Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Size: px
Start display at page:

Download "Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b"

Transcription

1 Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential equation in the weak sense: b a The Riemann problem is defined as the initial value problem for this system with two valued pieewise onstant initial data. More preisely we have initial data: Hydrodynami Methods The Riemann roblem for Gas Dynamis 1

2 The Riemann problem is a fundamental tool for studying the interation between waves. It has played a entral role both in the theoretial analysis of systems of hyperboli onservation laws and in the development and implementation of pratial numerial solutions of suh systems. Basially the Riemann problem gives the miro-wave struture of the flow. One an think of the propagation of the flow as a set of small sale Riemann problems between adjaent regions followed by the interation between the waves arising from these Riemann problems. This idea was formalized in the fundamental paper of Glimm Solutions in the Large for Nonlinear Hyperboli Systems of Equation that established the first existene theorem for solutions to the initial value problem for nonlinear hyperboli systems of equations as well as numerially by Godunov A Finite Differene Method for the Numerial Computation and Disontinuous Solutions of the Equations of Fluid Dynamis whih forms the basis for many advaned numerial methods. Before proeeding further we need to review briefly the notion of hyperboliity. Hydrodynami Methods The Riemann roblem for Gas Dynamis

3 Smooth solutions of a system of onservation laws are also solutions of a orresponding quasi-linear partial differential equation. Let A = (a ij ) be the Jaobi matrix orresponding to the flux funtion f(u): ij u + fu ( ) = t x i ( ) j u Au ( ) u t x =. Then smooth solutions to also satisfy the equation + This system is said to be hyperboli if the matrix A has all real eigenvalues and a omplete set of eigenvetors: = = = 1 n i i i i i i i i ij Where n is the number of equations in the system. These eigenvetors are alled the harateristi speeds of the hyperboli system. Hydrodynami Methods The Riemann roblem for Gas Dynamis 3

4 For gas dynamis we have the Euler equations: t + v = v + t v v+ = 1 ( v + e) 1 + v( v + e) + v t = For smooth flow we an write this equation in quasi-linear form: D + Dt v = Dv + = Dt De + v = Dt Where is the material derivative of the flow. D Dt = t + v Hydrodynami Methods The Riemann roblem for Gas Dynamis 4

5 The pressure is related to the density and energy by an inomplete equation of state = ( e). If we define the Grüneisen exponent Γ and the sound speed by the formulas: Γ = e ρ = + e = Γ e+ Γ We an write the one dimensional Euler equations in quasi-linear form e ρ u ρ 1 u + Γ u Γ t e u ρ Where u is the x omponent of the veloity vetor. x u e = Hydrodynami Methods The Riemann roblem for Gas Dynamis 5

6 One an easily ompute the eigenvalues and eigenvetors of this system. We have: = u r = l = Γ/ 1 Γ = u r = Γ l = Γ/ = u+ r = l = Γ/ 1 Γ Hydrodynami Methods The Riemann roblem for Gas Dynamis 6

7 The analysis of the harateristis for gas dynamis an be onsiderably simplified by introduing the entropy S (the evaluation of whih requires the omplete equation of state) and using pressure as a fundamental thermodynami variable. By the first law of thermodynamis we have TdS = de+dv and if we write = (S) (reall V=1/ ). Then one an show that: Γ= T S = = S S 1 D + v = Dt Dv + = Dt DS = Dt + u 1 u u = Hydrodynami Methods The Riemann roblem for Gas Dynamis 7

8 In terms of pressure veloity and entropy the eigenvetors beome: 1 1 = u r = 1 l = = u r = l = 1 1 = u+ r = l = Hydrodynami Methods The Riemann roblem for Gas Dynamis 8

9 An important property of gas dynamis and other nonlinear hyperboli systems is the existene of disontinuous solutions. Indeed suh disontinuities are unavoidable and an arise spontaneously from smooth solution through the phenomenon of shok breaking. Suh solutions must be interpreted in the weak sense as desribed in the previous leture. A ritial aspet of disontinuous solutions is that the states on either side of a disontinuity are not arbitrary but must be related by a system of algebrai equations known as the Rankine-Hugoniot equations. The next series of slides will disuss the derivation of these equations and their appliations to gas dynamis. Consider a system of onservation laws u + f = t h in a domain Ω. Suppose that the flow in Ω=is smooth exept aross a smooth moving surfae S(t). We assume that S(t) divides Ω into two regular regions Ω 1 =and=ω. Let φ(xt) be a vetor of C test funtions with support in the interior of Ω. Hydrodynami Methods The Riemann roblem for Gas Dynamis 9

