Gauge theories on circles and the decoding of F-theory geometries

Size: px
Start display at page:

Download "Gauge theories on circles and the decoding of F-theory geometries"

Transcription

1 Gauge theories on circles and the decoding of Ftheory geometries Thomas W. Grimm Max Planck Institute for Physics & Utrecht University Mainly based on works with Andreas Kapfer and Denis Klevers arxiv: (AK) (AK & DK) Using results with Federico Bonetti, Stefan Hohenegger, Andreas Kapfer, Jan Keitel arxiv: , , Caltech, February

2 Introduction / Motivation 2

3 Effective actions of Ftheory Ftheory compactifications arguably provide the richest class of string theory effective actions original excitement about GUTs in Ftheory not realized in pert. strings numerous examples with exotic matter spectra dualities to heterotic and Type I compactifications new exotic theories, for example, 4D N=3 theories of e.g. talk of Weigand e.g. talks of Anderson, Klevers e.g. talks of Mayrhofer, Lüst [GarcíaEtxebarria,Regalado] e.g. talk Iñaki Two questions arise: How can we infer reliably information about the 2D/4D/6D effective actions of Ftheory? Is there a classification in sight? What do Ftheory geometries classify? 3

4 Some background material Wellknown slogan: Ftheory compactifications on ellipticallyfibered CalabiYau threefolds yield 6D theories with minimal N=(1,0) supersymmetry pinching of twotorus indicates location of sevenbranes brane and bulk physics encoded by singular complex geometry Sixdimensional theories are perfect to answer the above questions have a rich structure there are many topologically distinct CY threefolds are strongly constraint by anomalies fermions in all N=1 multiplets can contribute to anomalies 4

5 Goals of this talk (1) Argue that the complete information in the Ftheory geometries actually describe gauge/sugra theories on a circle. This is not unexpected since the Mtheory to Ftheory approach has been suggested already in [Vafa 96]. However, its importance and power might have been underappreciated. Currently this limit is the only reliable way to infer information about Ftheory effective actions. (2) Show that Ftheory geometries can teach us valuable lessons about circlereduced theories. Example: How are anomalies of the higherdimensional theories visible in the lowerdimensional effective theory? (3) Comment on possibility of classifying CalabiYau threefolds (with elliptic fibration) by using the insights from gauge theory. 5

6 Goals of this talk (1) Argue that the complete information in the Ftheory geometries actually describe gauge/sugra theories on a circle. (2) Show that Ftheory geometries can teach us valuable lessons about circlereduced theories. (3) Comment on possibility of classifying CalabiYau threefolds (with elliptic fibration) by using the insights from gauge theory. 6D gauge theories / Sugra theories on circle Geometry of resolved elliptically fibered CalabiYau threefolds Our systematics is somewhat complementary to the approach and classifications of: [Morrison,Taylor etal.] [Heckman,Morrison,Rudelius,Vafa] 6

7 Some comments on the Mtheory to Ftheory duality 7

8 Approaching the problem via Mtheory Viewing Ftheory as an actually 12 dim. theory is problematic (e.g. torus volume unphysical, meaning of nonperturbative states ) Ftheory effective actions via Mtheory (as of now: definition of Ftheory) Consider Mtheory on space T 2 M 9 Ftheory limit: is the complex structure modulus of the T 2, v volume of T 2 (1) Acycle: if small than Mtheory becomes Type IIA (2) Bcycle: Tduality Type IIA becomes Type IIB, is indeed dilatonaxion (3) grow extra dimension: send v! 0 than Tdual Bcycle becomes large [Vafa] 8

9 Consequences of Mtheory to Ftheory limit First step: approach Mtheory via 11D supergravity on a smooth geometry resolution of singular CalabiYau geometry classification of resolutions at each codimensions in base [almost everyone who has worked on Ftheory, ] codimension 1 in base nonabelian gauge group simple roots codimension 2 in base matter in representation R weights w of R Abelian gauge group factors: n U(1) +1 rational sections of the fibration zero section (assumed to exist throughout this talk) Second step: Mtheory to Ftheory limit shrinks fiber torus and resolutions and grows extra dimension (5D 6D) keep track of M2brane states e.g. M2branes on twotorus fiber correspond to circle KaluzaKlein states 9

10 Massive states in five dimensions 11D Sugra on smooth geometry 5D effective theory Both types of theories need to be computed and then compared 6D supergravity theory (gauge theory) on a circle push to Coulomb branch integrate out all massive modes 5D gauge group in Coulomb branch: U(1) rankg U(1) n U(1) mass of 5D state at KaluzaKlein level descending from 6D state in representation R of G with weights and U(1)charges w n q m m = m CB + m KK = w I I + q m m + n r Coulomb branch vevs (blowup vevs) circle radius (torus fiber volume) 10

