The Kumaraswamy GP Distribution

Size: px
Start display at page:

Download "The Kumaraswamy GP Distribution"

Transcription

1 Joural of Data Scece 11(2013), The Kumaraswamy GP Dstrbuto Saralees Nadarajah ad Sumaya Eljabr Uversty of Machester Abstract: The geeralzed Pareto (GP) dstrbuto s the most popular model for extreme values. Recetly, Papastathopoulos ad Taw Joural of Statstcal Plag ad Iferece 143 (2013), have proposed some geeralzatos of the GP dstrbuto for mproved modelg. Here, we pot that Papastathopoulos ad Taw s geeralzatos are fact ot ew ad the go o to propose a tractable geeralzato of the GP dstrbuto. For the latter geeralzato, we provde a comprehesve treatmet of mathematcal propertes, estmate parameters by the method of maxmum lkelhood ad provde the observed formato matrx. The proposed model s show to gve a better ft for the real data set used Papastathopoulos ad Taw. Key words: Beta dstrbuto, GP dstrbuto, Kumaraswamy dstrbuto, maxmum lkelhood, order statstcs. 1. Itroducto The geeralzed Pareto (GP) dstrbuto s the most wdely appled model for uvarate extreme values. Possble applcatos cover most areas of scece, egeerg ad medce. Some publshed applcatos are: lfetme data aalyss, coupo collector s problem, aalyss of rado audece data, aalyss of rafall tme seres, comparg vestmet rsk betwee Chese ad Amerca stock markets, regoal flood frequecy aalyss, drought modelg, value at rsk, aalyss of turbe steady-state, secod-order materal property closures, wd extremes, aalyss of a Spash motor lablty surace database, aalyss of fte buffer queues, rver flow modelg, measurg lqudty rsk of ope-ed fuds, modelg of extreme earthquake evets, estmato of the maxmum cluso sze clea steels, ad modelg of hgh-cocetratos short-rage atmospherc dsperso. For detals o the GP dstrbuto, ts theory ad further applcatos, we refer the readers to Leadbetter et al. (1987), Embrechts et al. (1997), Castllo et al. (2005), ad Resck (2008). Correspodg author.

2 740 Saralees Nadarajah ad Sumaya Eljabr However, the GP dstrbuto has bee msused too may areas, as ca be see from the lst gve. It does ot gve adequate fts may areas. For example, Madse ad Rosbjerg (1998) fd that the GP dstrbuto does ot gve a good ft to drought defct volumes due to may small drought evets. I a llustratve example of the SAS/ETS SEVERITY procedure, Josh (2010) fds Both plots dcate that the Exp (expoetal), Pareto, ad Gpd (geeralzed Pareto) dstrbutos are a poor ft. I ths paper, we propose a smple geeralzato of the GP dstrbuto. We provde two dfferet motvatos for ths smple geeralzato. The frst s based o the defto of the GP dstrbuto. The GP dstrbuto arses as the codtoal dstrbuto of exceedaces of a process over a large threshold (Pckads, 1975). If F ( ) deotes the cumulatve dstrbuto fucto of the process the we ca wrte ( 1 F (x) p 1 ξ x t ) 1/ξ, (1) for x > t ad some large t, where p = 1 F (t), x > t f ξ 0, t < x t /ξ f ξ < 0, < ξ < s a shape parameter ad > 0 s a scale parameter. Oe way to mprove o (1) s to take a mxture of GP cumulatve dstrbuto fuctos. That s, wrte 1 F (x) k ( ) x t 1/ξ w 1 ξ, (2) for x > t ad some large t. But mxtures of the form (2) are otorously dffcult to hadle ot just because of the complcated mathematcal form. Ifereces ad fttg of (2) are also dffcult. For example, o the subject of estmatg a mxture of Pareto dstrbutos, Bee et al. (2009) say Applcato of stadard techques to a mxture of Pareto s problematc. Ideed, applcatos of mxtures of Pareto dstrbutos have bee very lmted. A way aroud s to rewrte (2) a smple mathematcal form. There are may choces for the mathematcal form. A choce motvated by the works of Kumaraswamy (1980) ad Cordero ad de Castro (2011) s 1 F (x) = 1 G(x) a } b, (3) where G( ) deotes a GP cumulatve dstrbuto fucto ad a > 0, b > 0 are two addtoal parameters whose role s partly to troduce skewess ad to vary tal weghts. Note that the rght had sde of (3) ca be expaded as 1 G(x) a } b = c 1 G(x) b, (4) =0

3 The Kumaraswamy GP Dstrbuto 741 a mxture takg the form of (2). The coeffcets c are fuctos of a ad b. For stace, c 0 = a b. The parameter b maly dctates the tal behavors of the mxture compoets. The parameter a maly dctates the mxture coeffcets. Followg the termology used Cordero ad de Castro (2011), we shall refer to the dstrbuto gve by (3) as the KumGP dstrbuto. The probablty desty fucto correspodg to (3) s f(x) = ab g(x) G(x) a 1 1 G(x) a } b 1, (5) where g(x) = dg(x)/dx s a GP probablty desty fucto. Because g( ) ad G( ) are tractable, the KumGP dstrbuto ca be used qute effectvely eve f the data are cesored. Moreover, exstg software for the GP dstrbuto (say, to compute probablty desty fucto, cumulatve dstrbuto fucto, quatle fucto, momets, maxmum lkelhood estmates, radom umbers, etc) ca be easly adapted for the KumGP dstrbuto. Clearly, the GP dstrbuto s a specal case of the KumGP dstrbuto for a = b = 1 wth a cotuous crossover towards cases wth dfferet shapes (for example, a partcular combato of skewess ad kurtoss). The role of the two addtoal parameters, a > 0 ad b > 0, s to gover skewess ad geerate dstrbutos wth heaver/lgther tals. If a < 1 the the tals of f( ) wll be heaver tha those of g( ). Smlarly, f b < 1 the the tals of f( ) wll be heaver tha those of g( ). O the other had, f a > 1 the the tals of f( ) wll be lghter tha those of g( ). Smlarly, f b > 1 the the tals of f( ) wll be lghter tha those of g( ). Further descrpto of the role of a ad b s gve Sectos 2 ad 3. Aother physcal terpretato for the KumGP dstrbuto whe a ad b are postve tegers s as follows. Suppose a system s made of b depedet compoets ad that each compoet s made up of a depedet subcompoets. Suppose the system fals f ay of the b compoets fals ad that each compoet fals f all of the a subcompoets fal. Let X j1, X j2,, X ja deote the lfetmes of the subcompoets wth the jth compoet, j = 1, 2,, b wth a commo GP cumulatve dstrbuto fucto. Let X j deote the lfetme of the jth compoet, j = 1,, b, ad let X deote the lfetme of the etre system. So, the cumulatve dstrbuto fucto of X s Pr(X x) = 1 Pr b (X 1 > x) = 1 1 Pr (X 1 x)} b = 1 1 Pr (X 11 x, X 12 x,, X 1a x)} b = 1 1 Pr a (X 11 x)} b = 1 1 G a ξ, (x)} b, (6) where G ξ, ( ) deotes the cumulatve dstrbuto fucto of the GP dstrbuto. So, t follows that the KumGP dstrbuto gve by (3) ad (5) s precsely