10 Applying the distributional form of the onservation law we have: t+ t dt dx u φ + f φ+ h φ = t Ω t t t+ t t+ t dt dx u φ + f φ+ h φ + dt dx u φ + f φ+ h φ = t Ω () t t Ω () t 1 t Using the fat that u is smooth inside both Ω 1 (t) and Ω (t) we an add the quantity (u t + =f - h) φ== inside the two integrals over these two regions separately to obtain: t+ t t+ t t dt dx ( u φ) + ( fφ) + dt dx ( u φ) + ( fφ) = t Ω () t t Ω () t 1 t Hydrodynami Methods The Riemann roblem for Gas Dynamis 1

11 Applying the divergene theorem to the spae time regions swept out by Ω i (t) we obtain: t+ t t St () Where n(xt) is the spatial unit normal to S(t) and s is the speed of the moving surfae in the diretion n and [] denotes the jump in a quantity aross the surfae S(t) in the diretion n. Sine the test funtion φ and t are arbitrary we have at eah point on the disontinuity surfae the equations: Hydrodynami Methods The Riemann roblem for Gas Dynamis 11

12 Applying the Rankine Hugoniot equations to the gas dynami equations we derive the formulas: ρ ρ s v n = ρ s v n = m 1 1 mv n= mv n 1 1 v n s + n m v v n n = ρ v n s + n m v v n n 1 1 or me e 1 1+ V V 1 =. There are two ases depending on whether the mass flux m is zero or nonzero: m m m = 1 v1 = v + n m s= v n+ V m= v n+ Vm e = e = V V 1+ V V 1 = 1 s = v n= v n. 1 Waves with m are shoks waves with m = ontat disontinuities. Hydrodynami Methods The Riemann roblem for Gas Dynamis 1

13 For perfet gas the Hugoniot equations for shoks an be further simplified. Here we have = / and: m 1 + µ = ρ 1+ µ 1 + µ ρ1 = ρ 1+ µ 1 v1 = v ± 1 + µ n 1 µ s= v n± 1 + µ 1+ µ We see that the flow state behind the shok is ompletely determined by the flow state ahead of the shok the shok normal and the pressure behind the shok. This statement is still true for general equations of state but it may not be possible to expliitly write down the solution as for a perfet gas. More generally given the state ahead of a shok and the shok normal the flow behind the shok is determined by one additional ondition. The variables ommonly used inlude the shok speed the shok Mah number (ratio of the speed of the shok with respet to a fluid at rest and the sound speed) the pressure behind the shok or the density behind the shok. e = e 1 1 = γ 1 µ γ µ 1 + µ 1 Hydrodynami Methods The Riemann roblem for Gas Dynamis 13

14 Homogeneous isotropi onservation laws with no body fores and the Euler equations for gas dynamis (with no gravity) in partiular satisfy the important property of self-similarity the equations are invariant under the transformation t t x x =>=. If u(xt) is a solution then so is u( x t). Sine the initial data for a Riemann problem is invariant under the transformation x αx we onlude that if the solution to the Riemann problem is unique then it must satisfy u(xt) = u( x t) i.e. u(xt) = u(x/t) for t >=. If we let = x/t assume the solution is smooth and insert this into the quasi-linear form of the partial differential equation we obtain: We see that is an eigenvalue of A(u)=df/du and du/d is a orresponding eigenvetor. Suh solutions are alled entered rarefation waves or entered simple waves. Alternatively if u is not smooth then it an onsist of a jump disontinuity onneting two onstant regions and the values of the solution are related by the Rankine-Hugoniot equations. Hydrodynami Methods The Riemann roblem for Gas Dynamis 14

15 Applying the simple wave equations to gas dynamis we obtain the solutions: = ± = ± 1 = 1 1 S = = = 1 1 For the left hand ase the density is found by solving the equation = ( 1 S ) given by the equation of state relation between density pressure and entropy. For a perfet gas this an be solved to obtain: = γ Hydrodynami Methods The Riemann roblem for Gas Dynamis 15