11 Anomaly cancellation and circle compactifications 11

12 Mtheory on CalabiYau threefolds effective action has been studied long ago: 5D N=2 theory important to us are the ChernSimons terms: K ABC Z M 5 A A ^ F B ^ F C c B Z M 5 A B ^ Tr(R ^ R) [Ferrara, ] [Minasian, ] triple intersection Z numbers: second Z Chern class: A =1,...,h 1,1 (Y 3 ) K ABC =! A ^! B ^! C c A =! A ^ c 2 (Y 3 ) Y 3 Y 3 arise from 11D sugra action including terms up to 8 derivatives comparison to ChernSimons terms obtained after circle reduction classical and oneloop corrections required early works: [Morrison,Seiberg][Witten][Intriligator, Morrison,Seiberg] 12

13 ChernSimons terms on circle side Classical and oneloop ChernSimons terms classical terms depend on, b, a (6D tensor coupling, anomaly coefficients), b, a fixed by geometry (intersection numbers base, location of branes, canonical class of base) there are many more ChernSimons terms in Mtheory [Bonetti,TG 11] oneloop CSterms in the effective theory induced by integrating out: K ABC = X mass. states k r q A q B q C sign(m) c A = X mass. states apple r q A sign(m) massive spin 1/2 fermions massive spin 3/2 fermions massive selfdual tensors [Bonetti,TG,Hohenegger 13] massive KaluzaKlein states of all 6D fields that carry chirality and contribute to the 6D anomaly 13

14 Jumping ChernSimons terms match was still not possible for certain geometries mass n=2 n=1 n=0 n=1 m CB mass m CB [TG,Kapfer,Keitel 13] n=0 regularization of infinite sum over KK modes in oneloop CS terms gets modified While oneloop CS terms are independent of the precise numerical value of the mass of a state, they do depend on (1) sign of CB mass sign(m CB ) (2) hierarchy of m n KK = n/r and associate an integer label `w,q to each massive state: m CB is between mass of and +1 KaluzaKlein state `w,q `w,q m CB 14

15 Extending box graphs Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases [Hayashi, Lawrie, Morrison, SchäferNameki][Braun,SchäferNameki] Example: antisymmetric representation 10 of SU(5) boxes are for the weights w of a representation colors indicate signinformation clear rules and allowed connections studied 15

16 Extending box graphs Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases [Hayashi, Lawrie, Morrison, SchäferNameki][Braun,SchäferNameki] Example: antisymmetric representation 10 of SU(5) add information about jump levels `w 16

17 Extending box graphs Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases [Hayashi, Lawrie, Morrison, SchäferNameki][Braun,SchäferNameki] Example: antisymmetric representation 10 of SU(5) `w add information about jump levels What are the rules for such diagrams? What are the inherent symmetries? 17

18 Large gauge transformations large gauge transformations precisely induce certain types of jumps 6D gauge transformation: ˆ I (x, y) = k I y 0 ˆ m (x, y) = circle coordinate k m y I = I + ki r, m = m + km r, shift of Coulomb branch vevs: mix of 5D vectors: à I = A I k I A 0 mixingin the 1 KaluzaKlein à m = A m k m A 0 vector A 0 rearrangement of whole KaluzaKlein tower large gauge transformations act on nontrivially on Symmetry? `w,q Yes! But only if one takes into account 6D anomalies! Oneloop corrected effective 5D theories differing by the above trans formation are identified if and only if 6D anomalies are cancelled. 18

19 Discovering the 6D anomaly conditions Recall the form of the 6D anomaly cancellation conditions: e.g. pure Abelian: pure nonabelian: (b mnb pq + b mpb nq + b mqb np ) = 3 b (G) b (G) = X R X F 1/2 (q) q m q n q p q q q F 1/2 (R) C R X X tr R ˆF 4 = B R tr f ˆF 4 + C R (tr f ˆF 2 ) 2 differ from oneloop ChernSimons terms: e.g. pure Abelian: pure nonabelian: K mnp = 1 2 K IJK = 1 2 X F 1/2 (q) q m q n q p (2`q + 1)sign(m q CB ) q X F 1/2 (R) X w I w J w K (2`w + 1)sign(m w CB) w2r R 19

20 Discovering the 6D anomaly conditions We were able to show: pure Abelian: Properties of 1loop CSterms: pure nonabelian: (1) additional q r, w I from large gauge transformation acting on 6D anomalies: X F 1/2 (q) q m q n q p q q q X F 1/2 (R) C R R r L (2`q + 1)sign(m q CB )! q r (2`w + 1)sign(m w CB)! w L [TG,Kapfer 15] pure Abelian: (2) identities involving four weights to pure obtain nonabelian: C R Change in classical and 1loop Chern Simons terms cancel if and only if 6D anomalies are cancelled 20

