Green s function for the wave equation

Size: px
Start display at page:

Download "Green s function for the wave equation"

Transcription

1 Green s funtion for the wave equation Non relativisti ase 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials in Lorentz Gauge Gaussian units are: r 2 A 1 2 A 2 t = 4π 2 j (1) The Gauge ondition is: 2 The Green s funtion r = 4πρ (2) t2 r A + 1 t = 0 (3) For both potentials we have a wave equation of the form r = 4π (soure) t2 where an be either the salar potential or a artesian omponent of A. The orresponding Green s funtion problem is: r 2 G ( x,t; x 0,t 0 ) 1 2 G 2 t = 4πδ ( x 2 x0 ) δ(t t 0 ) where the soure is now a unit event loated at x = x 0 happening at t = t 0. To solve this equation we first Fourier transform in time: G ( x,t; x 0,t 0 ) = p 1 Z 1 G ( x,ω; x 0,t 0 )e iωt dω 2π the equation beomes µr 2 + ω2 G( x,ω; x 0,t 0 ) = 4πp 1 Z 1 δ ( x x 0 )δ (t t 0 )e iωt dt 2π 2 = 2 p 2πδ ( x x 0 ) e iωt0 1

2 So let G( x,ω; x 0,t 0 ) = g ( x, x 0 ) e iωt0 / p 2π then g satisfies the equation r 2 + k 2 g = 4πδ ( x x 0 ) Now in free spae without boundaries, g must be a funtion only of R = j x x 0 j must posess spherial symmetry about the soure point. Thus in spherial oordinates, we an write: 1 d 2 ³ R dr 2 (Rg) + k2 g = 4πδ R (4) For R 6= 0, the right h side is zero. Then the funtion Rg satisfies the exponential equation, the solution is: Rg = Ae ikr + Be ikr g = 1 Ae ikr + Be ikr R (5) Near the origin, where the delta funtion ontributes, the seond term on the LHS is negligible ompared with the first, the eequation beomes: we know that this has solution r 2 g = 4πδ ( x x 0 ) g = 1 R This is onsistent with equation 5 provided that A + B = 1 (You should onvine yourself that this solution is orret by differentiating stuffing bak into equation 4.) Thus we have the solution G ( x,ω; x 0,t 0 ) = p 1 Ae ikr + Be ikr e iωt0 2πR Now we do the inverse transform: Z G( x,t; x 0,t ) = p p Ae ikr + Be ikr e iωt0 e iωt dω 2π 2πR = 1 2π Z 1 Aexp(iω (R/ + t 0 t)) + B exp (iω ( R/+ t 0 t)) dω = Aδ (t 0 (t R/)) + Bδ (t 0 (t + R/)) (6) The seond term is usually rejeted beause it predits a response to an event ourring in the future. However, Feynman Wheeler have proposed a theory in whih both terms are kept. They show that this theory an be onsistent with observed ausality provided that the universe is perfetly absorbing in the infinite future. The time t R/ that appears in the first term is alled the retarded time t ret. The symmetry of this Green s funtion is: G ( x,t; x 0,t 0 ) = G( x 0, t 0 ; x, t) (See Morse Feshbah Ch 7 pg ). Causality requires: G ( x,; x 0,t 0 ) = 0 2

3 G ( x,t; x 0,t 0 ) = 0 for t < t 0 3 The potentials Now that we have the Green s funtion, we an solve our original equations. Z ρ( x 0,t 0 ) ( x,t) = R δ (t0 t ret )dt 0 d 3 x 0 (7) Z ρ( x 0,t ret ) = d 3 x 0 (8) R in Lorentz Gauge, similarly: A( x,t) = 1 Z j ( x 0,t ret ) d 3 x 0 (9) R Notie that these equations have the same form as the stati potentials (equations in Jakson). 4 Radiation from a moving point harge (non relativisti ase) 4.1 The Lienard Wiehert potentials Our soure is a point harge moving with veloity v (t). Then the harge urrent densities are ρ( x,t) = qδ( x r (t)) j ( x,t) = q vδ( x r (t)) Then from equation 7, we have: Z qδ( x 0 r (t 0 )) ( x,t) = δ (t 0 t ret )dt 0 d 3 x 0 R We do the integral over the spatial oordinates first. Z ( x,t) = q δ (t0 + R(t 0 )/ t) R(t 0 dt 0 ) where R(t 0 ) = j x r (t 0 )j. Now to do the t 0 integral, we must reexpress the delta funtion. Reall: δ (f (x)) = X 1 jf 0 (x i )j δ (x x i) 3

