Examples Solid-Liquid Extraction

Size: px
Start display at page:

Download "Examples Solid-Liquid Extraction"

Transcription

1 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse - - Examples Solid-Liquid Extraction. Rectangular Triangle Diagram C A... inert material B... extractable material C... solvent Y C / (A + B + C) F E D c Overflow (extract) a b 0 A X B / (A + B + C) B a... constant underflow b... variable underflow c... constant ration solvent / inert material DE... connode

2 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse Ponchon - Savarit Diagram A... inert material B... extractable material C... solvent F E a b N A / (B + C) c D 0 X,Y B / (B + C) a... constant underflow b... variable underflow c... constant ration solvent / inert material DE... connode inert material N extractable substance + solvent A B + C L solution extractable substance + solvent B + C N * L amount of inert material A L * X, L * Y amount of extractable substance B

3 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse Example : Single Step Extraction In a single step solid-liquid extraction soybean oil has to be extracted from soybean flakes using hexane as solvent. 00 kg of the flakes with an oil content of 20 wt% are contacted with 00 kg fresh hexane..5 kg of inert material hold back a constant value of kg solution. Determine in the rectangular triangle diagram and in the Ponchon - Savarit diagram the amount and composition of the flows leaving the extraction plant. V L 0 extract (overflow) feed extraction step solvent underflow V 2 L. Rectangular Triangle Diagram Total balance: L 0 + V 2 M L + V kg Balance for compound A: L 0 w A,L0 + V 2 w A,V2 M w A,M with the feed concentration w A,L0 0.8 and the suggestion, that no solid particles are included in the overflow, so w A,V2 0 follows: 00 * * * w A,M w A,M 0.4

4 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse Balance for compound B: L 0 w B,L0 + V 2 w B,V2 M w B,M with the feed concentration w B,L0 0.2 and with the knowledge, that pure hexane is used as solvent, w B,V2 0, follows 00 * * * w B,M w B,M 0. The concentration of compound C (solvent) in the mixing point M can be determined either by a mass balance for compound C L 0 w C,L0 + V 2 w C,V2 M w C,M with w C,L0 0, because no solvent is included in the feed, and with w C,V2, pure hexane, follows 00 * * 200 * w C,M w C,M 0.5 or by the rule, that the sum of the mass percent of each compound in the point M has to be. w A,M + w B,M + w C.M w C.M w C.M 0.5 With these concentrations the mixing point M can be drawn in the diagram, which has to be on the connection line of feed point F and solvent C. It is given, that kg inert material retains.5 kg solution (extractable substance + solvent miscella overflow). Therefore the concentration of the underflow is inert material w A, Underflow inert material + extractable substance + solvent.5 w A,Underflo w w A, L A A + B + C

5 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse The amount of the leaving flows L and V can be calculated from the mass balance for compound A M w A,M V w A,V + L w A,L with w A,V 0 (no solid material in the overflow) and w A,L 0.6 (underflow) w A, M L M 200 w A, L L kg With the total balance M L + V follows V M - L V kg The concentrations of B and C in the overflow V are calculated with the suggestion that no inert material A is included in the overflow. wb, V w B,V wc, V B w C,V 0, ( A) + B + C C 00 ( A) + B + C The composition of the underflow can be calculated by mass balances for compound B and C. L w B,L + V, w B,V L 0 w B,L0 + V 2 w B,V2 with w B,V2 0 wb,l L0 wb, Lo V L w B,L wb,v

6 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse w A,L + w B,L + w C,L w C,L w C,L total mass [kg] wt% A wt% B wt% C feed L solvent V overflow V underflow L Ponchon - Savarit Diagram Total balance: L 0 + V 2 M L + V L 0 B + C 20 kg, no solvent is included in the feed material V 2 00 kg, pure solvent C M kg Compound balance: L 0 X L0 + V 2 X V2 M X M X L0 B, no solvent in the feed material C 0 B + C X V2 0, pure solvent C 20 * + 00 * 0 20 * X M X M N 0? A 80 N 0 4 L 0 20 N M? N 0 * L 0 A N M * L M L M B + C kg A 80 N M LM 20