21 Arithmetic structures and anomaly cancellation A proof anomaly cancellation for Ftheory geometries requires to show that the large gauge transformations are actually a geometric symmetry. [TG,Kapfer 15] for models with only Abelian gauge symmetries this is possible large gauge transformations MordellWeil group of rational sections MW(Y 3 ) = Z n U(1) Z k1... Z kntor key: in the Mtheory to Ftheory limit we are free to pick the zerosection that specifies the KaluzaKlein vector (any choice works fine!) define new arithmetic structures for nonabelian large gauge transformations define arithmetic structure on geometries with multisections mathematical meanings? Higgsing might connect nonabelian models to Abelian models arithmetic structures need to be compatible [TG,Kapfer,Klevers 15] 21

22 Comments on the classification of threefolds 22

23 Characteristic topological data Wall s classification theorem: The homotopy types of CalabiYau threefolds are classified by the following numerical characteristics: Hodge numbers: Triple intersection numbers: Second Chern class: h 1,1 (Y 3 ), h 2,1 (Y 3 ) c A K ABC Spaces differing in these numerical data cannot be continuously deformed into each other without encountering singularities. Are these data systematically specified by the Ftheory effective actions on an additional circle? 23

24 Information from gauge theories on circles (1) Hodge numbers are determined by spectrum (in the following: only nonabelian) h 1,1 (Y 3 )=T rank(g) h 2,1 (Y 3 )=H neut 1 (2) Intersection numbers and second Chern class determined by: classical data:, b, a K 0 = K IJ = C IJ b c = 12 a oneloop data: spectrum plus circle info (sign table, jump levels) extended box graphs as convenient object for classification? 24

25 ( Intersection and Chern class data Intersection numbers and Chern classes (nonabelian groups only) = 1 2(T sd T asd ) F1/2 5F3/2 + 1 X F1/2(R) X K lw 2 (l w +1) 2 000, R w2r2 = 1 X K F1/2(R) X 00I l w (l w +1)(2l w +1)w I sign(m w 6 CB), R w2r K 0IJ K IJK c 0 = 1 X F1/2(R) X (1 + 6 l w (l w +1))w I w J, 12 R w2r = 1 X F1/2(R) X (2l w +1)w I w J w K sign(m w 2 CB), R w2r = 1 X 19F3/2 F1/2 4(T sd T asd ) F1/2(R) X 6 R w2r l w (l w +1), c I = X R F1/2(R) X w2r (2l w +1)w I sign(m w CB), 25

26 Two classification problems (1) given a 6D N=(1,0) anomalyfree theory in tensor Coulomb branch construct classifying topological data of CalabiYau threefolds Systematics: start with gauge theories of nonhiggsable clusters successive unhiggsing of gauge groups in field theory generate tree of topological data [Morrison, Taylor] Challenges: moding out symmetries detecting additional geometric constraints extending analysis to nonresolvable geometries String Universality: Is Ftheory a theory of Frything in 6D? (2) given an set of CalabiYau geometries, as provided e.g. by the KreuzerSkarke list classify 6D N=(1,0) theories associated to elliptic fibrations 26

27 Conclusions The map between the CalabiYau threefold geometry and a 6D sugra theory on a circle has been established at classical and oneloop level. Anomalies can be inferred from ChernSimons terms, if the latter are probed by large gauge transformations. Large gauge transformations map to arithmetic structures on ell. fibrations. for Abelian gauge groups one encounters the MordellWeil group general proof of anomaly cancellation for viable Ftheory geometries new arithmetic structures for nonabelian groups and geometries with multisections. Extension to 3D/4D has been worked out for chiral spectrum induced by fluxes Ftheory provides a novel way to approach classification problems. topological data of resolved CalabiYau threefolds are robust and corse information directly related to corse information about gauge theories Are there mathematical restrictions on viable Hodge numbers, intersection numbers Chern classes? ruling out 6D gauge theories coupled to gravity? 27

28 Thank you for your attention! 28

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich F-theory effective physics via M-theory Thomas W. Grimm Max Planck Institute for Physics (Werner-Heisenberg-Institut) Munich Ahrenshoop conference, July 2014 1 Introduction In recent years there has been

More information

Aspects!of!Abelian!and!Discrete!Symmetries!! in!f<theory!compac+fica+on!