16 The shok wave urve through a given state (indexed by ) is defined as the lous of all states that an be onneted to that state by a shok wave. This urve onsists of two branhes orresponding to a positive or negative mass flux aross the wave. The side of the shok from whih fluid partiles travel into and through the shok is alled the ahead side of the shok. If the given state orresponds to the state ahead of a shok and m is positive we say the wave is forward moving for m negative we all the wave bakward moving. Thermodynamis requires that the entropy produed aross the shok be nonnegative. For most equations of state this orresponds to an inrease in pressure from the ahead to behind side of the shok. Thus only the branh of the wave urve orresponding to inreasing pressure is physial. A derease in pressure aross a wave orresponds to a rarefation wave. The wave urve defined for all is the onatenation of the shok wave urves for > and the rarefation urve for <. It an be shown that this urve is twie ontinuously differentiable. Of partiular interest is the omponent of the wave urve that relates the veloity behind the wave and the pressure behind the wave. The formula for this urve is given on the next slide. Hydrodynami Methods The Riemann roblem for Gas Dynamis 16

17 u= u ± V V V > d S < The funtion V( V ) is found by solving the Hugoniot relation + e= e + V V = ( e V) and = (ev) is the inomplete equation of state. If we define the mass flux aross a general wave m by the formula [] = m[u] we an write the wave urve as: > V V V u= u ± m V = m V < d S Hydrodynami Methods The Riemann roblem for Gas Dynamis 17

18 For a perfet gas Riemann wave urve an be omputed expliitly. γ 1 γ γ 1 γ Hydrodynami Methods The Riemann roblem for Gas Dynamis 18

19 The solution of the Riemann problem for gas dynamis onsistsof onstant regions separated by waves. Moving from left to right these are a bakward shok or rarefation wave a ontat disontinuity and a forward moving shok or rarefation wave. The Riemann data on the left will be the ahead state for the left moving wave while the Riemann data on the right will be the ahead state for the right moving wave. The Rankine-Hugoniot onditions (whih agree with the simple wave onditions for a ontat disontinuity) for the middle wave are the pressure and veloity are ontinuous aross this wave. If we let u m and m denote the ommon values of the pressure and veloity on either side of the ontat and let m l = m( l V l ) and m r = m( r V r ). We have: m = l m l m r = r + ( ) ( ) l m l l r m r r m = l l r + + l r r = + + l l r r l r m. l + r l r Hydrodynami Methods The Riemann roblem for Gas Dynamis 19

20 The set of equations on the previous slide give the mid state pressure as the solution of a nonlinear algebrai equation. One the mid state pressure is determined the mid state veloity is omputed from the orresponding formula. Finally using the mid state pressure the left and right data states and the Hugoniot or rarefation equations as appropriate we evaluate the densities on either side of the ontat disontinuity and the orresponding waves. If a wave is a shok its spae-time position is a line from the origin with slope equal to the shok speed. If it is a rarefation it orresponds to a fan the slope of eah ray of whih is equal to u ± (+ for a forward wave for a bakward wave). Thus the entire struture of the solution to the Riemann problem is determined one the mid state pressure is found. One exeptional ase ours when the wave urves do not interset for positive pressure. In this ase the solution onsists of two rarefation fans eah of whih expands into a vauum. In this ase the mid state veloity is undefined. Hydrodynami Methods The Riemann roblem for Gas Dynamis

21 In onlusion we show that a graphial representation of the Riemann wave urves is useful in understanding the struture of the solution to the Riemann problem. Given the loation of the right state the wave struture is determined by the loation of the left state with respet to the wave urve through the right state. Bakward Shok Wave urve Left Shok Right Shok Forward Shok Wave urve Left Shok Right Rarefation ( r u r ) Left Rarefation Right Shok Forward Rarefation Wave urve Left Rarefation Right Rarefation Bakward Rarefation Wave urve Hydrodynami Methods The Riemann roblem for Gas Dynamis 1