7 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse The amount of the extract solution V and of the solution, retained by the solid material, L can be determined by law of balance or by calculation. M 20 kg L + V N? It is given, that.5 kg of inert material A retains kg solution B+C N.5.5 underflow, which is constant A N 0 * L 0 N * L N M * M A 80 L kg L. 5 V M - L kg L N X feed L solvent V n overflow V underflow L n

8 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse Example 2: Continuous Countercurrent Solid - Liquid Extraction kg of wet sugar beet chips with a composition of 28 wt% water, 32 wt% sugar and 40 wt% inert material have to be extracted in a continuous countercurrent extraction plant using hot water as solvent. The produced extract must contain 40 wt% sugar and the total extraction efficiency for sugar has to be 90%. kg inert material retains 3 kg solution and this value is constant. Determine in the rectangular triangle diagram and in the Ponchon - Savarit diagram the number of ideal steps for this separation problem. V L 0 extract (overflow) feed extraction steps,2,..n solvent underflow V n L n. Rectangular triangle diagram 90% sugar (B) have to be extracted and the extract solution must contain 40 wt% sugar V * x B,V 0.9 * L 0 * x B,L0 with x B,V 0.4, L kg and x B,L V 0.9 *0,000 * kg Balance for inert material A with L n * x A,Ln + V * x A,V V n * x A,Vn + L 0 * x A,L0 x A,Ln x A,Underflow A A + B + C and x A,V 0 with the suggestion that no solid material is included in the overflow and with x A,Vn 0 because of pure solvent water C

9 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse follows xa,l0 L n L 0 x A, Ln 0, ,000 kg Balance for sugar B: V * x B,V + L n x B,Ln L 0 * x B,L0 + V n * x B,Vn with x B,Vn 0 because the solvent is pure water C follows x B,Ln * L0 xb,l0 V * Ln xb,v 0,000 * ,200 * 0.4 6, The amount of necessary solvent water C can be calculated by a total mass balance L 0 + V n L n + V V n L n + V - L 0 6, ,200-0,000 3,200 kg total mass [kg] wt% A wt% B wt% C feed L 0 0, solvent V n 3, overflow V underflow L n Determination of the number of ideal steps First of all the constant underflow with x A,Ln 0.25 and the given points L 0 (x A,L0 0.4, x B,L0 0.32, x C,L0 0.28), V (x A,V 0, x B,V 0.4, x C,V 0.6), V n (x C,Vn ) and L n (x A,Ln 0.25, x B,Ln 0.02, x C,Ln 0.73) are drawn in the diagram. The one pole line is the connection of V with L 0 and the other one the connection of V n with L n. Crossing these pole lines results in the pole point.

10 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse Construction of the connode ( connection line with point A) through V gives the underflow L at the underflow line. Connecting L with the pole point give the extract composition V 2, and so on. Finally the number of ideal steps results with N th 0 2. Ponchon - Savarit Diagram Determination of the feed point A 0.4 N B + C B 0.32 X L B + C L 0 ( ) * F ( ) * ,000 kg concentration of the overflow (extract solution) B 0.4 X V 0.4 B + C % extraction efficiency: V V * X V 0.9 * L 0 * X L0 0.9 * L0 * XV XL0 0.9 * 6000 * kg Balance for solid material: L n N 0 * L 0 N n * L n N n N Underflow A B + C N0 * L * 6, kg NN Total balance: L 0 + V n L M L n + V L M 2, ,200 9,200 kg V n 9,200-6,000 3,200 kg

11 Examples Solid - Liquid Extraction Lecturer: Dr.Gamse - - Balance for sugar B: L 0 * X L0 + V n * X Vn L M * X M V * X V + L n * X Ln with X Vn 0 (pure solvent) follows X Ln * L0 XL0 V * Ln XV 6,000 * ,200 * 0.4 0,0267 2,000 L N X feed L 0 6, solvent V n 3, overflow V 7, underflow L n 2, Determination of the ideal number of steps: Drawing of the points L 0 (N L , X L ), V (N V 0, X V 0.4), V n (N Vn 0, X Vn 0) and L n (N Ln 0.333, X Vn ). The connection of L 0 and V gives the first pole line and connection of L n and V n the second one. Crossing these two pole lines gives the pole point. The first connode is a vertical line through V which gives at the underflow the point L. Connecting this point L with the pole point give the next extract composition V 2 and so on. Finally the number of ideal steps results with N th 0