Aspects!of!Abelian!and!Discrete!Symmetries!! in!f<theory!compac+fica+on! TexasA&Mworkshop,2015 AspectsofAbelianandDiscreteSymmetries inf

More information

Mapping 6D N=1 supergravities to F-theory

Mapping 6D N=1 supergravities to F-theory Mapping 6D N=1 supergravities to F-theory The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Kumar, Vijay,

More information

F-theory and the classification of elliptic Calabi-Yau manifolds

F-theory and the classification of elliptic Calabi-Yau manifolds F-theory and the classification of elliptic Calabi-Yau manifolds FRG Workshop: Recent progress in string theory and mirror symmetry March 6-7, 2015 Washington (Wati) Taylor, MIT Based in part on arxiv:

More information

Elliptic Calabi-Yau fourfolds and 4D F-theory vacua

Elliptic Calabi-Yau fourfolds and 4D F-theory vacua Elliptic Calabi-Yau fourfolds and 4D F-theory vacua Dave Day F-theory at 20 conference Burke Institute, Caltech February 25, 2016 Washington (Wati) Taylor, MIT Based in part on arxiv: 1201.1943, 1204.0283,

More information

arxiv: v2 [hep-th] 3 Jul 2015

arxiv: v2 [hep-th] 3 Jul 2015 Prepared for submission to JHEP NSF-KITP-15-068, MIT-CTP-4677 P 1 -bundle bases and the prevalence of non-higgsable structure in 4D F-theory models arxiv:1506.03204v2 [hep-th] 3 Jul 2015 James Halverson

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

String-Math 18, Sendai, June 18-22, Global Constraints on Matter Representations in F-theory. Mirjam Cvetič

String-Math 18, Sendai, June 18-22, Global Constraints on Matter Representations in F-theory. Mirjam Cvetič String-Math 18, Sendai, June 18-22, 2018 Global Constraints on Matter Representations in F-theory Mirjam Cvetič Outline: I. F-theory Compactification: brief overview of non-abelian gauge symmetries, matter,

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

Web of threefold bases in F-theory and machine learning

Web of threefold bases in F-theory and machine learning and machine learning 1510.04978 & 1710.11235 with W. Taylor CTP, MIT String Data Science, Northeastern; Dec. 2th, 2017 1 / 33 Exploring a huge oriented graph 2 / 33 Nodes in the graph Physical setup: 4D

More information

What is F-theory? David R. Morrison. University of California, Santa Barbara

What is F-theory? David R. Morrison. University of California, Santa Barbara University of California, Santa Barbara Physics and Geometry of F-theory 2015 Max Plack Institute for Physics, Munich 25 February 2015 arxiv:1503.nnnnn Inspired in part by Grassi Halverson Shaneson arxiv:1306.1832

More information

The Toric SO(10) F-theory Landscape

The Toric SO(10) F-theory Landscape The Toric SO(10) F-theory Landscape Paul-Konstantin Oehlmann DESY/Hamburg University In preperation arxiv:170x.xxxx in collaboration with: W. Buchmueller, M. Dierigl, F. Ruehle Virginia Tech,Blacksburg

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Sebastian Greiner arxiv: 1512.04859, 1702.03217 (T. Grimm, SG) Max-Planck-Institut für Physik and ITP Utrecht String Pheno 2017 Sebastian Greiner

More information

The global gauge group structure of F-theory compactifications with U(1)s

The global gauge group structure of F-theory compactifications with U(1)s The global gauge group structure of F-theory compactifications with U(1)s based on arxiv:1706.08521 with Mirjam Cvetič Ling Lin Department of Physics and Astronomy University of Pennsylvania String Phenomenology,

More information

On Flux Quantization in F-Theory

On Flux Quantization in F-Theory On Flux Quantization in F-Theory Raffaele Savelli MPI - Munich Bad Honnef, March 2011 Based on work with A. Collinucci, arxiv: 1011.6388 Motivations Motivations The recent attempts to find UV-completions

More information

Some Issues in F-Theory Geometry

Some Issues in F-Theory Geometry Outline Some Issues in F-Theory Geometry Arthur Hebecker (Heidelberg) based on work with A. Braun, S. Gerigk, H. Triendl 0912.1596 A. Braun, R. Ebert, R. Valandro 0907.2691 as well as two earlier papers

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

New Phenomena in 2d String Theory

New Phenomena in 2d String Theory New Phenomena in 2d String Theory Nathan Seiberg Rutgers 2005 N.S. hep-th/0502156 J.L. Davis, F. Larsen, N.S. hep-th/0505081, and to appear J. Maldacena, N.S. hep-th/0506141 1 Low Dimensional String Theories

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/ v2 31 May 1996

Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/ v2 31 May 1996 DUKE-TH-96-107 HUTP-96/A012 hep-th/9603161 March, 1996 (Revised 5/96) Compactifications of F-Theory on Calabi Yau Threefolds II arxiv:hep-th/9603161v2 31 May 1996 David R. Morrison Department of Mathematics,

More information

G 2 manifolds and mirror symmetry

G 2 manifolds and mirror symmetry G 2 manifolds and mirror symmetry Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics First Annual Meeting, New York, 9/14/2017 Andreas Braun University of Oxford based on [1602.03521]

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

Supersymmetric Standard Models in String Theory

Supersymmetric Standard Models in String Theory Supersymmetric Standard Models in String Theory (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- brief summary- status (a),(b)&(c) Heterotic side [Calabi-Yau compactification]