4 where f (x i ) = 0. In this ase:, sine v = d r/dt, f 0 (t 0 ) = 1+ 1 f (t 0 ) = t 0 + R(t0 ) t dr dt 0 = 1 1 ( x r(t 0 )) j x r(t 0 )j d dt 0 ( x r (t0 )) = 1 v ( x r(t0 )) j x r (t 0 )j = 1 v R R The funtion f is zero when t 0 = t ret = t R/. Thus, evaluating the integral, we get: q ( x,t) = ³ R 1 v R (10) R t ret And similarly q v A ( x,t) = ³ R 1 v R (11) R t ret These are the Lienhard Wiehert potentials. It is onvenient to use the shorth à r v = R 1 v! R = R v R (12) R 4.2 Calulating the fields In Lorentz Gauge, the fields are found using E = r 1 A t B = r A But our expressions for the potentials are in terms of x t ret, not x t, so we have to be very areful in taking the partial derivatives. We an put the origin at the instantaneous position of the harge to simplify things. Then R = r. Our potential may be written: ( x,t) ª ( x,t ret ) Then d = r d x + onst t t dt rª d x + ª dt ret onst tret t ret But dt ret = dt dr/, so r d x + onst t t dt rª d x ª dr onst tret t ret + ª dt t ret 4

5 Thus the r omponent of r must be modified: = ª 1 ª (13) r onst t r onst tret t ret Now we an alulate the fields: r = r q = q rr r v r 2 v v rr v = µ r v r ^r + ^µ µ r v r + ^Á µ r v r r r θ r sinθ φ We an hoose our axes with polar axis along the instantaneous diretion of v. Then r v = rv os θ, rr v = ³1 v os θ ^r + ^θ ³r v sinθ r In the non relativisti limit, v/ 1, to zeroth order in v/, this is We are also going to need Then we have r v t rr v = ^r = r a E = ~r + 1 onst tret t ^r 1 A t q ^r q µ ^r q v rv 2 r 2 v t r v = q µ rv 2 ^r 1+ q a + q v µ r v rv 2 r again taking the non relativisti limit, this beomes: E = q r 2 ^r µ 1+ q a r The first term is the usual Coulomb field. The other two terms depend on a : these are the radiation field. E rad = q [(^r a) ^r a] r = q (^r (^r a)) (14) r 5

6 4.3 Radiated power The Poynting vetor is S = E 4π rad B rad = E 4π rad ³^n E rad = = 4π = 4π E2 rad^n q 2 4πR 2 à q R ^n Thus the power radiated per unit solid angle is: dp d = R2 S ^n à = q2 4π ^n " ^n d #! 2 β ^n dt " ^n ^n d 2 β # ^n dt ^n d β dt q 2 4π 3 a2 sin 2 θ (15) Thus is the Larmor formula, where a = dv/dt is the aeleration θ is the angle between a ^n. The total power radiated in the non relativisti ase is: P = Z Z dp +1 d d = dµ +1 µµ µ3 = q2 2 3a2 3 Z 2π 0 2! dφ q2 4π 3a2 1 µ 2 = 2q2 3 3 a2 (16) 6

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Green s function for the wave equation

Green s function for the wave equation Green s function for the wave equation Non-relativistic case January 2018 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 44 and 43): 1 2 2 2 2 0 (1)

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

11 Radiation in Non-relativistic Systems

11 Radiation in Non-relativistic Systems Radiation in Non-relativisti Systems. Basi equations This first setion will NOT make a non-relativisti approximation, but will examine the far field limit. (a) We wrote down the wave equations in the ovariant

