information

Hamiltonian with z as the Independent Variable

Hamiltonian with z as the Independent Variable Hamiltonian with z as the Independent Variable 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 Marh 19, 2011; updated June 19, 2015) Dedue the form of the Hamiltonian

More information

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay 18 1 Reapitulate We disussed how light an be thought of onsisting of partiles known as photons. Compton Effet demonstrated that they an be treated as a partile with zero rest mass having nonzero energy

More information

The concept of the general force vector field

The concept of the general force vector field OALib Journal, Vol. 3, P. 1-15 (16). http://dx.doi.org/1.436/oalib.11459 The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. -79, Perm, Russia E-mail: intelli@list.ru

More information

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO)

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) LECTURE 22 Eletromagneti Spetrum 2 White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) 1. Add together magenta, yan, and yellow. Play with intensities of eah to get white light.

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph Advanes in Natural Siene ol 7, No,, pp -5 DOI: 3968/66 ISSN 75-786 [PRINT] ISSN 75-787 [ONLINE] wwwsanadanet wwwsanadaorg The Reason of Photons Angular Distribution at Eletron-Positron Annihilation in

More information

PHY 108: Optical Physics. Solution to Midterm Test

PHY 108: Optical Physics. Solution to Midterm Test PHY 108: Optial Physis Solution to Midterm Test TA: Xun Jia 1 May 14, 2008 1 Email: jiaxun@physis.ula.edu Spring 2008 Physis 108 Xun Jia (May 14, 2008) Problem #1 For a two mirror resonant avity, the resonane

More information

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations.

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations. The Corpusular Struture of Matter, the Interation of Material Partiles, and Quantum Phenomena as a Consequene of Selfvariations. Emmanuil Manousos APM Institute for the Advanement of Physis and Mathematis,

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information