4 742 Saralees Nadarajah ad Sumaya Eljabr the tme to falure dstrbuto of the etre system. The GP dstrbuto has bee wdely used to model lfetmes: see, for example, Mahmoud (2011). For the partcular case, ξ = 0, (6) s the cumulatve dstrbuto fucto of the Kumexpoetal dstrbuto. The Kumexpoetal dstrbuto has bee used to model lfetmes, see Cordero et al. (2010). There are other ways to geeralze the GP dstrbuto. The most recet geeralzatos of the GP dstrbuto were proposed by Papastathopoulos ad Taw (2013). They referred to ther geeralzatos as EGP1, EGP2 ad EGP3 dstrbutos. The EGP1 dstrbuto s specfed by the cumulatve dstrbuto fucto F (x) = 1 B (κ, 1/ ξ ) B 1 (1ξ x ξ /ξ (κ, 1/ ξ ), (7) ) for x > 0 (f ξ 0), 0 < x /ξ (f ξ < 0), > 0, κ > 0 ad < ξ <, where B x (, ) deotes the complete beta fucto defed by B x (a, b) = x 0 t a 1 (1 t) b 1 dt, ad B(, ) deotes the beta fucto defed by B(a, b) = 1 0 t a 1 (1 t) b 1 dt. The EGP2 dstrbuto s specfed by the cumulatve dstrbuto fucto F (x) = 1 κ, Γ(κ) γ 1ξ ( l 1 ξ x ), (8) for x > 0 (f ξ 0), 0 < x /ξ (f ξ < 0), > 0, κ > 0 ad < ξ <, where Γ( ) deotes the gamma fucto defed by Γ(a) = 0 t a 1 exp( t)dt, ad γ(, ) deotes the complete gamma fucto defed by γ(a, x) = x 0 t a 1 exp( t)dt. The EGP3 dstrbuto s specfed by the cumulatve dstrbuto fucto ( F (x) = 1 1 ξ x ) } 1/ξ κ, (9)

5 The Kumaraswamy GP Dstrbuto 743 for x > 0 (f ξ 0), 0 < x /ξ (f ξ < 0), > 0, κ > 0 ad < ξ <. Ufortuately, oe of the dstrbutos gve by (7)-(9) are ew. There have bee may publshed papers (possbly hudreds) proposg dstrbutos same as (7)-(9) or cotag (7)-(9) as specal cases. Besdes, the dstrbutos gve by Papastathopoulos ad Taw (2013) appear complcated: at least (7) ad (8) volve the complete beta fucto ad the complete gamma fucto, specal fuctos requrg umercal routes. We shall also see later that oe of (7)-(9) provde sgfcat mprovemets over the GP dstrbuto for the data set cosdered Papastathopoulos ad Taw (2013). We ow expla why the dstrbutos gve by (7)-(9) are ot ew. Frstly, (7) s a specal case of the class of beta-g dstrbutos troduced by Eugee et al. (2002) ad followed by Joes (2004) ad may others. The beta-g dstrbuto s specfed by the cumulatve dstrbuto fucto F (x) = 1 B(a, b) G(x) 0 t a 1 (1 t) b 1 dt, (10) for a > 0 ad b > 0. Note that (7) s a specal case of (10) for G( ) specfed by ( G(x) = 1 1 ξ x ) ξ /ξ. Ths specal case s cosdered detal by Aksete et al. (2008, Secto 2.2), Mahmoud (2011) ad may others. Secodly, (8) s a specal case of the class of gamma-g dstrbutos troduced by Zografos ad Balakrsha (2009) ad followed by Rstc ad Balakrsha (2012), Nadarajah et al. (2012) ad may others. The gamma-g dstrbuto s specfed by the cumulatve dstrbuto fucto F (x) = γ (a, log 1 G(x)), (11) Γ(a) for a > 0. Note that (8) s a specal case of (11) for G( ) a GP cumulatve dstrbuto fucto. Furthermore, the formula for the cumulatve dstrbuto fucto of the EGP2 dstrbuto gve Papastathopoulos ad Taw (2013) s ot a vald cumulatve dstrbuto fucto! Fally, (9) s detcal to the expoetated Pareto dstrbuto studed by Adeyem ad Adebaj (2004), Shawky ad Abu-Zadah (2008, 2009), Affy (2010) ad may others. I ths paper, we study the mathematcal propertes of the KumGP dstrbuto. From ow o, we wrte the cumulatve dstrbuto fucto ad the probablty desty fucto of the GP dstrbuto by G ξ, (x) = 1 u, (12)

6 744 Saralees Nadarajah ad Sumaya Eljabr ad g ξ, (x) = 1 u 1ξ, (13) respectvely, where u = 1ξ(x t)/} 1/ξ. The cumulatve dstrbuto fucto ad the probablty desty fucto of the KumGP dstrbuto ca be wrtte as ad F (x) = 1 1 (1 u) a } b, (14) f(x) = 1 abu 1ξ (1 u) a 1 1 (1 u) a } b 1, (15) respectvely. The EGP3 dstrbuto gve by (9) s a partcular case of the KumGP dstrbuto. Ulke the EGP1 ad EGP2 dstrbutos, the KumGP dstrbuto does ot volve specal fuctos. So, oe ca expect that the KumGP dstrbuto could attract wder applcablty tha the EGP1, EGP2 ad EGP3 dstrbutos. The KumGP dstrbuto gve by (15) s much more flexble tha the GP dstrbuto ad ca allow for greater flexblty of tals. Plots of the probablty desty fucto (15) ξ= 0.5 for some parameter values are gve ξ=0 Fgure 1. PDF PDF ξ= PDF PDF ξ= x x 3 4 PDF PDF x ξ=0.5 ξ= x x PDF PDF x ξ=1 ξ= x x Fgure 1: Plots of (15) for u = 0, = 1, (a, b) = (0.5, 0.5) (sold curve), (a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) ad (a, b) = (3, 3) (curve of dots ad dashes)

7 The Kumaraswamy GP Dstrbuto 745 If X s a radom varable wth probablty desty fucto, (15), we wrte X KumGP(a, b,, ξ). The KumGP quatle fucto s obtaed by vertg (14): x = Q(z) = F 1 (z) = t 1 1 (1 z) 1/b} } 1/a ξ 1. (16) ξ So, oe ca geerate KumGP varates from (16) by settg X = Q(U), where U s a uform varate o the ut terval (0, 1). I the rest of ths paper, we provde a comprehesve descrpto of the mathematcal propertes of (15). We exame the shape of (15) ad ts assocated hazard rate fucto Sectos 2 ad 3, respectvely. We derve expressos for momets Secto 4. Order statstcs, ther momets ad L momets are calculated Secto 5. Asymptotc dstrbutos of the extreme values are provded Secto 6. Estmato by the method of maxmum lkelhood cludg the observed formato matrx s preseted Secto 7. A smulato study s preseted Secto 8 to assess the performace of the maxmum lkelhood estmators. A applcato of the KumGP dstrbuto to the real data set Papastathopoulos ad Taw (2013) s llustrated Secto 9. The results Sectos 4 ad 5 volve fte seres represetatos. The terms of these fte seres are elemetary, so the fte seres ca be computed by trucato usg ay stadard package, perhaps eve pocket calculators. 2. Shape of Probablty Desty Fucto The frst dervatve of logf(x)} for the KumGP dstrbuto s: d log f(x) = u1ξ 1 ξ a 1 } a(b 1)(1 u)a 1 dx u 1 u 1 (1 u) a, where u = 1 ξ(x t)/} 1/ξ. equato So, the modes of f(x) are the roots of the a(b 1)(1 u) a 1 1 (1 u) a = a 1 1 u 1 ξ u. (17) There may be more tha oe root to (17). Furthermore, the asymptotes of f(x) ad F (x) as u 0, 1 are gve by as u 0, f(x) a b b 1 u bξ, f(x) ab 1 (1 u) a 1,