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

Electromagnetic radiation

Electromagnetic radiation 5584 5585 8 Eletromagneti radiation 5586 5587 5588 5589 8. Solution of Maxwell equations with external urrent The eletromagneti field generated by an external (expliitly given) four-urrent J µ (x) is given

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

1 Summary of Electrostatics

1 Summary of Electrostatics 1 Summary of Eletrostatis Classial eletrodynamis is a theory of eletri and magneti fields aused by marosopi distributions of eletri harges and urrents. In these letures, we reapitulate the basi onepts

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006 Cherenkov Radiation Bradley J. Wogsland August 3, 26 Contents 1 Cherenkov Radiation 1 1.1 Cherenkov History Introdution................... 1 1.2 Frank-Tamm Theory......................... 2 1.3 Dispertion...............................

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Phys 561 Classical Electrodynamics. Midterm

Phys 561 Classical Electrodynamics. Midterm Phys 56 Classial Eletrodynamis Midterm Taner Akgün Department of Astronomy and Spae Sienes Cornell University Otober 3, Problem An eletri dipole of dipole moment p, fixed in diretion, is loated at a position

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation,

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation, Chapter 6 Maxwell Equations 6.1 Maxwell equations So far we have derived two electrostatic equations and two magnetostatics equations E = ρ ɛ 0 (6.1) E = 0 (6.2) B = 0 (6.3) B = µ 0 J (6.4) which are to

More information

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM.

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. S. Kanagaraj Eulidean Relativity s.kana.raj@gmail.om (1 August 009) Abstrat By re-interpreting the speial relativity (SR) postulates based on Eulidean

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2 Chapter 9 Relativeity Chapter Outline 9-1 The Postulate t of Speial Relativity it 9- The Relativity of Time and Time Dilation 9-3 The Relativity of Length and Length Contration 9-4 The Relativisti Addition

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Processi di Radiazione e MHD

Processi di Radiazione e MHD Proessi di Radiazione e MHD 0. Overview of elestial bodies and sky at various frequenies 1. Definition of main astrophysial observables. Radiative transfer 3. Blak body radiation 4. basi theory of radiation

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

arxiv: v1 [physics.gen-ph] 5 Jan 2018

arxiv: v1 [physics.gen-ph] 5 Jan 2018 The Real Quaternion Relativity Viktor Ariel arxiv:1801.03393v1 [physis.gen-ph] 5 Jan 2018 In this work, we use real quaternions and the basi onept of the final speed of light in an attempt to enhane the

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

A proposed experiment for measuring the speed of propagation of the Coulomb force.

A proposed experiment for measuring the speed of propagation of the Coulomb force. A proposed experiment for measuring the speed of propagation of the Coulomb fore. January 29, 2009 1 Introdution The eletri field at a time t due to an eletrial harge moving with veloity v is given, using

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

Using the Green s Function to find the Solution to the Wave. Equation:

Using the Green s Function to find the Solution to the Wave. Equation: Using the Green s Funtion to find the Soution to the Wave Exampe 1: 2 1 2 2 t 2 Equation: r,t q 0 e it r aẑ r aẑ r,t r 1 r ; r r,t r 1 r 2 The Green s funtion soution is given by r,t G R r r,t t Fr,t d

More information

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points)

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points) Problem 3 : Solution/marking sheme Large Hadron Collider 10 points) Part A. LHC Aelerator 6 points) A1 0.7 pt) Find the exat expression for the final veloity v of the protons as a funtion of the aelerating

More information

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract Spinning Charged Bodies and the Linearized Kerr Metri J. Franklin Department of Physis, Reed College, Portland, OR 97202, USA. Abstrat The physis of the Kerr metri of general relativity (GR) an be understood

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Hamiltonian with z as the Independent Variable

Hamiltonian with z as the Independent Variable Hamiltonian with z as the Independent Variable 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 Marh 19, 2011; updated June 19, 2015) Dedue the form of the Hamiltonian

More information

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Dr G. I. Ogilvie Lent Term 2005