Examples Liquid- Liquid- Extraction

Examples Liquid- Liquid- Extraction Examples Liquid- Liquid- Extraction Lecturer: Thomas Gamse ao.univ.prof.dipl.-ing.dr.techn. Department of Chemical Engineering and Environmental Technology Graz University of Technology Inffeldgasse 25,

More information

Solid-Liquid Extraction

Solid-Liquid Extraction Chapter (10) Solid-Liquid Extraction (( Leaching )) Leaching: is the separation of a solute from solid mixture by dissolving it in a liquid phase. Leaching occurs in two steps: 1. Contacting solvent and

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

Chapter Two (Chemistry of Life)

Chapter Two (Chemistry of Life) 1 Chapter Two (Chemistry of Life) SECTION ONE: THE COMPOSITION OF MATTER MATTER Everything in the universe is made of matter. Matter is anything that occupies space and has mass. Mass is the quantity of

More information

8.2 Solubility and Concentration

8.2 Solubility and Concentration Fresh lemonade is a solution of water, lemon juice, and sugar. There is a limit to the amount of sugar that can dissolve in a given amount of water. Once that limit is reached, you cannot make the solution

More information

Chem 1075 Chapter 14 Solutions Lecture Outline

Chem 1075 Chapter 14 Solutions Lecture Outline Chem 1075 Chapter 14 Solutions Lecture Outline Slide 2 Solutions A solution is a. A solution is composed of a dissolved in a. Solutions exist in all three physical states: Slide 3 Polar Molecules When

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

EXAMPLE 2: Visualization and Animation of Enthalpy Method in Binary Distillation

EXAMPLE 2: Visualization and Animation of Enthalpy Method in Binary Distillation EXAMPLE 2: Visualization and Animation of Enthalp Method in Binar Distillation A graphical method that includes energ balances as well as material balances and phase equilibrium relations is the Ponchon-Savarit

More information

Solving mass transfer problems on the computer using Mathcad

Solving mass transfer problems on the computer using Mathcad Solving mass transfer problems on the computer using Mathcad E. N. Bart, J. Kisutcza NJIT, Department of Chemical Engineering, University Heights, Newark NJ 712-1982 Tel 973 596 2998, e-mail: Bart@NJIT.edu

More information

SOLUTIONS: A Study of Solubility

SOLUTIONS: A Study of Solubility SLUTINS: A Study of Solubility INTRDUCTIN In this experiment, four effects involving solubility will be examined. Three of these effects influence the speed with which the solvent dissolves the solute.

More information

L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎

L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎 L/O/G/O 單元操作 ( 三 ) Chapter 23 Leaching and Extraction 化學工程學系李玉郎 Leaching Solid extraction, dissolve soluble matter from its mixture with an insoluble solid solid (solute A+ inert B) solvent (C) concentrated

More information

Water is one of the few compounds found in a liquid state over most of Earth s surface.

Water is one of the few compounds found in a liquid state over most of Earth s surface. The Water Molecule Water is one of the few compounds found in a liquid state over most of Earth s surface. Like other molecules, water (H2O) is neutral. The positive charges on its 10 protons balance out

More information

CHEM 304 Experiment Prelab Coversheet

CHEM 304 Experiment Prelab Coversheet CHEM 304 Experiment Prelab Coversheet Name: Justin Arthur Student Date: 08/27/2014 Exp. #: JAS-11 Title: Isolation of Eugenol from the Steam Distillation of Cloves Purpose: To isolate eugenol from cloves

More information

Modern Chemistry Chapter 12- Solutions

Modern Chemistry Chapter 12- Solutions Modern Chemistry Chapter 12- Solutions Section 1- Types of Mixtures Solutions are homogeneous mixtures of two or more substances in a single phase. Soluble describes a substance as capable of being dissolved.