8 746 Saralees Nadarajah ad Sumaya Eljabr as u 1, as u 0, ad 1 F (x) (au) b, F (x) b(1 u) a, as u 1. Note that both the upper ad lower tals of f(x) are polyomals wth respect to u. Larger values of a correspod to heaver upper tals of f. Larger values of b correspod to lghter upper tals of f. Plots of the shapes of (15) for t = 0, = 1 ad selected values of (a, b, ξ) are gve Fgure 1. Both umodal ad mootocally decreasg shapes appear possble. Umodal shapes appear whe both a ad b are large. Mootocally decreasg shapes appear whe ether a or b s small. 3. Shape of Hazard Rate Fucto The hazard rate fucto defed by h(x) = f(x)/1 F (x)} s a mportat quatty characterzg lfe pheomea of a system. For the KumGP dstrbuto, h(x) takes the form h(x) = abu1ξ (1 u) a 1 1 (1 u) a, (18) where u = 1 ξ(x t)/} 1/ξ. The frst dervatve of log h(x) s: d log h(x) dx = u1ξ 1 ξ u a 1 a(1 u)a 1 1 u 1 (1 u) a. So, the modes of h(x) are the roots of the equato a(1 u) a 1 1 (1 u) a = a 1 1 u 1 ξ u. (19) There may be more tha oe root to (19). Furthermore, the asymptotes of h(x) as u 0, 1 are gve by as u 0 ad h(x) b 1 u ξ, h(x) ab 1 (1 u) a 1,

9 The Kumaraswamy GP Dstrbuto 747 as u 1. Note that both the upper ad lower tals of h(x) are polyomals wth respect to u. Larger values of a correspod to lghter lower tals. Larger values of b correspod to heaver lower tals ad heaver upper tals of h. Fgure 2 llustrates some of the possble shapes of h(x) for t = 0, = 1 ad selected values of (a, b, ξ). Both mootocally creasg, mootocally decreasg ad bathtub shapes appear possble. Bathtub shapes appear for egatve values of ξ. Mootocally creasg shapes appear whe both a ad b are large. Mootocally decreasg shapes appear whe ether a or b s small ad ξ s ot egatve. ξ= 0.5 ξ=0 HRF HRF ξ= HRF HRF ξ= x x 3 4 HRF HRF x ξ=0.5 ξ= x x HRF HRF x ξ=1 ξ= x x Fgure 2: Plots of (18) for u = 0, = 1, (a, b) = (0.5, 0.5) (sold curve), (a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) ad (a, b) = (3, 3) (curve of dots ad dashes) Bathtub shaped hazard rates are the most realstc oes practce. It s terestg to ote that the KumGP dstrbuto ca exhbt ths shape. The GP dstrbuto caot exhbt bathtub shaped hazard rates. 4. Momets Let X KumGP(a, b,, ξ). Usg the trasformato u = 1ξ(x t)/} 1/ξ, we ca wrte

10 748 Saralees Nadarajah ad Sumaya Eljabr E (X ) = ab = ab = ab = ab 0 ξ ( ) ( ξ ( )( ξ ( ) ( ξ 1 =0 =0 =0 ( ) u ξ 1 t (1 u) a 1 1 (1 u) a b 1 du ) ( t ) 1 u ξ (1 u) a 1 1 (1 u) a b 1 du ξ 0 ) ( b 1 1 )( 1) j ) ( t ξ ) ( t ξ j ) ( b 1 j 0 u ξ (1 u) aaj 1 du ) ( 1) j B (1 ξ, a aj) (20) for 1 provded that 1 ξ s ot a teger for all = 0, 1,,. The frst four momets are: ( E (X) = ab t ) ( ) b 1 ( 1) j ξ j a aj ( ) b 1 ( 1) j B (1 ξ, a aj), (21) ξ j E ( ( X 2) = ab t ) 2 ( ) b 1 ( 1) j ξ j a aj ( 2 t ) ( ) b 1 ( 1) j B (1 ξ, a aj) ξ ξ j ( ) 2 ( ) b 1 ( 1) j B (1 2ξ, a aj), (22) ξ j E ( ( X 3) = ab t ) 3 ( ) b 1 ( 1) j ξ j a aj ( 3 t ) 2 ( ) b 1 ( 1) j B (1 ξ, a aj) ξ ξ j ad ( 3 t ξ ( ξ ) ( ξ ) 3 ( b 1 ) 2 ( b 1 j j ) ( 1) j B (1 2ξ, a aj) ) ( 1) j B (1 3ξ, a aj), (23)

11 The Kumaraswamy GP Dstrbuto 749 E ( ( X 4) = ab t ) 4 ( ) b 1 ( 1) j ξ j a aj ( 4 t ) 3 ( ) b 1 ( 1) j B (1 ξ, a aj) ξ ξ j ( 6 t ξ ( 4 t ξ ( ξ ) 2 ( ) 2 ( b 1 ξ j ) ( ) 3 ( b 1 ξ j ) 4 ( b 1 j ) ( 1) j B (1 2ξ, a aj) ) ( 1) j B (1 3ξ, a aj) ) ( 1) j B (1 4ξ, a aj), (24) provded that 1 ξ, 1 2ξ, 1 3ξ ad 1 4ξ are ot tegers. The fte seres (20)-(24) all coverge. The expressos gve by (21)-(24) ca be used to compute the mea, varace, skewess ad kurtoss of X. The values of these four quattes versus ξ are plotted Fgure 3 for t = 0, = 1 ad selected values of (a, b). It s evdet each of the quattes s a creasg fucto of ξ for all choces of (a, b). Mea Mea ξ Varace Varace ξ ξ ξ Skewess Skewess ξ Kurtoss Kurtoss ξ Fgure 3: Mea, 1.0 varace, 0.6 skewess ad kurtoss 1.0 versus 0.6 ξ for t = 0.2 0, 0.0= 1, (a, b) = (0.5, 0.5) (sold curve), (a, b) = (0.5, 1) (curve of dashes), (a, b) = ξ ξ (0.5, 3) (curve of dots) ad (a, b) = (3, 3) (curve of dots ad dashes)