More information

F-theoretic MSSMs at Weak Coupling

F-theoretic MSSMs at Weak Coupling F-theoretic MSSMs at Weak Coupling Damián K. Mayorga Peña Based on arxiv: 1707.xxxx, in collaboration with Roberto Valandro StringPheno, Virginia Tech, July 4, 2017 Plan Introduction and motivation The

More information

SCFTs, Compact CY 3-folds, and Topological Strings

SCFTs, Compact CY 3-folds, and Topological Strings SCFTs, Compact CY 3-folds, and Topological Strings Patrick Jefferson (to appear) in collaboration with: Hirotaka Hayashi, Hee-Cheol Kim, Kantaro Ohmori, and Cumrun Vafa This subject of this talk is SCFTs

More information

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008 : : University of California, Santa Barbara String Phenomenology 2008 University of Pennsylvania 31 May 2008 engineering has been a very successful approach to studying string vacua, and has been essential

More information

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS John H. Schwarz Dedicated to the memory of Joël Scherk SOME FAMOUS SCHERK PAPERS Dual Models For Nonhadrons J. Scherk, J. H. Schwarz

More information

D-brane instantons in Type II orientifolds

D-brane instantons in Type II orientifolds D-brane instantons in Type II orientifolds in collaboration with R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter Timo Weigand Department of Physics and Astronomy, University of Pennsylvania Strings 2008

More information

arxiv:hep-th/ v3 25 Aug 1999

arxiv:hep-th/ v3 25 Aug 1999 TIT/HEP-411 arxiv:hep-th/9904155v3 25 Aug 1999 Puzzles on the Duality between Heterotic and Type IIA Strings Mitsuko Abe and Masamichi Sato Department of Physics Tokyo Institute of Technology Oh-okayama,

More information

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Candidates for Inflation in Type IIB/F-theory Flux Compactifications Candidates for Inflation in Type IIB/F-theory Flux Compactifications Irene Valenzuela IFT UAM/CSIC Madrid Geometry and Physics of F-Theory, Munich 2015 Garcia-Etxebarria,Grimm,Valenzuela [hep-th/1412.5537]

More information

Heterotic type IIA duality with fluxes and moduli stabilization

Heterotic type IIA duality with fluxes and moduli stabilization Heterotic type IIA duality with fluxes and moduli stabilization Andrei Micu Physikalisches Institut der Universität Bonn Based on hep-th/0608171 and hep-th/0701173 in collaboration with Jan Louis, Eran

More information

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges Adi Armoni Swansea University Queen Mary, April 2009 1 Introduction Seiberg duality (Seiberg 1994) is a highly non-trivial

More information

Gauge Threshold Corrections for Local String Models

Gauge Threshold Corrections for Local String Models Gauge Threshold Corrections for Local String Models Stockholm, November 16, 2009 Based on arxiv:0901.4350 (JC), 0906.3297 (JC, Palti) Local vs Global There are many different proposals to realise Standard

More information

Machine learning, incomputably large data sets, and the string landscape

Machine learning, incomputably large data sets, and the string landscape Machine learning, incomputably large data sets, and the string landscape 2017 Workshop on Data Science and String Theory Northeastern University December 1, 2017 Washington (Wati) Taylor, MIT Based in

More information

Spectral Networks and Their Applications. Caltech, March, 2012

Spectral Networks and Their Applications. Caltech, March, 2012 Spectral Networks and Their Applications Caltech, March, 2012 Gregory Moore, Rutgers University Davide Gaiotto, o, G.M., Andy Neitzke e Spectral Networks and Snakes, pretty much finished Spectral Networks,

More information

6D SCFTs and Group Theory. Tom Rudelius IAS

6D SCFTs and Group Theory. Tom Rudelius IAS 6D SCFTs and Group Theory Tom Rudelius IAS Based On 1502.05405/hep-th with Jonathan Heckman, David Morrison, and Cumrun Vafa 1506.06753/hep-th with Jonathan Heckman 1601.04078/hep-th with Jonathan Heckman,

More information

Computability of non-perturbative effects in the string theory landscape

Computability of non-perturbative effects in the string theory landscape Computability of non-perturbative effects in the string theory landscape IIB/F-theory perspective Iñaki García Etxebarria Nov 5, 2010 Based on [1009.5386] with M. Cvetič and J. Halverson. Phenomenology

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

T-duality : a basic introduction

T-duality : a basic introduction T-duality : a basic introduction Type IIA () Type IIB 10th Geometry and Physics conference, Quantum Geometry Anogia, 6-10 August 2012 Mathai Varghese Collaborators and reference joint work with: - Peter

More information

Double Field Theory at SL(2) angles

Double Field Theory at SL(2) angles Double Field Theory at SL(2) angles Adolfo Guarino Université Libre de Bruxelles Iberian Strings 207 January 7th, Lisbon Based on arxiv:62.05230 & arxiv:604.08602 Duality covariant approaches to strings