More information

Chemical Processes Part 1: Intro and Chemistry Basics

Chemical Processes Part 1: Intro and Chemistry Basics Chemical Processes Part 1: Intro and Chemistry Basics How are chemistry and chemical engineering different? Chemists Small batches Determine reactions to make new compounds in test tubes Prepare and conduct

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

Physical Science Review Sheet Matter & Physical Properties

Physical Science Review Sheet Matter & Physical Properties Name: Date: 1. The four diagrams below model the results of mixing atoms of different substances. Each atom is represented by a different symbol. Which diagram correctly models a chemical change? 4. Base

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

New Website: M P E il Add. Mr. Peterson s Address:

New Website:   M P E il Add. Mr. Peterson s  Address: Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47

More information

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition Chemistry for Changing Times, Thirteenth Edition Lecture Outlines Chemical Accounting John Singer, Jackson Community College Chemical Sentences: Equations Chemical equations represent the sentences in

More information

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim ERT 313 BIOSEPARATION ENGINEERING EXTRACTION Prepared by: Miss Hairul Nazirah Abdul Halim Definition of Extraction Liquid-Liquid extraction is a mass transfer operation in which a liquid solution (the

More information

Kaplan Chemical Engineering Problems & Solutions, 4 th Edition Errata

Kaplan Chemical Engineering Problems & Solutions, 4 th Edition Errata Page : Page 6 and 7: Example., Line : Change 50 to 0 Replace present solutions of problems. to.4 on pages 6 and 7 by the following revised solutions:. Carbon/Hydrogen mass ratio: CO in the flue gas is

More information

Science Wednesday - Friday September 21st - 23rd EQ: How is water important? What gives water its unique properties?

Science Wednesday - Friday September 21st - 23rd EQ: How is water important? What gives water its unique properties? Science Wednesday - Friday September 21st - 23rd EQ: How is water important? What gives water its unique properties? On your desk: Paper Pencil for notes Assignments: Thirsty Abe Climbing Water Water Metal

More information

Chapter 5: The Water We Drink

Chapter 5: The Water We Drink Chapter 5: The Water We Drink Water 70% of the Earth s surface is covered by water The human body is 50-75% water The human brain is 75% water Blood is 83% water Lungs are 90% water Bones (!) are 22% water

More information

8.2 Solubility and Concentration

8.2 Solubility and Concentration Fresh lemonade is a solution of water, lemon juice, and sugar. There is a limit to the amount of sugar that can dissolve in a given amount of water. Once that limit is reached, you cannot make the solution

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 4 Absorption Lecture - 3 Packed Tower Design Part 2 (Refer Slide

More information

SOLUTIONS. Homogeneous mixture uniformly mixed on the molecular level. Solvent & Solute. we will focus on aqueous solutions

SOLUTIONS. Homogeneous mixture uniformly mixed on the molecular level. Solvent & Solute. we will focus on aqueous solutions SOLUTIONS Homogeneous mixture uniformly mixed on the molecular level Solvent & Solute we will focus on aqueous solutions SOLUTE-SOLVENT SOLVENT INTERACTIONS Why do solutions form? Processes occur spontaneously

More information

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

9.1 Water. Chapter 9 Solutions. Water. Water in Foods Chapter 9 s 9.1 Water 9.1 Properties of Water 9.2 s 9.3 Electrolytes and Nonelectrolytes 9.6 Percent Concentration 9.7 Molarity Water is the most common solvent. The water molecule is polar. Hydrogen bonds

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Mass Balance

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Mass Balance Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Mass Balance 1. The mass balance equation for the system is: 2 + 3 = m This yields, m = 5 kg 2. The mass balance

More information

Matter Properties and Changes. Chemistry the study of matter and energy What is Matter?? What isn t Matter??