Dr G. I. Ogilvie Lent Term 2005 Aretion Diss Mathematial Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 1.4. Visous evolution of an aretion dis 1.4.1. Introdution The evolution of an aretion dis is regulated by two onservation laws:

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

13.Prandtl-Meyer Expansion Flow

13.Prandtl-Meyer Expansion Flow 3.Prandtl-eyer Expansion Flow This hapter will treat flow over a expansive orner, i.e., one that turns the flow outward. But before we onsider expansion flow, we will return to onsider the details of the

More information

20 Doppler shift and Doppler radars

20 Doppler shift and Doppler radars 20 Doppler shift and Doppler radars Doppler radars make a use of the Doppler shift phenomenon to detet the motion of EM wave refletors of interest e.g., a polie Doppler radar aims to identify the speed

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Deember 2, 203 Prof. Alan Guth QUIZ 3 SOLUTIONS Quiz Date: Deember 5, 203 PROBLEM : DID YOU DO THE READING? (35

More information

Remarks Around Lorentz Transformation

Remarks Around Lorentz Transformation Remarks Around Lorentz Transformation Arm Boris Nima arm.boris@gmail.om Abstrat After diagonalizing the Lorentz Matrix, we find the frame where the Dira equation is one derivation and we alulate the speed

More information

Math 2374: Multivariable Calculus and Vector Analysis

Math 2374: Multivariable Calculus and Vector Analysis Math 2374: Multivariable Calulus and Vetor Analysis Part 26 Fall 2012 The integrals of multivariable alulus line integral of salar-valued funtion line integral of vetor fields surfae integral of salar-valued

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physial insight in the sound geneation mehanism an be gained by onsideing simple analytial solutions to the wave equation One example is to onside aousti adiation

More information

231 Outline Solutions Tutorial Sheet 7, 8 and January Which of the following vector fields are conservative?

231 Outline Solutions Tutorial Sheet 7, 8 and January Which of the following vector fields are conservative? 231 Outline olutions Tutorial heet 7, 8 and 9. 12 Problem heet 7 18 January 28 1. Whih of the following vetor fields are onservative? (a) F = yz sin x i + z osx j + y os x k. (b) F = 1 2 y i 1 2 x j. ()

More information

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS Journal of Optoeletronis and Advaned Materials Vol. 5, o. 5,, p. 4-4 RADIATIO POWER SPECTRAL DISTRIBUTIO OF CHARGED PARTICLES MOVIG I A SPIRAL I MAGETIC FIELDS A. V. Konstantinovih *, S. V. Melnyhuk, I.

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

Relativistic Addition of Velocities *

Relativistic Addition of Velocities * OpenStax-CNX module: m42540 1 Relativisti Addition of Veloities * OpenStax This work is produed by OpenStax-CNX and liensed under the Creative Commons Attribution Liense 3.0 Abstrat Calulate relativisti

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

arxiv:physics/ v1 14 May 2002

arxiv:physics/ v1 14 May 2002 arxiv:physis/0205041 v1 14 May 2002 REPLY TO CRITICISM OF NECESSITY OF SIMULTANEOUS CO-EXISTENCE OF INSTANTANEOUS AND RETARDED INTERACTIONS IN CLASSICAL ELECTRODYNAMICS by J.D.Jakson ANDREW E. CHUBYKALO

More information

Examples of Tensors. February 3, 2013

Examples of Tensors. February 3, 2013 Examples of Tensors February 3, 2013 We will develop a number of tensors as we progress, but there are a few that we an desribe immediately. We look at two ases: (1) the spaetime tensor desription of eletromagnetism,

More information

The concept of the general force vector field

The concept of the general force vector field The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. 22-79, Perm, Russia E-mail: intelli@list.ru A hypothesis is suggested that the lassial eletromagneti and gravitational

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

( ) which is a direct consequence of the relativistic postulate. Its proof does not involve light signals. [8]

( ) which is a direct consequence of the relativistic postulate. Its proof does not involve light signals. [8] The Speed of Light under the Generalized Transformations, Inertial Transformations, Everyday Clok Synhronization and the Lorentz- Einstein Transformations Bernhard Rothenstein Abstrat. Starting with Edwards