More information

M-Theory and Matrix Models

M-Theory and Matrix Models Department of Mathematical Sciences, University of Durham October 31, 2011 1 Why M-Theory? Whats new in M-Theory The M5-Brane 2 Superstrings Outline Why M-Theory? Whats new in M-Theory The M5-Brane There

More information

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010 N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR Silvia Penati Perugia, 25/6/2010 Motivations AdS 4 /CFT 3 correspondence states that the strong coupling dynamics of a N = 6 Chern-Simons theory

More information

Heterotic Standard Models

Heterotic Standard Models 19 August 2008 Strings 08 @ CERN The High Country region of the string landscape Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies String landscape is huge, but

More information

Aspects of (0,2) theories

Aspects of (0,2) theories Aspects of (0,2) theories Ilarion V. Melnikov Harvard University FRG workshop at Brandeis, March 6, 2015 1 / 22 A progress report on d=2 QFT with (0,2) supersymmetry Gross, Harvey, Martinec & Rohm, Heterotic

More information

Topological Holography and Chiral Algebras. Work in progress with Kevin Costello

Topological Holography and Chiral Algebras. Work in progress with Kevin Costello Topological Holography and Chiral Algebras Work in progress with Kevin Costello General Motivations Topological twist of sugra/superstrings as holographic dual of twisted SQFT (Costello) Topological Holography:

More information

Affine SU(N) algebra from wall-crossings

Affine SU(N) algebra from wall-crossings Affine SU(N) algebra from wall-crossings Takahiro Nishinaka ( KEK ) arxiv: 1107.4762 : T. N. and Satoshi Yamaguchi 12 Aug. 2011 Counting BPS D-branes on CY3 Microstates of black holes in R 4 Instanton

More information

arxiv:hep-th/ v2 28 Mar 2000

arxiv:hep-th/ v2 28 Mar 2000 PUPT-1923 arxiv:hep-th/0003236v2 28 Mar 2000 A Note on Warped String Compactification Chang S. Chan 1, Percy L. Paul 2 and Herman Verlinde 1 1 Joseph Henry Laboratories, Princeton University, Princeton

More information

F-theory and Particle Physics

F-theory and Particle Physics F-theory and Particle Physics Eran Palti (Ecole Polytechnique, Paris) Heidelberg, April 2011 Unification of fields in the UV has been a recurring theme in particle physics Forces Electric + Magnetic +

More information

6d Superconformal Field Theories

6d Superconformal Field Theories 6d Superconformal Field Theories Kimyeong Lee KEK Theory Workshop, January 2015 Jungmin Kim, Seok Kim, KL, Little strings and T-duality, to appear Joonho Kim, Seok Kim, KL, Cumrun Vafa [1411.2324] Elliptic

More information

E 6 Yukawa couplings in F-theory as D-brane instanton effects

E 6 Yukawa couplings in F-theory as D-brane instanton effects E 6 Yukawa couplings in F-theory as D-brane instanton effects Iñaki García Etxebarria based on [1612.06874] with Andrés Collinucci Motivation F-theory is a beautiful and powerful framework for string model

More information

Heterotic Geometry and Fluxes

Heterotic Geometry and Fluxes Heterotic Geometry and Fluxes Li-Sheng Tseng Abstract. We begin by discussing the question, What is string geometry? We then proceed to discuss six-dimensional compactification geometry in heterotic string

More information

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP BPS non-local operators in AdS/CFT correspondence Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv:0812.1420 to appear in JHEP Introduction Non-local operators in quantum field theories

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München Theory III: String Theory presented by Dieter Lüst, MPI and LMU-München The string theory group at MPI (started in 2004): The string theory group at MPI (started in 2004): Permanent members: R. Blumenhagen,

More information

A Supergravity Dual for 4d SCFT s Universal Sector

A Supergravity Dual for 4d SCFT s Universal Sector SUPERFIELDS European Research Council Perugia June 25th, 2010 Adv. Grant no. 226455 A Supergravity Dual for 4d SCFT s Universal Sector Gianguido Dall Agata D. Cassani, G.D., A. Faedo, arxiv:1003.4283 +

More information

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ ) Hidden Sector Baryogenesis Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/0608188) and w/ B.D and Louis Leblond (hepth/0703278) Basic Issue low-energy interactions seem to preserve baryon

More information

Quantum Nambu Geometry in String Theory

Quantum Nambu Geometry in String Theory in String Theory Centre for Particle Theory and Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK E-mail: chong-sun.chu@durham.ac.uk Proceedings of the Corfu Summer Institute

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley Knots and Mirror Symmetry Mina Aganagic UC Berkeley 1 Quantum physics has played a central role in answering the basic question in knot theory: When are two knots distinct? 2 Witten explained in 88, that

More information

Mordell-Weil Torsion, Anomalies, and Phase Transitions.