Matter Properties and Changes. Chemistry the study of matter and energy What is Matter?? What isn t Matter?? Matter Properties and Changes Chemistry the study of matter and energy What is Matter?? What isn t Matter?? Matter? Name some matter Matter? Matter? I. Properties of Matter Chemistry is the study of matter

More information

2-2 Properties of Water. Copyright Pearson Prentice Hall

2-2 Properties of Water. Copyright Pearson Prentice Hall 2-2 Properties of Water Water Water is the most important molecule on earth. Because of its unique shape and chemical behavior it easily bonds with other molecules, and itself. Water: Covalent Bond Water

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water Lesson Overview Proper&es of Water Lesson Overview 2.2 Properties of Water THINK ABOUT IT Looking back at Earth from space, an astronaut called it the blue planet, referring to the oceans of water that

More information

Lone pairs as thieves

Lone pairs as thieves Lone pairs These are valence orbitals that are full, but that does not mean that they do not participate in bonding If an ion with a positive charge comes close enough, the lone pair may attract it and

More information

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical and Process Engineering Stage 2 (Bachelor of Engineering in Chemical and Process Engineering Stage 2) (NFQ Level 8) Autumn 2005

More information

Mathematical Economics: Lecture 6

Mathematical Economics: Lecture 6 Mathematical Economics: Lecture 6 Yu Ren WISE, Xiamen University October 10, 2012 Outline Chapter 11 Linear Independence 1 Chapter 11 Linear Independence New Section Chapter 11: Linear Independence Linear

More information

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas MIXED SURD QUESTIONS Question 1 (**) Write each of the following expressions a single simplified surd a) 150 54 b) 21 7 C1A, 2 6, 3 7 Question 2 (**) Write each of the following surd expressions as simple

More information

Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name. Introduction

Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name. Introduction Introduction Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name Have you ever seen an insect or spider appear to walk on water? The ability of water bugs

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

Science 14 Unit A: Investigating Properties of Matter Chapter 3 Mixtures and Their Uses pp WORKBOOK Name:

Science 14 Unit A: Investigating Properties of Matter Chapter 3 Mixtures and Their Uses pp WORKBOOK Name: Science 14 Unit A: Investigating Properties of Matter Chapter 3 Mixtures and Their Uses pp. 40-57 WORKBOOK Name: 3.1 Two Kinds of Mixtures pp. 42-44 Read pp. 42-43 Mixtures are represented on the right

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T. Chemists have Solutions!

Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T. Chemists have Solutions! Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T Chemists have Solutions! SOLUTIONS homogeneous mixture (uniform composition throughout) Solute - substance being dissolved

More information

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data. Distillation Distillation may be defined as the separation of the components of a liquid mixture by a process involving partial vaporization. The vapor evolved is usually recovered by condensation. Volatility

More information

Solution Experiment Collin College

Solution Experiment Collin College Solution Experiment Collin College Christian E. Madu, PhD and Michael Jones, PhD Objectives Predict the polarity of a molecule using the Lewis Dot Formula and molecular shape. Determine the polarity of

More information

The Properties of Water

The Properties of Water The Water Molecule The Properties of Water Chapter 2.2 Polarity Chemical bonds have angles which produce certain molecular structures This makes water molecules have O on one end and H s on the other end

More information

Welcome to chemistry

Welcome to chemistry Welcome to chemistry Science a search for facts about the world around us understanding the past, predicting the future Aristotle (384-322 B.C.) one can work out all the laws that govern the universe by

More information

x y

x y (a) The curve y = ax n, where a and n are constants, passes through the points (2.25, 27), (4, 64) and (6.25, p). Calculate the value of a, of n and of p. [5] (b) The mass, m grams, of a radioactive substance

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

CHEMISTRY- I PUC. Properties of matter and their measurements in chemistry:

CHEMISTRY- I PUC. Properties of matter and their measurements in chemistry: CHEMISTRY- I PUC UNIT 1 : Some Basic concepts of Chemistry Matter and its classification: Matter: Anything that occupies space, has mass. The three states of matter are Solids, liquids and gases. Chemical

More information

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS 130 LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS: A differential equation (DE) is an equation involving an unknown function and one or more of its derivatives. A differential

More information

Water & Ocean Structure. Ch. 6

Water & Ocean Structure. Ch. 6 Water & Ocean Structure Ch. 6 Wonderful Water 70% of Earth covered in H 2 O 70% of your body is H 2 O You die in ~3-5 days without H 2 O Regulates Coastal Temperatures What is Water? Matter: has mass,

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is: 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assume a basis of 100g

More information

4. Ways of Representing Atoms

4. Ways of Representing Atoms 4. Ways of Representing Atoms A- Placing Electrons in Energy Levels (Shells) = Bohr-Rutherford Model n = 5 The ydrogen Spectrum It was shown by Bohr and others that electrons occupy different energy levels

More information

Name: Period: Date: solution

Name: Period: Date: solution Name: Period: Date: ID: A Solutions Test A Matching Use the choices below to answer the following 5 questions. a. Hydrogen bond d. Electrolyte b. Polar molecule e. Nonelectrolyte c. Nonpolar molecule 1.