12 750 Saralees Nadarajah ad Sumaya Eljabr 5. Order Statstcs Order statstcs make ther appearace may areas of statstcal theory ad practce. Let X 1: < X 2: < < X : deote the order statstcs for a radom sample X 1, X 2,, X from (15). The the probablty desty fucto of the kth order statstc, say Y = X k:, ca be expressed as ab! f Y (y) = (k 1)!( k)! u1ξ (1 u) a 1 1 (1 u) a b( k1) (1 u) a b} b 1 ab! = (k 1)!( k)! ( k 1 =0! ( k 1 = (k 1)!( k)! ) ( 1) u 1ξ (1 u) a 1 1 (1 u) a b( k1) 1 =0 ) ( 1) f a,b( k1),,ξ (y), where u = 1 ξ(y t)/} 1/ξ ad f a,b,,ξ ( ) deotes the probablty desty fucto of X a,b,,ξ KumGP(a, b,, ξ). So, the probablty desty fucto of Y s a lear combato of probablty desty fuctos of KumGP(a, b,, ξ). Hece, other propertes of Y ca be easly derved. For stace, the cumulatve dstrbuto fucto of Y ca be expressed as F Y (y) =! (k 1)!( k)! ( ) k 1 ( 1) F a,b( k1),,ξ (y), =0 where F a,b,,ξ ( ) deotes the cumulatve dstrbuto fucto correspodg to f a,b,,ξ ( ). The qth momet of Y ca be expressed as E Y q =! (k 1)!( k)! ( k 1 =0 ) ( 1) E X q a,b( k1),,ξ, (25) where X a,b,,ξ KumGP(a, b,, ξ). L-momets are summary statstcs for probablty dstrbutos ad data samples (Hoskgs, 1990). They are aalogous to ordary momets but are computed from lear fuctos of the ordered data values. The rth L momet s defed by r 1 ( r 1 λ r = ( 1) r 1 j j )( r 1 j j ) β j,

13 The Kumaraswamy GP Dstrbuto 751 where β j = EXF (X) j }. I partcular, λ 1 = β 0, λ 2 = 2β 1 β 0, λ 3 = 6β 2 6β 1 β 0 ad λ 4 = 20β 3 30β 2 12β 1 β 0. I geeral, β r = (r 1) 1 E(X r1:r1 ), so t ca be computed usg (25). The L momets have several advatages over ordary momets: for example, they apply for ay dstrbuto havg fte mea; o hgher-order momets eed be fte. 6. Extreme Values Suppose X 1,, X s a radom sample from (15). If X = (X 1 X )/ deotes the sample mea, the by the usual cetral lmt theorem, (X E(X))/ Var(X) approaches the stadard ormal dstrbuto as provded that ξ < 1/2. Sometmes oe would be terested the asymptotes of the extreme order statstcs M = max(x 1,, X ) ad m = m(x 1,, X ). Frstly, suppose that G (12) belogs to the max doma of attracto of the Gumbel extreme value dstrbuto. The by Leadbetter et al. (1987, Chapter 1), there must exst a strctly postve fucto, say h(t), such that 1 G (t xh(t)) lm = exp( x), t x(g) 1 G(t) for every x (, ), where x(g) = supx : G(x) < 1}. But, usg L Hoptal s rule ad sce x(f ) = x(g), we ote that 1 F (t xh(t)) 1 G a } (t xh(t)) b lm = lm t x(f ) 1 F (t) t x(g) 1 G a (t) } 1 G (t xh(t)) b = lm = exp( bx), t x(g) 1 G(t) for every x (, ). So, t follows that F also belogs to the max doma of attracto of the Gumbel extreme value dstrbuto wth lm Pr a (M b ) x} = exp exp( bx)}, for some sutable ormg costats a > 0 ad b. Secodly, suppose that G (12) belogs to the max doma of attracto of the Fréchet extreme value dstrbuto. The by Leadbetter et al. (1987, Chapter 1), x(g) = ad there must exst a β < 0 such that 1 G(tx) lm t 1 G(t) = xβ, for every x > 0. But, usg L Hoptal s rule, we ote that 1 F (tx) 1 G a } lm t 1 F (t) = lm (tx) b 1 G(tx) t 1 G a = lm (t) t 1 G(t) = x bβ, } b

14 752 Saralees Nadarajah ad Sumaya Eljabr for every x > 0. Also x(f ) = x(g) =. So, t follows that F also belogs to the max doma of attracto of the Fréchet extreme value dstrbuto wth ( lm Pr a (M b ) x} = exp x bβ), for some sutable ormg costats a > 0 ad b. Thrdly, suppose that G (12) belogs to the max doma of attracto of the Webull extreme value dstrbuto. The by Leadbetter et al. (1987, Chapter 1), x(g) < ad there must exst a α > 0 such that 1 G (x(g) tx) lm t 0 1 G (x(g) t) = xα, for every x > 0. But, usg L Hoptal s rule ad sce x(f ) = x(g) <, we ote that 1 F (x(f ) tx) 1 G a lm t 0 1 F (x(f ) t) = lm (x(g) tx) b t 0 1 G a (x(g) t) b = x αb. = lm t 0 1 G (x(g) tx) 1 G (x(g) t) So, t follows that F also belogs to the max doma of attracto of the Webull extreme value dstrbuto wth lm Pr a (M b ) x} = exp ( x) αb}, for some sutable ormg costats a > 0 ad b. The same argumet apples to m domas of attracto. That s, F belogs to the same m doma of attracto as that of G. 7. Maxmum Lkelhood Estmato Suppose x 1, x 2,, x s a radom sample of sze from (15). Let u = 1 ξ(x t)/} 1/ξ for = 1, 2,,. The the log-lkelhood fucto for the vector of parameters (a, b,, ξ) ca be wrtte as log L(a, b,, ξ) = log(ab) log (1 ξ) log u (a 1) log (1 u ) (b 1) log 1 (1 u ) a. (26) The frst-order partal dervatves of (26) wth respect to the four parameters are:

15 The Kumaraswamy GP Dstrbuto 753 log L a log L b log L = a log (1 u ) (b 1) (1 u ) a log (1 u ) 1 (1 u ) a, (27) = b log 1 (1 u ) a, (28) = 1 ξ 2 u ξ (x t) a 1 2 u 1ξ (x t) a(b 1) 1 u 2 u 1ξ (1 u ) a 1 (x t) 1 (1 u ) a, (29) ad log L ξ a 1 ξ 2 = a(b 1) ξ 2 log u 1 ξ u 1 u log ξ 2 u (1 u ) a 1 1 (1 u ) a log 1 ξ x t log 1 ξ x t ξ (x t) 1 ξ x t ξ (x t) 1 ξ x t ξ (x t) 1 ξ x t 1 } 1 ξ x t 1 } 1 }.(30) The maxmum lkelhood estmates of (a, b,, ξ), say (â, b,, ξ), are the smultaeous solutos of the equatos log L/ a = 0, log L/ b = 0, log L/ = 0 ad log L/ ξ = 0. As, (â a, b b,, ξ ξ) approaches a multvarate ormal vector wth zero meas ad varace-covarace matrx, (EJ) 1, where 2 log L 2 log L 2 log L 2 log L a 2 a b a a ξ 2 log L 2 log L 2 log L 2 log L J = b a b 2 b b ξ 2 log L 2 log L 2 log L 2. log L a 2 log L ξ a b 2 log L ξ b 2 2 log L ξ ξ 2 log L ξ 2 The matrx, EJ, s kow as the expected formato matrx. The matrx, J, s kow as the observed formato matrx. I smulatos ad real data applcatos descrbed later o, we maxmzed the log-lkelhood fucto usg the lm fucto the R statstcal package (R Developmet Core Team, 2012). For each maxmzato, the lm fucto