Mordell-Weil Torsion, Anomalies, and Phase Transitions. Mordell-Weil Torsion, Anomalies, and Phase Transitions. Mboyo Esole, Monica Jinwoo Kang, Shing-Tung Yau, arxiv:171.0337v1 [hep-th] 6 Dec 017 Department of Mathematics, Northeastern University, Boston,

More information

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano In collaboration with Pablo G. Cámara Motivation Two popular

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Anomalous discrete symmetries in D-brane models

Anomalous discrete symmetries in D-brane models Anomalous discrete symmetries in D-brane models Shohei Uemura Maskawa Institute for Science and Culture, Kyoto Sangyo University based on a work in progress with Tatsuo Kobayashi (Hokkaido University),

More information

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009 String Theory A general overview & current hot topics Benjamin Jurke 4d model building Non-perturbative aspects Optional: Vafa s F-theory GUT model building Würzburg January 8th, 2009 Compactification

More information

Dualities and 5-Brane Webs for 5d rank 2 SCFTs

Dualities and 5-Brane Webs for 5d rank 2 SCFTs Dualities and 5-Brane Webs for 5d rank 2 SCFTs Kimyeong Lee Korea Institute for Advanced Study Hirotaka Hayashi (Tokai Univ), Sung-Soo Kim (UESTC), Futoshi Yagi (Technion) [arxiv:1801.03916] and [arxiv:1806.10569]

More information

Surface Defects and the BPS Spectrum of 4d N=2 Theories

Surface Defects and the BPS Spectrum of 4d N=2 Theories Surface Defects and the BPS Spectrum of 4d N=2 Theories Solvay Conference, May 19, 2011 Gregory Moore, Rutgers University Davide Gaiotto, G.M., Andy Neitzke Wall-crossing in Coupled 2d-4d Systems: 1103.2598

More information

A-field and B-field from Freed-Witten anomaly

A-field and B-field from Freed-Witten anomaly A-field and B-field from Freed-Witten anomaly Raffaele Savelli SISSA/ISAS - Trieste Based on a work with L. Bonora and F. Ferrari Ruffino (arxiv: 0810.4291) Seminal paper by Freed & Witten: hep-th/9907189

More information

The Power of F-theory:

The Power of F-theory: The Power o F-ory: Anomalies & Gauge Coupling Functions Thomas W. Grimm Utrecht University & Max Planck Institute or Physics Based on: 1607.03897 + to appear with Pierre Corvilain, Diego Regalado 1702.03217

More information

F-Theory, Spinning Black Holes and Multi-string Branches

F-Theory, Spinning Black Holes and Multi-string Branches F-Theory, Spinning Black Holes and Multi-string Branches arxiv:1509.00455v3 [hep-th] 2 Dec 2015 Babak Haghighat 1,2, Sameer Murthy 3, Cumrun Vafa 1, Stefan Vandoren 4 1 Jefferson Physical Laboratory, Harvard

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

F-theory Family Unification: A New Geometric Mechanism for Unparallel Three Families and Large Lepton-flavor Mixings

F-theory Family Unification: A New Geometric Mechanism for Unparallel Three Families and Large Lepton-flavor Mixings F-theory Family Unification: A New Geometric Mechanism for Unparallel Three Families and Large Lepton-flavor Mixings Shun ya Mizoguchi KEK, Theory Center! Large Lepton-flavor Mixings from E8 Kodaira Singularity:

More information

Relating DFT to N=2 gauged supergravity

Relating DFT to N=2 gauged supergravity Relating DFT to N=2 gauged supergravity Erik Plauschinn LMU Munich Chengdu 29.07.2016 based on... This talk is based on :: Relating double field theory to the scalar potential of N=2 gauged supergravity

More information

Novel potentials for string axion inflation

Novel potentials for string axion inflation Novel potentials for string axion inflation 1. Introduction Tatsuo Kobayashi. Threshold corrections: Dedekind eta function 3. Quantum corrected period vector 4. Summary Abe, T.K., Otsuka, arxiv:1411.4768

More information

arxiv: v1 [hep-th] 20 Jun 2018

arxiv: v1 [hep-th] 20 Jun 2018 Prepared for submission to JHEP Compactifications of ADE conformal matter on a torus arxiv:806.0760v [hep-th] 0 Jun 08 Hee-Cheol Kim, a Shlomo S. Razamat, b Cumrun Vafa, c Gabi Zafrir d a Department of

More information

String Theory and Generalized Geometries

String Theory and Generalized Geometries String Theory and Generalized Geometries Jan Louis Universität Hamburg Special Geometries in Mathematical Physics Kühlungsborn, March 2006 2 Introduction Close and fruitful interplay between String Theory

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

Supersymmetric Gauge Theories in 3d

Supersymmetric Gauge Theories in 3d Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Intriligator and NS, arxiv:1305.1633 Aharony, Razamat, NS, and Willett, arxiv:1305.3924 3d SUSY Gauge Theories New lessons about dynamics of quantum