More information

Chapter 9 Lesson 1: Substances and Mixtures

Chapter 9 Lesson 1: Substances and Mixtures Chapter 9 Lesson 1: Substances and Mixtures Vocabulary -Substance -Heterogeneous mixture -Mixture -Homogeneous mixture -Solution Matter: Substances and Mixtures How do compounds and mixtures differ? Because

More information

6.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 111, Miramar College. 1 Solutions. January 10

6.01 Solutions. The Chemistry of Matter in Water. Dr. Fred Omega Garces. Chemistry 111, Miramar College. 1 Solutions. January 10 6.01 Solutions The Chemistry of Matter in Water Dr. Fred Omega Garces Chemistry 111, Miramar College 1 Solutions 6.01 Solutions ow water Dissolves Salts 2 Solutions Components of Solution omogeneous systems

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 37 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

REVIEW EXAM 1 CHAP 11 &12

REVIEW EXAM 1 CHAP 11 &12 REVIEW EXAM 1 CHAP 11 &12 1.In a 0.1 molar solution of NaCl in water, which one of the following will be closest to 0.1? A) The mole fraction of NaCl. B) The mass fraction of NaCl. C) The mass percent

More information

Further Mathematics Summer work booklet

Further Mathematics Summer work booklet Further Mathematics Summer work booklet Further Mathematics tasks 1 Skills You Should Have Below is the list of the skills you should be confident with before starting the A-Level Further Maths course:

More information

Liquids and Solutions Crib Sheet

Liquids and Solutions Crib Sheet Liquids and Solutions Crib Sheet Determining the melting point of a substance from its solubility Consider a saturated solution of B in a solvent, A. Since the solution is saturated, pure solid B is in

More information

Welcome to chemistry

Welcome to chemistry Welcome to chemistry Science a search for facts about the world around us understanding the past, predicting the future Aristotle (384-322 B.C.) one can work out all the laws that govern the universe by

More information

Unit 1-Additional Practice

Unit 1-Additional Practice Name: Unit 1-Additional Practice Period: 1. Powdered iron is magnetic, but powdered sulfur is not. What occurs when they form a mixture in a beaker at room temperature? A) The iron retains its magnetic

More information

Mixtures and substances Investigating mixtures and substances

Mixtures and substances Investigating mixtures and substances Year 7 Science Camp Booklet Activity Mixtures and substances Investigating mixtures and substances Science start up Unit 1: Lesson 4 Today you will: identify different mixtures including solutions. There

More information

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake

Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Test bank for Chemistry An Introduction to General Organic and Biological Chemistry 12th Edition by Timberlake Link download full: http://testbankair.com/download/test-bank-for-chemistry-an-introduction-to-general-organic-and-biological-chemistry-12th-edition-by-timberlak

More information

Chemistry Unit 1: Section1 - Elements, Compounds, & Mixtures

Chemistry Unit 1: Section1 - Elements, Compounds, & Mixtures Chemistry Unit 1: Section1 - Elements, Compounds, & Mixtures PURE SUBSTANCES A pure substance is called an element. An element is a pure substance because it cannot be separated into any other substances.