22 1. Derive the quasi-linear form of Euler s equations from the onservation form.. Derive the Hugoniot relations for gas dynamis. 3. Verify by diret alulation that the Riemann wave urve for gas dynamis is C. Hydrodynami Methods The Riemann roblem for Gas Dynamis

23 R. Rihtmyer and K. W. Morton Differene Methods for Initial-Value roblem ( nd ed.) Intersiene ublishers D. Lax Hyperboli Systems of Conservation Laws and the Mathematial Theory of Shok Waves SIAM J. Smoller Shok Waves and Reation-Diffusion Equations Springer-Verlag 198. J. Glimm Solutions in the Large for Nonlinear Hyperboli Systems of Equations Comm. ure Appl. Math Hydrodynami Methods The Riemann roblem for Gas Dynamis 3

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena Page 1 of 10 Physial Laws, Absolutes, Relative Absolutes and Relativisti Time Phenomena Antonio Ruggeri modexp@iafria.om Sine in the field of knowledge we deal with absolutes, there are absolute laws that

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION Journal of Mathematial Sienes: Advanes and Appliations Volume 3, 05, Pages -3 EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION JIAN YANG, XIAOJUAN LU and SHENGQIANG TANG

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

The Unified Geometrical Theory of Fields and Particles

The Unified Geometrical Theory of Fields and Particles Applied Mathematis, 014, 5, 347-351 Published Online February 014 (http://www.sirp.org/journal/am) http://dx.doi.org/10.436/am.014.53036 The Unified Geometrial Theory of Fields and Partiles Amagh Nduka

More information

Advances in Radio Science

Advances in Radio Science Advanes in adio Siene 2003) 1: 99 104 Copernius GmbH 2003 Advanes in adio Siene A hybrid method ombining the FDTD and a time domain boundary-integral equation marhing-on-in-time algorithm A Beker and V

More information

Singular Event Detection

Singular Event Detection Singular Event Detetion Rafael S. Garía Eletrial Engineering University of Puerto Rio at Mayagüez Rafael.Garia@ee.uprm.edu Faulty Mentor: S. Shankar Sastry Researh Supervisor: Jonathan Sprinkle Graduate

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

The shape of a hanging chain. a project in the calculus of variations

The shape of a hanging chain. a project in the calculus of variations The shape of a hanging hain a projet in the alulus of variations April 15, 218 2 Contents 1 Introdution 5 2 Analysis 7 2.1 Model............................... 7 2.2 Extremal graphs.........................

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Effect of Rotation, Magnetic Field and Initial Stresses on Propagation of Plane Waves in Transversely Isotropic Dissipative Half Space

Effect of Rotation, Magnetic Field and Initial Stresses on Propagation of Plane Waves in Transversely Isotropic Dissipative Half Space Applied Mathematis 4 7- http://dx.doi.org/.436/am..48a5 Published Online August (http://www.sirp.org/journal/am) Effet of otation Magneti Field and Initial Stresses on Propagation of Plane Waves in Transversely

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations.

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations. The Corpusular Struture of Matter, the Interation of Material Partiles, and Quantum Phenomena as a Consequene of Selfvariations. Emmanuil Manousos APM Institute for the Advanement of Physis and Mathematis,

More information

Math 220A - Fall 2002 Homework 8 Solutions

Math 220A - Fall 2002 Homework 8 Solutions Math A - Fall Homework 8 Solutions 1. Consider u tt u = x R 3, t > u(x, ) = φ(x) u t (x, ) = ψ(x). Suppose φ, ψ are supported in the annular region a < x < b. (a) Find the time T 1 > suh that u(x, t) is

More information

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM.

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. S. Kanagaraj Eulidean Relativity s.kana.raj@gmail.om (1 August 009) Abstrat By re-interpreting the speial relativity (SR) postulates based on Eulidean

More information

The transition between quasi-static and fully dynamic for interfaces

The transition between quasi-static and fully dynamic for interfaces Physia D 198 (24) 136 147 The transition between quasi-stati and fully dynami for interfaes G. Caginalp, H. Merdan Department of Mathematis, University of Pittsburgh, Pittsburgh, PA 1526, USA Reeived 6

More information

13.Prandtl-Meyer Expansion Flow

13.Prandtl-Meyer Expansion Flow 3.Prandtl-eyer Expansion Flow This hapter will treat flow over a expansive orner, i.e., one that turns the flow outward. But before we onsider expansion flow, we will return to onsider the details of the