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

Collective T-duality transformations and non-geometric spaces

Collective T-duality transformations and non-geometric spaces Collective T-duality transformations and non-geometric spaces Erik Plauschinn LMU Munich ESI Vienna 09.12.2015 based on... This talk is based on :: T-duality revisited On T-duality transformations for

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv:

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv: Orientiholes Γ 2 Γ 1 Γ 0 Γ 1 Γ 2 Frederik Denef, Mboyo Esole and Megha Padi, arxiv:0901.2540 Outline Motivation and basic idea Review of N = 2 black hole bound states Type IIA orientiholes Motivation and

More information

Counting BPS states in E#string theory. Kazuhiro Sakai

Counting BPS states in E#string theory. Kazuhiro Sakai Progress in Quantum Field Theory and String Theory Osaka City University, 06 April 2012 Counting BPS states in E#string theory Kazuhiro Sakai!YITP, Kyoto University" arxiv:1111.3967 arxiv:1203.2921 String

More information

6d theories and nilpotent orbits in Lie algebras

6d theories and nilpotent orbits in Lie algebras 6d theories and nilpotent orbits in Lie algebras Alessandro Tomasiello ICTP, 28.2.207 (mainly) based on 407.6359 with M. del Zotto, J.Hecman, C.Vafa; 60.04078 with J. Hecman, T. Rudelius; 62.06399 with

More information

The exact quantum corrected moduli space for the universal hypermultiplet

The exact quantum corrected moduli space for the universal hypermultiplet The exact quantum corrected moduli space for the universal hypermultiplet Bengt E.W. Nilsson Chalmers University of Technology, Göteborg Talk at "Miami 2009" Fort Lauderdale, December 15-20, 2009 Talk

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories From Calabi-Yau manifolds to topological field theories Pietro Fre' SISSA-Trieste Paolo Soriani University degli Studi di Milano World Scientific Singapore New Jersey London Hong Kong CONTENTS 1 AN INTRODUCTION

More information

Little strings and T-duality

Little strings and T-duality Little strings and T-duality Jungmin Kim (Seoul National University) January 28, 2015 Talk based on [JK., Seok Kim, Kimyeong Lee] in progress. 6d N=(1,1) Little strings Outline NS5-branes in IIB string

More information

New Aspects of Heterotic Geometry and Phenomenology

New Aspects of Heterotic Geometry and Phenomenology New Aspects of Heterotic Geometry and Phenomenology Lara B. Anderson Harvard University Work done in collaboration with: J. Gray, A. Lukas, and E. Palti: arxiv: 1106.4804, 1202.1757 J. Gray, A. Lukas and

More information

Interpolating geometries, fivebranes and the Klebanov-Strassler theory

Interpolating geometries, fivebranes and the Klebanov-Strassler theory Interpolating geometries, fivebranes and the Klebanov-Strassler theory Dario Martelli King s College, London Based on: [Maldacena,DM] JHEP 1001:104,2010, [Gaillard,DM,Núñez,Papadimitriou] to appear Universitá

More information

6D SCFTs and Group Theory. Tom Rudelius Harvard University

6D SCFTs and Group Theory. Tom Rudelius Harvard University 6D SCFTs and Group Theory Tom Rudelius Harvard University Based On 1502.05405/hep-th with Jonathan Heckman, David Morrison, and Cumrun Vafa 1506.06753/hep-th with Jonathan Heckman 1601.04078/hep-th with

More information

5d SCFTs and instanton partition functions

5d SCFTs and instanton partition functions 5d SCFTs and instanton partition functions Hirotaka Hayashi (IFT UAM-CSIC) Hee-Cheol Kim and Takahiro Nishinaka [arxiv:1310.3854] Gianluca Zoccarato [arxiv:1409.0571] Yuji Tachikawa and Kazuya Yonekura

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

Ω Ω /ω. To these, one wants to add a fourth condition that arises from physics, what is known as the anomaly cancellation, namely that

Ω Ω /ω. To these, one wants to add a fourth condition that arises from physics, what is known as the anomaly cancellation, namely that String theory and balanced metrics One of the main motivations for considering balanced metrics, in addition to the considerations already mentioned, has to do with the theory of what are known as heterotic

More information

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci Flux vacua in String Theory, generalized calibrations and supersymmetry breaking Luca Martucci Workshop on complex geometry and supersymmetry, IPMU January 4-9 2009 Plan of this talk Generalized calibrations

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

Counting black hole microstates as open string flux vacua

Counting black hole microstates as open string flux vacua Counting black hole microstates as open string flux vacua Frederik Denef KITP, November 23, 2005 F. Denef and G. Moore, to appear Outline Setting and formulation of the problem Black hole microstates and

More information