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

Reflections on the use of the McCabe and Thiele method

Reflections on the use of the McCabe and Thiele method From the Selectedorks of João F Gomes January 2007 Reflections on the use of the McCabe and Thiele method Contact Author Start Your Own Selectedorks Notify Me of New ork Available at: http://works.bepress.com/joao_gomes/42

More information

Lecture 1 Chapter 12 Sections 1-2. Solutions Solubility

Lecture 1 Chapter 12 Sections 1-2. Solutions Solubility Lecture 1 Chapter 12 Sections 1-2 Solutions Solubility Chapt 12: Nature of Solutions Solution a homogeneous mixture of two or more substances, in which one is called the solvent and the other is the solute

More information

Add Math (4047) Paper 2

Add Math (4047) Paper 2 1. Solve the simultaneous equations 5 and 1. [5]. (i) Sketch the graph of, showing the coordinates of the points where our graph meets the coordinate aes. [] Solve the equation 10, giving our answer correct

More information

CHEMISTRY ELEMENTS, COMPOUNDS & MIXTURES

CHEMISTRY ELEMENTS, COMPOUNDS & MIXTURES CHEMISTRY ELEMENTS, COMPOUNDS & MIXTURES Lesson Intentions In this lesson we will classify substances as Elements, Compounds, Mixtures Key Words 1. Compounds 2. Mixtures 3. Elementary 4. Symbols 5. Reaction

More information

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. #23 Gas Separation So, welcome to the 23rd lecture, on Cryogenic Engineering,

More information

Chemical Equation and Stoichiometry

Chemical Equation and Stoichiometry 31 Introduction to Chemical Engineering Calculations Lecture 4. 4 What can we learn from a chemical equation? C7H16 + 11 O2 7 CO2 + 8 H2O 1. What information can we get from this equation? 2.

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems.

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems. Page! 1 of! 8 Attendance Problems. Solve each proportion. 12 1. 2. 3. 15 = AB 9.5 20 QR = 3.8 4.2 x 5 20 = x + 3 30 4.! y + 7 2y 4 = 3.5 2.8 I can use properties of similar triangles to find segment lengths.

More information

Describe the formation of an aqueous LiBr solution, when solid LiBr dissolves in water.

Describe the formation of an aqueous LiBr solution, when solid LiBr dissolves in water. Chapter 9 Solutions Practice Problems Section 9.1 Solutions Goal: Identify the solute and solvent in a solution; describe the formation of a solution. Summary: A solution forms when a solute dissolves

More information

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. 14.1 General Properties of Solutions 14.2 Solubility 14.3 Rate of Dissolving Solids 14.4 Concentration

More information

CL-333 Manual. MT 303: Batch Distillation

CL-333 Manual. MT 303: Batch Distillation CL-333 Manual MT 303: Batch Distillation Batch Distillation Equipment Operating Panel Refrectometer 1 CL-333 Manual MT 303: Batch Distillation Objectives: To determine the height equivalent to number of

More information

Processes and Process Variables

Processes and Process Variables FACULTY OF PETROLEUM & RENEWABLE ENERGY ENGINEERING Course Learning Outcomes Chapter 2 Processes and Process Variables At the end of this course students will be able to Calculate the composition in term

More information

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts.

Uniform properties throughout! SOLUTE(S) - component(s) of a solution present in small amounts. 54 SOLUTIONS - a SOLUTION is a HOMOGENEOUS MIXTURE. Uniform properties throughout! - parts of a solution: SOLUTE(S) - component(s) of a solution present in small amounts. SOLVENT - the component of a solution

More information

WINTER-15 EXAMINATION Model Answer

WINTER-15 EXAMINATION Model Answer Subject code :(735) Page of 9 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the

More information

CBSE QUESTION PAPER CLASS-X MATHS

CBSE QUESTION PAPER CLASS-X MATHS CBSE QUESTION PAPER CLASS-X MATHS SECTION - A Question 1:If sin α = 1 2, then the value of 4 cos3 α 3 cos α is (a)0 (b)1 (c) 1 (d)2 Question 2: If cos 2θ = sin(θ 12 ), where2θ and (θ 12 ) are both acute

More information

Week 12/Th: Lecture Units 31 & 32

Week 12/Th: Lecture Units 31 & 32 Week 12/Th: Lecture Units 31 & 32 Unit 30: Chemical Spontaneity -- entropy, 2 nd Law of Thermo -- free energy -- spontaneity Unit 31: Phase Equilibria -- liquid / gas -- phase diagrams -- phase boundaries