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract An Effetive Photon Momentum in a Dieletri Medium: A Relativisti Approah Bradley W. Carroll, Farhang Amiri, and J. Ronald Galli Department of Physis, Weber State University, Ogden, UT 84408 Dated: August

More information

Critical Reflections on the Hafele and Keating Experiment

Critical Reflections on the Hafele and Keating Experiment Critial Refletions on the Hafele and Keating Experiment W.Nawrot In 1971 Hafele and Keating performed their famous experiment whih onfirmed the time dilation predited by SRT by use of marosopi loks. As

More information

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip 27-750, A.D. Rollett Due: 20 th Ot., 2011. Homework 5, Volume Frations, Single and Multiple Slip Crystal Plastiity Note the 2 extra redit questions (at the end). Q1. [40 points] Single Slip: Calulating

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 4 3 Leturer: Bengt E W Nilsson 8::: Leturer absent, three students present. 8::9: Leturer present, three students. 8::: Six students. 8::8: Five students. Waiting a ouple of minutes to see if more ome.

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

Velocity Addition in Space/Time David Barwacz 4/23/

Velocity Addition in Space/Time David Barwacz 4/23/ Veloity Addition in Spae/Time 003 David arwaz 4/3/003 daveb@triton.net http://members.triton.net/daveb Abstrat Using the spae/time geometry developed in the previous paper ( Non-orthogonal Spae- Time geometry,

More information

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle Brazilian Journal of Physis, vol. 9, no. 3, September, 1999 51 Classial and Quantum Mehanis of a Charged Partile in Osillating Eletri and Magneti Fields V.L.B. de Jesus, A.P. Guimar~aes, and I.S. Oliveira

More information

Theory of Dynamic Gravitational. Electromagnetism

Theory of Dynamic Gravitational. Electromagnetism Adv. Studies Theor. Phys., Vol. 6, 0, no. 7, 339-354 Theory of Dynami Gravitational Eletromagnetism Shubhen Biswas G.P.S.H.Shool, P.O.Alaipur, Pin.-7445(W.B), India shubhen3@gmail.om Abstrat The hange

More information

Armenian Theory of Special Relativity (Illustrated) Robert Nazaryan 1 and Haik Nazaryan 2

Armenian Theory of Special Relativity (Illustrated) Robert Nazaryan 1 and Haik Nazaryan 2 29606 Robert Nazaryan Haik Nazaryan/ Elixir Nulear & Radiation Phys. 78 (205) 29606-2967 Available online at www.elixirpublishers.om (Elixir International Journal) Nulear Radiation Physis Elixir Nulear

More information

Processi di Radiazione e MHD

Processi di Radiazione e MHD Proessi di Radiazione e MHD Setion 0. Overview of elestial bodies and sky at various frequenies. Definition of main astrophysial observables. Radiative transfer 3. Blak body radiation 4. basi theory of

More information

Current density and forces for a current loop moving parallel over a thin conducting sheet

Current density and forces for a current loop moving parallel over a thin conducting sheet INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 5 (4) 655 666 EUROPEAN JOURNAL OF PHYSICS PII: S43-87(4)77753-3 Current density and fores for a urrent loop moving parallel over a thin onduting sheet BSPalmer

More information

The concept of the general force vector field

The concept of the general force vector field OALib Journal, Vol. 3, P. 1-15 (16). http://dx.doi.org/1.436/oalib.11459 The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. -79, Perm, Russia E-mail: intelli@list.ru

More information

Today in Physics 217: Ampère s Law

Today in Physics 217: Ampère s Law Today in Physis 217: Ampère s Law Magneti field in a solenoid, alulated with the Biot-Savart law The divergene and url of the magneti field Ampère s law Magneti field in a solenoid, alulated with Ampère

More information

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations Uniersidad Central de Venezuela From the SeletedWorks of Jorge A Frano June, Relatiisti Analysis of Doppler Effet and Aberration based on Vetorial Lorentz Transformations Jorge A Frano, Uniersidad Central

More information

PHYS 532 Lecture 8 Page GAUGE TRANSFORMATIONS E =!" #A B =! " A (6.7) #(! A) = $/% o A A + Λ (6.12) Φ Φ!"