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

In this case it might be instructive to present all three components of the current density:

In this case it might be instructive to present all three components of the current density: Momentum, on the other hand, presents us with a me ompliated ase sine we have to deal with a vetial quantity. The problem is simplified if we treat eah of the omponents of the vet independently. s you

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Nonreversibility of Multiple Unicast Networks

Nonreversibility of Multiple Unicast Networks Nonreversibility of Multiple Uniast Networks Randall Dougherty and Kenneth Zeger September 27, 2005 Abstrat We prove that for any finite direted ayli network, there exists a orresponding multiple uniast

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA HDRONIC JOURNL 24, 113-129 (2001) THE REFRCTION OF LIGHT IN STTIONRY ND MOVING REFRCTIVE MEDI C. K. Thornhill 39 Crofton Road Orpington, Kent, BR6 8E United Kingdom Reeived Deember 10, 2000 Revised: Marh

More information

Directional Coupler. 4-port Network

Directional Coupler. 4-port Network Diretional Coupler 4-port Network 3 4 A diretional oupler is a 4-port network exhibiting: All ports mathed on the referene load (i.e. S =S =S 33 =S 44 =0) Two pair of ports unoupled (i.e. the orresponding

More information

Lecture 15: Phase Transitions. Phase transitions

Lecture 15: Phase Transitions. Phase transitions Leture 15: Phase ransitions Continuous Phase transitions ims: Mean-field theory: Order parameter. Order-disorder transitions. Examples: β-brass (, Phase transitions Continuous phase transitions: our when

More information

Numerical simulation of a one-dimensional shock tube problem at supercritical fluid conditions

Numerical simulation of a one-dimensional shock tube problem at supercritical fluid conditions International Journal of Physial Sienes Vol. 3 (1), pp. 314-30, Deember, 008 Available online at http://www.aademijournals.org/ijps ISSN 199-1950 008 Aademi Journals Full ength esearh Paper Numerial simulation

More information

Discrete Bessel functions and partial difference equations

Discrete Bessel functions and partial difference equations Disrete Bessel funtions and partial differene equations Antonín Slavík Charles University, Faulty of Mathematis and Physis, Sokolovská 83, 186 75 Praha 8, Czeh Republi E-mail: slavik@karlin.mff.uni.z Abstrat

More information

Is classical energy equation adequate for convective heat transfer in nanofluids? Citation Advances In Mechanical Engineering, 2010, v.

Is classical energy equation adequate for convective heat transfer in nanofluids? Citation Advances In Mechanical Engineering, 2010, v. Title Is lassial energy equation adequate for onvetive heat transfer in nanofluids? Authors Wang, L; Fan, J Citation Advanes In Mehanial Engineering, 200, v. 200 Issued Date 200 URL http://hdl.handle.net/0722/24850

More information

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state:

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state: CE304, Spring 2004 Leture 6 Volumetri roperties of ure Fluids, part 4 The generi ubi equation of state: There are many possible equations of state (and many have been proposed) that have the same general

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Bäcklund Transformations: Some Old and New Perspectives

Bäcklund Transformations: Some Old and New Perspectives Bäklund Transformations: Some Old and New Perspetives C. J. Papahristou *, A. N. Magoulas ** * Department of Physial Sienes, Helleni Naval Aademy, Piraeus 18539, Greee E-mail: papahristou@snd.edu.gr **

More information

A model for measurement of the states in a coupled-dot qubit

A model for measurement of the states in a coupled-dot qubit A model for measurement of the states in a oupled-dot qubit H B Sun and H M Wiseman Centre for Quantum Computer Tehnology Centre for Quantum Dynamis Griffith University Brisbane 4 QLD Australia E-mail:

More information

EFFECTS OF COUPLE STRESSES ON PURE SQUEEZE EHL MOTION OF CIRCULAR CONTACTS

EFFECTS OF COUPLE STRESSES ON PURE SQUEEZE EHL MOTION OF CIRCULAR CONTACTS -Tehnial Note- EFFECTS OF COUPLE STRESSES ON PURE SQUEEZE EHL MOTION OF CIRCULAR CONTACTS H.-M. Chu * W.-L. Li ** Department of Mehanial Engineering Yung-Ta Institute of Tehnology & Commere Ping-Tung,