More information

SUMMER-18 EXAMINATION Model Answer

SUMMER-18 EXAMINATION Model Answer (ISO/IEC - 700-005 Certified) SUMMER-8 EXAMINATION Subject Title: Stoichiometry Subject code : 735 Page of 7 Important Instructions to examiners: ) The answers should be examined by key words and not as

More information

Problem 3. Solution. [mol/s]: Overall mass balance. Balance of water) Balance

Problem 3. Solution. [mol/s]: Overall mass balance. Balance of water) Balance Solution Problem 3 (i) We assume ideal gas. Then volume flow at the inlet is V = nrt/ /p = 10^4*8..31*283/e5 = 235 m3/s V = v*a, where it is given that v= =1m/s, so A = V/v = 233.5 m3/ s / 1 m/s = 235

More information

Lecture 2 PROPERTIES OF GASES

Lecture 2 PROPERTIES OF GASES Lecture 2 PROPERTIES OF GASES Reference: Principles of General Chemistry, Silberberg Chapter 6 SOME FUNDAMENTAL DEFINITIONS: SYSTEM: the part of the universe being the subject of study 1 SOME FUNDAMENTAL

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

Fall Possibly Useful Information: 1 atm = lb/in 2 = kpa. 1 atm = 101,325 N/m 2 = 760 mmhg. 1 atm = 101,325 Pa = 1.

Fall Possibly Useful Information: 1 atm = lb/in 2 = kpa. 1 atm = 101,325 N/m 2 = 760 mmhg. 1 atm = 101,325 Pa = 1. Chemistry 122 (Tyvoll) Fall 2005 PRACTICE EXAMINATION I Possibly Useful Information: 1 atm = 14.70 lb/in 2 = 101.325 kpa 1 atm = 101,325 N/m 2 = 760 mmg 1 atm = 101,325 Pa = 1.01325 bar 1 atm = 1013.25

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

Matter & Changes in Matter

Matter & Changes in Matter Matter & Changes in Matter Changing States- MELTING Melting- solid liquid Melting point of H20 is 32 F or 0 C Thermal energy is ABSORBED! Example: Ice cubes absorb thermal energy and melt. Changing States-

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy C a H b O c enters the control volume at T 0, p 0. O 2 and CO 2,

More information

Solutions Introduction

Solutions Introduction Solutions Introduction Outcomes: Describe and give examples of various types of solutions. Include: all nine possible types Describe the structure of water in terms of electronegativity and the polarity

More information

Water Chapter 11. Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Water Chapter 11. Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life 10/15/2014 10/15/2014 Vasser vapor sound exp. Drink raw sewage 80 s Density CH3OH Groundwater A²=A+D+ ( )+1 1=U Chemical Prop. Mol.Struct. WaterSmart 10/15/2014 Water Chapter 11 DO NOT COPY 1. Draw a picture

More information

Chapter 3. Chemistry of Life

Chapter 3. Chemistry of Life Chapter 3 Chemistry of Life Content Objectives Write these down! I will be able to identify: The make-up of matter. Why atoms form bonds. Some important interactions between substances in living things.

More information

The Water Molecule. Like all molecules, a water molecule is neutral. Water is polar. Why are water molecules polar?

The Water Molecule. Like all molecules, a water molecule is neutral. Water is polar. Why are water molecules polar? Properties of Water The Water Molecule Like all molecules, a water molecule is neutral. Water is polar Why are water molecules polar? Polarity oxygen atom 8 protons in its nucleus has a much stronger attraction

More information

Absorption/Stripping

Absorption/Stripping Absorption/Stripping Gas-liquid separation processes (Ch. 10) Cooling (condenser) Feed A+B Distillation(Ch.11) Absorption (Ch.10) Stripping (Ch.10) B COUNTER-CURRENT MULTISTAGE CONTACT OF GAS AND LIQUID

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Lecture 13. Professor Hicks Inorganic Chemistry (CHE151)

Lecture 13. Professor Hicks Inorganic Chemistry (CHE151) Lecture 13 Professor icks Inorganic hemistry (E151) Lewis symbols aka Lewis Structures of atoms Visual representation of electron configuration 1 electron = dot 2 paired electrons = line ucleus + core

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information