16 754 Saralees Nadarajah ad Sumaya Eljabr was executed for a wde rage of tal values. Ths sometmes resulted more tha oe maxmum, but at least oe maxmum was detfed each tme. I cases of more tha oe maxmum, we took the maxmum lkelhood estmates to correspod to the largest of the maxma. I practce, s fte. The lterature (see, for example, Efro ad Hkley (1978)) suggests that t s best to approxmate the dstrbuto of (â a, b b,, ξ ξ) by a multvarate ormal dstrbuto wth zero meas ad varacecovarace matrx gve by J 1, verse of the observed formato matrx, wth (a, b,, ξ) replaced (â, b,, ξ). So, t s useful to have explct expressos for the elemets of J. They are gve Appedx A. The multvarate ormal approxmato ca be used to costruct approxmate cofdece tervals ad cofdece regos for the dvdual parameters ad for the hazard ad survval fuctos. 8. Smulato Study Here, we assess the performace of the maxmum lkelhood estmates gve by (27)-(30) wth respect to sample sze. The assessmet s based o a smulato study: 1. geerate te thousad samples of sze from (15). The verso method s used to geerate samples,.e varates of the KumGP dstrbuto are geerated usg (16). 2. compute the maxmum lkelhood estmates for the te thousad samples, say (â, b,, ξ ) for = 1, 2,, compute the bases ad mea squared errors gve by ad for h = a, b,, ξ. bas h () = MSE h () = (ĥ h), ) 2 (ĥ h, We repeat these steps for = 10, 20,, 1000 wth a = 3, b = 3, t = 0, = 1 ad ξ = 0.5, so computg bas a (), bas b (), bas (), bas ξ () ad MSE a (), MSE b (), MSE (), MSE ξ () for = 10, 20,, We kow from theory that maxmum lkelhood estmates have bases of the order O(1/) ad mea squared errors of the order O(1/). Wth ths md,

17 The Kumaraswamy GP Dstrbuto 755 we have show Fgures 4 ad 5 how tmes the four bases ad tmes the four mea squared errors vary wth respect to. The followg observatos ca be made: 1. the bases for a ad b appear geerally postve; 2. tmes the bases for a appear to level out for all greater tha 200; 3. tmes the bases for b appear to level out for all greater tha 200; 4. tmes the bases for appear to level out for all greater tha 400; 5. tmes the bases for ξ appear to level out for all greater tha 200; 6. tmes the mea squared errors for a appear to level out for all greater tha 200; 7. tmes the mea squared errors for b appear to level out for all greater tha 200; 8. tmes the mea squared errors for appear to level out for all greater tha 200; 9. tmes the mea squared errors for ξ appear to level out for all greater tha 400. We have preseted results for oly oe choce for (a, b,, ξ), amely that (a, b,, ξ) = (3, 3, 1, 0.5). But the results were smlar for other choces.. Bas of MLE. Bas (a) of MLE (a) Bas of MLE. Bas (b) of MLE (b) Bas of MLE. Bas (sgma) of MLE (sgma) Fgure 4: bas400 a () 600 (top left), 800 bas b () (top rght), bas 400 () 600(mddle 800. Bas of MLE. Bas (x) of MLE (x) rght) ad bas ξ () (bottom left) versus = 10, 20,, 1000

18 756 Saralees Nadarajah ad Sumaya Eljabr. MSE of MLE. MSE (a) of MLE (a) MSE of MLE. MSE (b) of MLE (b) MSE of MLE. MSE (sgma) of MLE (sgma) MSE of MLE. MSE (x) of MLE (x) Fgure 5: 200 MSE400 a () 600 (top left), 800 MSE b () (top rght), MSE () (mddle 800 rght) ad MSE ξ () (bottom left) versus = 10, 20,, 1000 I addto to computg the bases ad mea squared errors, we also computed p values to check for multvarate ormalty ad valdty of lkelhood rato tests. The p values for multvarate ormalty were based o the Shapro-Wlk test (Roysto, 1982). The p values for the valdty of lkelhood rato tests were based o the ch-square goodess of ft test. Plots of the p values versus showed that they remaed above 0.05 for all values of greater tha 200. The plots are ot show here for reasos of space. 9. A Applcato Here, we llustrate the flexblty of the KumGP dstrbuto usg a real data set aalyzed Papastathopoulos ad Taw (2013). The data set cossts of oe hudred ad ffty four exceedaces of the threshold 65m 3 s 1 by the Rver Ndd at Husgore Wer from 1934 to The data s take from NERC (1975). A mea resdual lfe plot s a tool used to select the threshold t for the GP dstrbuto. The same tool ca be used to select t for the KumGP dstrbuto because of (3) ad (4). The mea resdual lfe plot of the data s show Fgure 6. From ths plot we choose t = 65.3m 2 s 1. Ths threshold show red seems approprate.

19 The Kumaraswamy GP Dstrbuto 757 Mea Excess Threshold Fgure 6: Mea resdual lfe plot for exceedaces of the levels of Rver Ndd over the threshold 65m 3 s 1 We ftted the dstrbutos (13), (7), (8), (9) ad (15) to the data. The mddle three dstrbutos are those cosdered by Papastathopoulos ad Taw (2013). The maxmum lkelhood procedure descrbed Secto 7 was used for fttg (15). The parameter estmates, log-lkelhood values, AIC values ad BIC values are show Table 1. The umbers wth brackets are stadard errors computed by vertg the observed formato matrces. Table 1: Parameter estmates, log-lkelhood, AIC ad BIC Model Parameter estmate (s.e) log L AIC BIC (13) = (2.970), ξ = (0.134) (7) = (4.722), ξ = (0.190), κ = (0.423) (8) = (5.537), ξ = (0.139), κ = (0.508) (9) = (4.879), ξ = (0.197), κ = (0.409) (15) = (20.654), ξ = (0.264), â = (0.651), b = (0.451) Noe of the three-parameter dstrbutos (EGP1, EGP2 ad EGP3) provde sgfcat mprovemets over the GP dstrbuto. Amog these three dstrbutos, the EGP2 dstrbuto has the largest lkelhood value, the smallest AIC value ad the smallest BIC value. But the ft of the EGP2 dstrbuto s ot sgfcatly better tha that of the GP dstrbuto. The proposed four-parameter dstrbuto provdes a sgfcat mprovemet over the GP dstrbuto ad the three three-parameter dstrbutos (EGP1, EGP2 ad EGP3). It has the largest lkelhood value, the smallest AIC value ad the smallest BIC values amog all ftted dstrbutos. Furthermore, chsquare goodess of ft tests gve the p-values of , , 0.048, ad

20 758 Saralees Nadarajah ad Sumaya Eljabr for (13), (7), (8), (9) ad (15), respectvely, suggestg that (15) provdes the oly adequate ft. The cocluso based o the lkelhood values, AIC values, BIC values ad the ch-square goodess of ft tests ca be verfed by meas of probablty-probablty plots, quatle-quatle plots ad desty plots. A probablty-probablty plot cossts of plots of the observed probabltes agast probabltes predcted by the ftted model. For example, for the model gve by (13), 1 1 ξ(x (j) t)/ 1/ ξ are plotted versus (j 0.375)/( 0.25), j = 1, 2,,, as recommeded by Blom (1958) ad Chambers et al. (1983), where x (j) are the sorted values of the data ascedg order ad s the umber of observatos. A quatle-quatle plot cossts of plots of the observed quatles agast quatles predcted by the ftted model. For example, for the model gve by (13), t( / ξ)(1 (j 0.375)/(0.25)) ξ 1} are plotted versus x (j), j = 1, 2,,, as recommeded by Blom (1958) ad Chambers et al. (1983). The probablty-probablty plots ad quatle-quatle plots for the fve ftted models are show Fgures 7 ad 8. We ca see that the model gve by (15) has pots closest to the dagoal le especally the upper tal. Ths s evdet from the sum of the absolute dffereces probabltes ad quatles show Table 2. Observed GP New model Observed EGP1 New model Expected Expected Observed EGP2 New model Observed EGP3 New model Expected Expected Fgure 7: Probablty plots for the fts of (13), (7), (8), (9) ad (15) for exceedaces of the levels of Rver Ndd over the threshold t = 65.3m 3 s 1