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

Wave equation II: Qualitative Properties of solutions

Wave equation II: Qualitative Properties of solutions Chapter 5 Wave equation II: Qualitative Properties of solutions In this hapter, we disuss some of the important qualitative properties of solutions to wave equation. Solutions of wave equation in one spae

More information

The Second Postulate of Euclid and the Hyperbolic Geometry

The Second Postulate of Euclid and the Hyperbolic Geometry 1 The Seond Postulate of Eulid and the Hyperboli Geometry Yuriy N. Zayko Department of Applied Informatis, Faulty of Publi Administration, Russian Presidential Aademy of National Eonomy and Publi Administration,

More information

Geometry of Transformations of Random Variables

Geometry of Transformations of Random Variables Geometry of Transformations of Random Variables Univariate distributions We are interested in the problem of finding the distribution of Y = h(x) when the transformation h is one-to-one so that there is

More information

After the completion of this section the student should recall

After the completion of this section the student should recall Chapter I MTH FUNDMENTLS I. Sets, Numbers, Coordinates, Funtions ugust 30, 08 3 I. SETS, NUMERS, COORDINTES, FUNCTIONS Objetives: fter the ompletion of this setion the student should reall - the definition

More information

div v(x) = 0, n terr = 0, v terr = v t,

div v(x) = 0, n terr = 0, v terr = v t, Proeedings of the Ceh Japanese Seminar in Applied Mathematis 6 Ceh Tehnial University in Prague, September 4-7, 6 pp. 4 8 FLOW AND POLLUTION TRANSPORT IN THE STREET CANYON PETR BAUER, AND ZBYŇEK JAŇOUR

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Aelerator Physis Partile Aeleration G. A. Krafft Old Dominion University Jefferson Lab Leture 4 Graduate Aelerator Physis Fall 15 Clarifiations from Last Time On Crest, RI 1 RI a 1 1 Pg RL Pg L V Pg RL

More information

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined How should a snake turn on ie: A ase study of the asymptoti isoholonomi problem Jianghai Hu, Slobodan N. Simić, and Shankar Sastry Department of Eletrial Engineering and Computer Sienes University of California

More information

A Spatiotemporal Approach to Passive Sound Source Localization

A Spatiotemporal Approach to Passive Sound Source Localization A Spatiotemporal Approah Passive Sound Soure Loalization Pasi Pertilä, Mikko Parviainen, Teemu Korhonen and Ari Visa Institute of Signal Proessing Tampere University of Tehnology, P.O.Box 553, FIN-330,

More information

A Characterization of Wavelet Convergence in Sobolev Spaces

A Characterization of Wavelet Convergence in Sobolev Spaces A Charaterization of Wavelet Convergene in Sobolev Spaes Mark A. Kon 1 oston University Louise Arakelian Raphael Howard University Dediated to Prof. Robert Carroll on the oasion of his 70th birthday. Abstrat

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion 16.50 Leture 6 Subjet: Modeling of Thermal Roket Engines; Nozzle flow; Control of mass flow Though onetually simle, a roket engine is in fat hysially a very omlex devie and diffiult to reresent quantitatively

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Key words. neural field model, integro-differential equation, traveling front, neural network, existence, linear stability

Key words. neural field model, integro-differential equation, traveling front, neural network, existence, linear stability EXISTENCE AND STABILITY OF TRAVELING FRONTS IN A LATERAL INHIBITION NEURAL NETWORK YIXIN GUO Abstrat. We onsider the existene and stability of traveling front solutions of a neural network onsisting of

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

SEISMIC ANALYSIS OF SPHERICAL TANKS INCLUDING FLUID-STRUCTURE-SOIL INTERACTION

SEISMIC ANALYSIS OF SPHERICAL TANKS INCLUDING FLUID-STRUCTURE-SOIL INTERACTION 3 th World Conferene on Earthquake Engineering Vanouver, B.C., Canada August -6, 2004 aper o. 84 SEISMIC AALYSIS OF SHERICAL TAKS ICLUDIG FLUID-STRUCTURE-SOIL ITERACTIO T.L. Karavasilis, D.C. Rizos 2,