PHYS 532 Lecture 8 Page GAUGE TRANSFORMATIONS E =! #A B =!  A (6.7) #(! A) = $/% o A A + Λ (6.12) Φ Φ! PHYS 532 Lecture 8 Page 1 6.3 GAUGE TRANSFORMATIONS Results for scalar and vector potentials: E =!" #A #t (6.9) Inhomogeneous Maxwell equations in terms of A, Φ B =! " A (6.7)! 2 " + #(! A) #t = $/% o

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Dipole Approxima7on Thomson ScaEering

Dipole Approxima7on Thomson ScaEering Feb. 28, 2011 Larmor Formula: radia7on from non- rela7vis7c par7cles Dipole Approxima7on Thomson ScaEering The E, B field at point r and 7me t depends on the retarded posi7on r(ret) and retarded 7me t(ret)

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

Radiation by Moving Charges

Radiation by Moving Charges May 27, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 14 Liénard - Wiechert Potentials The Liénard-Wiechert potential describes the electromagnetic effect of a moving charge. Built

More information

Relativistic effects in earth-orbiting Doppler lidar return signals

Relativistic effects in earth-orbiting Doppler lidar return signals 3530 J. Opt. So. Am. A/ Vol. 4, No. 11/ November 007 Neil Ashby Relativisti effets in earth-orbiting Doppler lidar return signals Neil Ashby 1,, * 1 Department of Physis, University of Colorado, Boulder,

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

On the Geometrical Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies

On the Geometrical Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies On the Geometrial Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies Departamento de Físia, Universidade Estadual de Londrina, Londrina, PR, Brazil E-mail: andrenaves@gmail.om

More information

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena Page 1 of 10 Physial Laws, Absolutes, Relative Absolutes and Relativisti Time Phenomena Antonio Ruggeri modexp@iafria.om Sine in the field of knowledge we deal with absolutes, there are absolute laws that

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Chapter 11. Maxwell's Equations in Special Relativity. 1

Chapter 11. Maxwell's Equations in Special Relativity. 1 Vetor Spaes in Phsis 8/6/15 Chapter 11. Mawell's Equations in Speial Relativit. 1 In Chapter 6a we saw that the eletromagneti fields E and B an be onsidered as omponents of a spae-time four-tensor. This

More information

Application of Bi-Quaternions in Physics

Application of Bi-Quaternions in Physics Appliation of Bi-Quaternions in Physis André Waser * First issued: 9.7. Last update: 6.5.7 This paper introdues a new bi-quaternion notation and applies this notation to eletrodynamis. A set of extended

More information

EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS

EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS Sergio Garia Chimeno Abstrat Demonstration how to obtain the Einstein Field Equations without using the

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

EM radiation - Lecture 14

EM radiation - Lecture 14 EM radiation - Lecture 14 1 Review Begin with a review of the potentials, fields, and Poynting vector for a point charge in accelerated motion. The retarded potential forms are given below. The source

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Classical Field Theory

Classical Field Theory Preprint typeset in JHEP style - HYPER VERSION Classial Field Theory Gleb Arutyunov a a Institute for Theoretial Physis and Spinoza Institute, Utreht University, 3508 TD Utreht, The Netherlands Abstrat:

More information

Ayan Kumar Bandyopadhyay

Ayan Kumar Bandyopadhyay Charaterization of radiating apertures using Multiple Multipole Method And Modeling and Optimization of a Spiral Antenna for Ground Penetrating Radar Appliations Ayan Kumar Bandyopadhyay FET-IESK, Otto-von-Guerike-University,

More information

Practice Exam 2 Solutions

Practice Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physis Physis 801T Fall Term 004 Problem 1: stati equilibrium Pratie Exam Solutions You are able to hold out your arm in an outstrethed horizontal position

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information