21 The Kumaraswamy GP Dstrbuto 759 Observed GP New model Observed EGP1 New model Expected Expected Observed EGP2 New model Observed EGP3 New model Expected Expected Fgure 8: Quatle plots for the fts of (13), (7), (8), (9) ad (15) for exceedaces of the levels of Rver Ndd over the threshold t = 65.3m 3 s 1 Table 2: Sum of the absolute dffereces probabltes ad quatles Model Probabltes Quatles (13) (7) (8) (9) (15) A desty plot compares the ftted probablty desty fuctos of the models wth the emprcal hstogram of the observed data. The desty plots are show Fgure 9. Aga the ftted probablty desty fucto for (15) appears to capture the geeral patter of the emprcal hstogram best. Quattes of terest for practtoers of extreme value models are the retur levels. A T year retur level, say x T, s defed as the level that s exceeded o average every T years. For the GP model gve by (13), x T = t } (mt ) ξ 1, (31) ξ where m s the average umber of exceedaces per year. For the KumGP model gve by (15),

22 760 Saralees Nadarajah ad Sumaya Eljabr Ftted PDFs GP New model Ftted PDFs EGP1 New model Level of Rver Ndd t Level of Rver Ndd t Ftted PDFs EGP2 New model Ftted PDFs EGP3 New model Level of Rver Ndd t Level of Rver Ndd t Fgure 9: Ftted probablty desty fuctos of (13), (7), (8), (9) ad (15) for exceedaces of the levels of Rver Ndd over the threshold t = 65.3m 3 s 1 x T = t 1 1 (mt ) 1/b} } 1/a ξ 1, (32) ξ where m s aga the average umber of exceedaces per year. Plots of (31) ad (32) for T = 2, 3,, 50 alog wth 95 cofdece tervals computed by the delta method (Rao, 1973, pp ) are show Fgure 10. Retur level Retur perod, T years Fgure 10: Retur levels for exceedaces of the levels of Rver Ndd ad ther 95 percet cofdece tervals for the fts of (15) ( red) ad (13) ( black)

23 The Kumaraswamy GP Dstrbuto 761 Retur levels are mportat quattes. They are used to determe, for example, dmesos of sea walls, water dams, flood defeces, etc. Fgure 10 suggests that the retur levels gve by (31) ad (32) do ot dffer so much. The cofdece bads for (32) appear oly slghtly wder tha those for (31). Oe would expect the former to be wder because the KumGP model has more parameters tha the GP model. As a fal remark, we lke to meto that the results reported here must be treated coservatvely because of the sample sze. For = 154, some of the bases ad mea squared errors reported Fgures 4 ad 5 appear large. Furthermore, asymptotc ormalty does ot appear to have bee reached. Better estmato methods (for example, bas-corrected estmato methods or bootstrappg based methods) wll be eeded to draw more sesble results. Appedx A Here, we gve explct expressos for the elemets of J defed Secto 7: J 11 = a 2 (1 b) (1 u ) a log 2 (1 u ) (1 u ) 2a log 2 (1 u ) 1 (1 u ) a (1 b) 1 (1 u ) a 2, J 12 = J 13 = 1 2 J 14 = 1 ξ 2 (1 u ) a log (1 u ) 1 (1 u ) a, a(b 1) 2 b 1 ξ 2 u 1ξ (x t) 1 u b 1 2 u 1ξ (x t) (1 u ) a 1 a log (1 u ) 1 1 (1 u ) a u 1ξ (x t) (1 u ) 2a 1 log (1 u ) 1 (1 u ) a 2, u log 1 u u (1 u ) a 1 1 (1 u ) a log a(b 1) ξ 2 ξ (x t) a(b 1) ξ 2 1 ξ x t ξ (x t) 1 ξ x t u (1 u ) a 1 log (1 u ) 1 (1 u ) a 1 ξ x } t 1 u (1 u ) 2a 1 log (1 u ) 1 (1 u ) a 2 log 1 ξ x t ξ (x t) 1 ξ x t 1 } 1 ξ x t log 1 ξ x t 1 }

24 762 Saralees Nadarajah ad Sumaya Eljabr ξ (x t) 1 ξ x } t 1, J 22 = b 2, J 23 = a 2 J 24 = a ξ 2 u 1ξ (1 u ) a 1 (x t) 1 (1 u ) a, u (1 u ) a 1 1 (1 u ) a J 33 = 2(1 ξ) 2 3 J 34 = 1 2 a 1 ξ 2 2 a 1 ξ 2 2 a 1 4 2(a 1) 3 a2 (b 1) 4 log u ξ (x t) u 2ξ2 (x t) 2 (1 u ) 2 a(b 1)(1 ξ) 4 2a(b 1) 3 1 ξ x t ξ (x t) ξ(1 ξ) 4 (a 1)(1 ξ) 4 u ξ1 (x t) a(a 1)(b 1) 1 u 4 u 2ξ2 (1 u ) 2a 2 (x t) 2 u ξ (x t) 1 ξ a(b 1) ξ 2 2 u 1ξ (x t) 1 u u 2ξ (x t) (1 u ) 2 u 1ξ ξ(1 ξ) (x t) u 2ξ 1 (1 u ) a 2 u 2ξ (x t) 2 u 2ξ1 (1 u ) a 1 (x t) 2 1 (1 u ) a u ξ1 (1 u ) a 1 (x t) 1 (1 u ) a, 3 log log u ξ (x t) 2 1 ξ x t 1 ξ x t 1 ξ x t (x t) (1 u ) a 1 1 (1 u ) a 1 ξ x } t 1 (x t) (1 u ) a 2 1 (1 u ) a log log 1 ξ x } t 1, u 2ξ1 (x t) 2 1 u u 2ξ2 (1 u ) a 2 (x t) 2 1 (1 u ) a 1 ξ(1 ξ) (x t) ξ (x t) 1 ξ x t a(a 1)(b 1) ξ ξ x t 1 ξ x t 1 ξ x t 1 } 1 } ξ (x t) 1 ξ x } t 1

25 a2 (b 1) ξ 2 2 ad log J 44 = 1 ξ 2 2 ξ ξ 5 1 ξ 2 ξ u 2ξ 1 ξ x t The Kumaraswamy GP Dstrbuto 763 (x t) (1 u ) 2a 2 1 (1 u ) a 2 ξ (x t) 1 ξ x } t 1, log 1 ξ x t ξ (x t) 1 ξ x } t 1 log 1 ξ x t ξ (x t) 1 ξ x } t 1 2(a 1) ξ 3 a 1 ξ 4 a 1 ξ 4 a 1 ξ 2 a(b 1) ξ 4 ξ (x t) a2 (b 1) ξ 4 a(b 1) ξ 2 (x t) 2 1 ξ x t u 1 u u 1 u u 2 (1 u ) 2 log log 2 1 ξ x t ξ (x t) 1 ξ x } t 1 1 ξ x t ξ (x t) 1 ξ x } t 1 2 log 1 ξ x t ξ (x t) 1 ξ x } t 1 2 u (x t) 2 1 ξ x t 2 1 u u (1 u ) a 2 (1 au ) 1 (1 u ) a 1 ξ x } t 1 2 log 1 ξ x t u 2 (1 u ) 2a 2 1 (1 u ) a 2 log 1 ξ x t ξ (x t) 1 ξ x } t 1 2 u (1 u ) a 1 1 (1 u ) a (x t) 2 1 ξ x t 2. Explct expressos for the remag elemets of J follow by symmetry.