More information

DO PHYSICS ONLINE. SPECIAL RELATIVITY Frames of Reference

DO PHYSICS ONLINE. SPECIAL RELATIVITY Frames of Reference DO PHYSICS ONLINE SPACE SPECIAL RELATIVITY Frames of Referene Spae travel Apollo 11 spaeraft: Earth Moon v ~ 40x10 3 km.h -1 Voyager spaeraft: v ~ 60x10 3 km.h -1 (no sling shot effet) Ulysses spaeraft:

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

Stability Analysis of Orbital Motions around Uniformly Rotating Irregular Asteroids

Stability Analysis of Orbital Motions around Uniformly Rotating Irregular Asteroids Stability Analysis of Orbital Motions around Uniformly Rotating Irregular Asteroids By Xiyun HoU, ) Daniel J. SCHEERES, ) Xiaosheng XIN, ) Jinglang FENG, ) Jingshi TANG, ) Lin LIU, ) ) Shool of Astronomy

More information

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

Complexity of Regularization RBF Networks

Complexity of Regularization RBF Networks Complexity of Regularization RBF Networks Mark A Kon Department of Mathematis and Statistis Boston University Boston, MA 02215 mkon@buedu Leszek Plaskota Institute of Applied Mathematis University of Warsaw

More information

Extending LMR for anisotropic unconventional reservoirs

Extending LMR for anisotropic unconventional reservoirs Extending LMR for anisotropi unonventional reservoirs Maro A. Perez Apahe Canada Ltd Summary It has beome inreasingly advantageous to haraterize rok in unonventional reservoirs within an anisotropi framework.

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of lassial thermodynamis Fundamental Laws, roperties and roesses () First Law - Energy Balane hermodynami funtions of state Internal energy, heat and work ypes of paths (isobari, isohori, isothermal,

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Collinear Equilibrium Points in the Relativistic R3BP when the Bigger Primary is a Triaxial Rigid Body Nakone Bello 1,a and Aminu Abubakar Hussain 2,b

Collinear Equilibrium Points in the Relativistic R3BP when the Bigger Primary is a Triaxial Rigid Body Nakone Bello 1,a and Aminu Abubakar Hussain 2,b International Frontier Siene Letters Submitted: 6-- ISSN: 9-8, Vol., pp -6 Aepted: -- doi:.8/www.sipress.om/ifsl.. Online: --8 SiPress Ltd., Switzerland Collinear Equilibrium Points in the Relativisti

More information

Hidden Momentum in a Spinning Sphere

Hidden Momentum in a Spinning Sphere Hidden Momentum in a Spinning Sphere 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 8544 (August 16, 212; updated June 3, 217 A spinning sphere at rest has zero

More information

Fig Review of Granta-gravel

Fig Review of Granta-gravel 0 Conlusion 0. Sope We have introdued the new ritial state onept among older onepts of lassial soil mehanis, but it would be wrong to leave any impression at the end of this book that the new onept merely

More information

A simple expression for radial distribution functions of pure fluids and mixtures

A simple expression for radial distribution functions of pure fluids and mixtures A simple expression for radial distribution funtions of pure fluids and mixtures Enrio Matteoli a) Istituto di Chimia Quantistia ed Energetia Moleolare, CNR, Via Risorgimento, 35, 56126 Pisa, Italy G.

More information

Effect of magnetization process on levitation force between a superconducting. disk and a permanent magnet

Effect of magnetization process on levitation force between a superconducting. disk and a permanent magnet Effet of magnetization proess on levitation fore between a superonduting disk and a permanent magnet L. Liu, Y. Hou, C.Y. He, Z.X. Gao Department of Physis, State Key Laboratory for Artifiial Mirostruture

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

Classical Field Theory

Classical Field Theory Preprint typeset in JHEP style - HYPER VERSION Classial Field Theory Gleb Arutyunov a a Institute for Theoretial Physis and Spinoza Institute, Utreht University, 3508 TD Utreht, The Netherlands Abstrat:

More information

Scalable Positivity Preserving Model Reduction Using Linear Energy Functions

Scalable Positivity Preserving Model Reduction Using Linear Energy Functions Salable Positivity Preserving Model Redution Using Linear Energy Funtions Sootla, Aivar; Rantzer, Anders Published in: IEEE 51st Annual Conferene on Deision and Control (CDC), 2012 DOI: 10.1109/CDC.2012.6427032

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

Likelihood-confidence intervals for quantiles in Extreme Value Distributions

Likelihood-confidence intervals for quantiles in Extreme Value Distributions Likelihood-onfidene intervals for quantiles in Extreme Value Distributions A. Bolívar, E. Díaz-Franés, J. Ortega, and E. Vilhis. Centro de Investigaión en Matemátias; A.P. 42, Guanajuato, Gto. 36; Méxio

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Theory. Coupled Rooms

Theory. Coupled Rooms Theory of Coupled Rooms For: nternal only Report No.: R/50/TCR Prepared by:. N. taey B.., MO Otober 00 .00 Objet.. The objet of this doument is present the theory alulations to estimate the reverberant

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

Integration of the Finite Toda Lattice with Complex-Valued Initial Data

Integration of the Finite Toda Lattice with Complex-Valued Initial Data Integration of the Finite Toda Lattie with Complex-Valued Initial Data Aydin Huseynov* and Gusein Sh Guseinov** *Institute of Mathematis and Mehanis, Azerbaijan National Aademy of Sienes, AZ4 Baku, Azerbaijan

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION LUCIANO BUGGIO ELECTROMAGNETIC RADIATION On the basis of the (unpreedented) dynami hypothesis that gives rise to yloidal motion a loal and deterministi model of eletromagneti radiation is onstruted, possessing

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3 hapter 3 eture 7 Drag polar Topis 3..3 Summary of lift oeffiient, drag oeffiient, pithing moment oeffiient, entre of pressure and aerodynami entre of an airfoil 3..4 Examples of pressure oeffiient distributions

More information

IMPACT MODELLING OF THE COEFFICIENT OF RESTITUTION OF POTATOES BASED ON THE KELVIN- VOIGHT PAIR

IMPACT MODELLING OF THE COEFFICIENT OF RESTITUTION OF POTATOES BASED ON THE KELVIN- VOIGHT PAIR Bulletin of the Transilvania University of Braşov Series II: Forestry Wood Industry Agriultural Food Engineering Vol. 9 (58) No. - 06 IMPACT MODELLING OF THE COEFFICIENT OF RESTITUTION OF POTATOES BASED

More information

ASTRONOMY AND ASTROPHYSICS. Properties of longitudinal flux tube waves. I. Shock amplitude relations. M. Cuntz 1,2

ASTRONOMY AND ASTROPHYSICS. Properties of longitudinal flux tube waves. I. Shock amplitude relations. M. Cuntz 1,2 Astron. Astrophys. 350, 00 06 (999 Properties of longitudinal flux tube waves I. Shok amplitude relations ASTRONOMY AND ASTROPHYSICS M. Cuntz, Center for Spae Plasma, Aeronomy, and Astrophysis Researh

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

u x u t Internal Waves

u x u t Internal Waves Internal Waves We now examine internal waves for the ase in whih there are two distint layers and in whih the lower layer is at rest. This is an approximation of the ase in whih the upper layer is muh

More information

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003 arxiv:physis/0308036v1 [physis.lass-ph] 8 Aug 003 On the meaning of Lorentz ovariane Lszl E. Szab Theoretial Physis Researh Group of the Hungarian Aademy of Sienes Department of History and Philosophy

More information

Frequency Domain Analysis of Concrete Gravity Dam-Reservoir Systems by Wavenumber Approach

Frequency Domain Analysis of Concrete Gravity Dam-Reservoir Systems by Wavenumber Approach Frequeny Domain Analysis of Conrete Gravity Dam-Reservoir Systems by Wavenumber Approah V. Lotfi & A. Samii Department of Civil and Environmental Engineering, Amirkabir University of Tehnology, Tehran,

More information

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules Prog. Theor. Exp. Phys. 05, 063I0 ( pages DOI: 0.093/ptep/ptv068 Appliation of the Dyson-type boson mapping for low-lying eletron exited states in moleules adao Ohkido, and Makoto Takahashi Teaher-training

More information