26 764 Saralees Nadarajah ad Sumaya Eljabr Ackowledgemets The authors would lke to thak the Edtor ad the referee for careful readg ad for commets whch greatly mproved the paper. Refereces Adeyem, S. ad Adebaj, T. (2004). The expoetated geeralzed Pareto dstrbuto. Ife Joural of Scece 6, Affy, W. M. (2010). O estmato of the expoetated Pareto dstrbuto uder dfferet sample schemes. Statstcal Methodology 7, Aksete, A., Famoye, F. ad Lee, C. (2008). Statstcs 42, The beta-pareto dstrbuto. Bee, M., Beedett, R. ad Espa, G. (2009). A ote o maxmum lkelhood estmato of a Pareto mxture. No 903, Departmet of Ecoomcs Workg Papers from Departmet of Ecoomcs, Uversty of Treto, Itala. Blom, G. (1958). Statstcal Estmates ad Trasformed Beta-Varables. Wley, New York. Castllo, E., Had, A. S., Balakrsha, N. ad Saraba, J. M. (2005). Extreme Value ad Related Models wth Applcatos Egeerg ad Scece. Wley, Hoboke, New Jersey. Chambers, J., Clevelad, W., Kleer, B. ad Tukey, P. (1983). Methods for Data Aalyss. Chapma & Hall/CRC, Lodo. Graphcal Cordero, G. M. ad de Castro, M. (2011). A ew famly of geeralzed dstrbutos. Joural of Statstcal Computato ad Smulato 81, Cordero, G. M., Ortega, E. M. M. ad Nadarajah, S. (2010). The Kumaraswamy Webull dstrbuto wth applcato to falure data. Joural of the Frakl Isttute 347, Efro, B. ad Hkley, D. V. (1978). Assessg the accuracy of maxmum lkelhood estmato: observed versus expected formato. Bometrka 65, Embrechts, P., Klüppelberg, C. ad Mkosch, T. (1997). Modellg Extremal Evets: For Isurace ad Face. Sprger, Berl.

27 The Kumaraswamy GP Dstrbuto 765 Eugee, N., Lee, C. ad Famoye, F. (2002). Beta-ormal dstrbuto ad ts applcatos. Commucatos Statstcs - Theory ad Methods 31, Hoskg, J. R. M. (1990). L-momets: aalyss ad estmato of dstrbutos usg lear combatos of order statstcs. Joural of the Royal Statstcal Socety, Seres B 52, Joes, M. C. (2004). Famles of dstrbutos arsg from dstrbutos of order statstcs (wth dscusso). Test 13, Josh, M. V. (2010). Modelg the severty of radom evets wth the SAS/ETS SEVERITY procedure. Paper SAS Isttute Ic., Cary, North Carola. Kumaraswamy, P. (1980). A geeralzed probablty desty fucto for doublebouded radom-processes. Joural of Hydrology 46, Leadbetter, M. R., Ldgre, G. ad Rootzé, H. (1987). Extremes ad Related Propertes of Radom Sequeces ad Processes. Sprger, New York. Madse, H. ad Rosbjerg, D. (1998). A regoal Bayesa method for estmato of extreme streamflow droughts. I Statstcal ad Bayesa Methods Hydrologcal Sceces (Edted by E. Paret, B. Bobeé, P. Hubert ad J. Mquel), Studes ad Reports Hydrology, UNESCO, Pars. Mahmoud, E. (2011). The beta geeralzed Pareto dstrbuto wth applcato to lfetme data. Mathematcs ad Computers Smulato 81, Nadarajah, S., Cordero, G. M. ad Ortega, E. M. M. (2012). The Zografos- Balakrsha-G famly of dstrbutos: mathematcal propertes ad applcatos. To appear Commucatos Statstcs - Theory ad Methods. NERC (1975). Flood Studes Report. Natural Evromet Research Coucl, Lodo. Papastathopoulos, I. ad Taw, J. A. (2013). Exteded geeralsed Pareto models for tal estmato. Joural of Statstcal Plag ad Iferece 143, Pckads, J. (1975). Statstcal ferece usg extreme order statstcs. Aals of Statstcs 3, R Developmet Core Team (2012). R: A Laguage ad Evromet for Statstcal Computg. R Foudato for Statstcal Computg, Vea, Austra.

28 766 Saralees Nadarajah ad Sumaya Eljabr Rao, C. R. (1973). Lear Statstcal Iferece ad Its Applcatos, 2d edto. Wley, New York. Resck, S. I. (2008). Extreme Values, Regular Varato, ad Pot Processes. Sprger, New York. Rstć, M. M. ad Balakrsha, N. (2012). The gamma expoetated expoetal dstrbuto. Joural of Statstcal Computato ad Smulato 82, Roysto, J. P. (1982). Algorthm AS 181: the W test for ormalty. Appled Statstcs 31, Shawky, A. I. ad Abu-Zadah, H. H. (2008). Characterzatos of the expoetated Pareto dstrbuto based o record values. Appled Mathematcal Sceces 2, Shawky, A. I. ad Abu-Zadah, H. H. (2009). Expoetated Pareto dstrbuto: dfferet method of estmatos. Iteratoal Joural of Cotemporary Mathematcal Sceces 4, Zografos, K. ad Balakrsha, N. (2009). O famles of beta- ad geeralzed gamma-geerated dstrbutos ad assocated ferece. Statstcal Methodology 6, Receved Jauary 10, 2013; accepted Aprl 16, Saralees Nadarajah School of Mathematcs Uversty of Machester Machester M13 9PL, UK Saralees.Nadarajah@machester.ac.uk Sumaya Eljabr School of Mathematcs Uversty of Machester Machester M13 9PL, UK

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables Iteratoal Joural of Cotemporary Mathematcal Sceces Vol. 07 o. 8 9-05 HIKARI Ltd www.m-hkar.com https://do.org/0.988/jcms.07.799 A ew Famly of Dstrbutos Usg the pdf of the rth Order Statstc from Idepedet

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved. VOL., NO., November 0 ISSN 5-77 ARPN Joural of Scece ad Techology 0-0. All rghts reserved. http://www.ejouralofscece.org Usg Square-Root Iverted Gamma Dstrbuto as Pror to Draw Iferece o the Raylegh Dstrbuto

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

The Generalized Inverted Generalized Exponential Distribution with an Application to a Censored Data

The Generalized Inverted Generalized Exponential Distribution with an Application to a Censored Data J. Stat. Appl. Pro. 4, No. 2, 223-230 2015 223 Joural of Statstcs Applcatos & Probablty A Iteratoal Joural http://dx.do.org/10.12785/jsap/040204 The Geeralzed Iverted Geeralzed Expoetal Dstrbuto wth a

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3 IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume, Issue Ver. II Ja - Feb. 05, PP 4- www.osrjourals.org Bayesa Ifereces for Two Parameter Webull Dstrbuto Kpkoech W. Cheruyot, Abel

More information

A NEW MODIFIED GENERALIZED ODD LOG-LOGISTIC DISTRIBUTION WITH THREE PARAMETERS

A NEW MODIFIED GENERALIZED ODD LOG-LOGISTIC DISTRIBUTION WITH THREE PARAMETERS A NEW MODIFIED GENERALIZED ODD LOG-LOGISTIC DISTRIBUTION WITH THREE PARAMETERS Arbër Qoshja 1 & Markela Muça 1. Departmet of Appled Mathematcs, Faculty of Natural Scece, Traa, Albaa. Departmet of Appled

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION Iteratoal Joural of Mathematcs ad Statstcs Studes Vol.4, No.3, pp.5-39, Jue 06 Publshed by Europea Cetre for Research Trag ad Developmet UK (www.eajourals.org BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Estimation and Testing in Type-II Generalized Half Logistic Distribution

Estimation and Testing in Type-II Generalized Half Logistic Distribution Joural of Moder Appled Statstcal Methods Volume 13 Issue 1 Artcle 17 5-1-014 Estmato ad Testg Type-II Geeralzed Half Logstc Dstrbuto R R. L. Katam Acharya Nagarjua Uversty, Ida, katam.rrl@gmal.com V Ramakrsha

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function 7659, Eglad, UK Joural of Iformato ad Computg Scece Vol. 2, No. 3, 2007, pp. 9-96 Geeratg Multvarate Noormal Dstrbuto Radom Numbers Based o Copula Fucto Xaopg Hu +, Jam He ad Hogsheg Ly School of Ecoomcs

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Goodness of Fit Test for The Skew-T Distribution

Goodness of Fit Test for The Skew-T Distribution Joural of mathematcs ad computer scece 4 (5) 74-83 Artcle hstory: Receved ecember 4 Accepted 6 Jauary 5 Avalable ole 7 Jauary 5 Goodess of Ft Test for The Skew-T strbuto M. Magham * M. Bahram + epartmet

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES

ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES Mahmoud Rad Mahmoud Isttute of Statstcs, Caro Uversty Suza Mahmoud Mohammed Faculty

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Confidence Intervals for Double Exponential Distribution: A Simulation Approach

Confidence Intervals for Double Exponential Distribution: A Simulation Approach World Academy of Scece, Egeerg ad Techology Iteratoal Joural of Physcal ad Mathematcal Sceces Vol:6, No:, 0 Cofdece Itervals for Double Expoetal Dstrbuto: A Smulato Approach M. Alrasheed * Iteratoal Scece

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Bias Correction in Estimation of the Population Correlation Coefficient

Bias Correction in Estimation of the Population Correlation Coefficient Kasetsart J. (Nat. Sc.) 47 : 453-459 (3) Bas Correcto Estmato of the opulato Correlato Coeffcet Juthaphor Ssomboothog ABSTRACT A estmator of the populato correlato coeffcet of two varables for a bvarate

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Some Notes on the Probability Space of Statistical Surveys

Some Notes on the Probability Space of Statistical Surveys Metodološk zvezk, Vol. 7, No., 200, 7-2 ome Notes o the Probablty pace of tatstcal urveys George Petrakos Abstract Ths paper troduces a formal presetato of samplg process usg prcples ad cocepts from Probablty

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution Scece Joural of Appled Mathematcs ad Statstcs 06; 4(4): 9- http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060404. ISSN: 76-949 (Prt); ISSN: 76-95 (Ole) Estmato of the Loss ad Rsk Fuctos of

More information

GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA

GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA Sc.It.(Lahore),26(3),985-990,2014 ISSN 1013-5316; CODEN: SINTE 8 GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA Beradhta H. S. Utam 1, Warsoo 1, Da Kurasar 1, Mustofa Usma

More information

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Mathematcal ad Computatoal Applcatos, Vol. 7, No., pp. 29-38, 202 BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Durdu Karasoy Departmet of Statstcs, Hacettepe Uversty, 06800 Beytepe, Akara,

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

An Epsilon Half Normal Slash Distribution and Its Applications to Nonnegative Measurements

An Epsilon Half Normal Slash Distribution and Its Applications to Nonnegative Measurements Ope Joural of Optmzato, 3,, -8 http://dx.do.org/.436/ojop.3. Publshed Ole March 3 (http://www.scrp.org/joural/ojop) A Epslo Half Normal Slash Dstrbuto ad Its Applcatos to Noegatve Measuremets Wehao Gu

More information

Exponentiated Pareto Distribution: Different Method of Estimations

Exponentiated Pareto Distribution: Different Method of Estimations It. J. Cotemp. Math. Sceces, Vol. 4, 009, o. 14, 677-693 Expoetated Pareto Dstrbuto: Dfferet Method of Estmatos A. I. Shawky * ad Haaa H. Abu-Zadah ** Grls College of Educato Jeddah, Scetfc Secto, Kg Abdulazz

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Miin-Jye Wen National Cheng Kung University, City Tainan, Taiwan, R.O.C. Key words: general moment, multivariate survival function, set partition

Miin-Jye Wen National Cheng Kung University, City Tainan, Taiwan, R.O.C. Key words: general moment, multivariate survival function, set partition A Multvarate Webull Dstrbuto Cheg K. Lee chegl@uab.edu Charlotte, North Carola, USA M-Jye We Natoal Cheg Kug Uversty, Cty Taa, Tawa, R.O.C. Summary. A multvarate survval fucto of Webull Dstrbuto s developed

More information

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Bootstrap Method for Testing of Equality of Several Coefficients of Variation Cloud Publcatos Iteratoal Joural of Advaced Mathematcs ad Statstcs Volume, pp. -6, Artcle ID Sc- Research Artcle Ope Access Bootstrap Method for Testg of Equalty of Several Coeffcets of Varato Dr. Navee

More information

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study IJIEST Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue 5, July 04. Bayes Iterval Estmato for bomal proporto ad dfferece of two bomal proportos wth Smulato Study Masoud Gaj, Solmaz hlmad

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy OPEN ACCESS Coferece Proceedgs Paper Etropy www.scforum.et/coferece/ecea- Some Statstcal Ifereces o the Records Webull Dstrbuto Usg Shao Etropy ad Rey Etropy Gholamhosse Yar, Rezva Rezae * School of Mathematcs,

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna Costructo ad Evaluato of Actuaral Models Raapaksha Premaratha Table of Cotets Modelg Some deftos ad Notatos...4 Case : Polcy Lmtu...4 Case : Wth a Ordary deductble....5 Case 3: Maxmum Covered loss u wth

More information

The Kumaraswamy-Generalized Pareto Distribution

The Kumaraswamy-Generalized Pareto Distribution Australa Joural of Basc ad Appled Sceces, 9(27) August 205, Pages: 9-30 ISSN:99-878 Australa Joural of Basc ad Appled Sceces Joural home page: www.ajbasweb.com The Kumaraswamy-Geeralzed Pareto Dstrbuto

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information