OPSF, Random Matrices and Riemann-Hilbert problems

Size: px
Start display at page:

Download "OPSF, Random Matrices and Riemann-Hilbert problems"

Transcription

1 OPSF, Random Matrices and Riemann-Hilbert problems School on Orthogonal Polynomials in Approximation Theory and Mathematical Physics, ICMAT October, 207

2 Plan of the course lecture : Orthogonal Polynomials and Random Matrices lecture 2: The Riemann-Hilbert problem for orthogonal polynomials lecture 3: Logarithmic potentials and equilibrium measures lecture 4: Asymptotics and universality

3 Plan for this lecture We are interested in the asymptotic behavior of the eigenvalues of Hermitian random matrices M of order N with distribution Z N e NTrV (M) dm. The eigenvalues form a determinantal point process with kernel K N (x, y) = N k=0 γ 2 k,n P k,n(x)p k,n (y), P m,n (x)p n,n (x)e NV (x) dx = 0, m n. We will use the Riemann-Hilbert problem and the Deift-Zhou steepest descent method to obtain the required asymptotic result.

4 The Riemann-Hilbert problem Y = C C 2 2 with properties Y = Y N is analytic in C \ R. 2 jump condition e NV (x) Y + (x) = Y (x), x R. 0 3 behavior near infinity ( Y (z) = K N (x, y) = I + O ( z 2πi(x y) ) ) ( z N ) 0 0 z N, z. 0 Y (y)y (x). 0

5 Asymptotic analysis of the Riemann-Hilbert problem The idea is to transform the Riemann-Hilbert problem for Y = Y N in a number of steps Y T S R to another Riemann-Hilbert problem for R = R N on a family of contours Σ R in the complex plane, but with jumps on this contour which are close to the identity matrix. R is analytic on C \ Σ R. 2 R + (z) = R (z)v N (z) for z Σ R. 3 R(z) = I + O( z ) as z. with jumps for which both in L 2 and L on Σ R. lim V N(z) = I, N

6 Asymptotic analysis of the Riemann-Hilbert problem Theorem The Riemann-Hilbert problem for R has the asymptotic behavior lim R N(z) = I, N uniformly on compact subsets of C \ Σ R. One has R N (z) = I + max( I V N 2, I V N )O( z + ), uniformly on compact subsets of C \ Σ R. Then invert all the transformations R S T Y to get the asymptotic behavior of Y = Y N.

7 First transformation The first transformation is to normalize the Riemann-Hilbert problem at infinity. Define T (z) = e Nl/2 0 e Ng(z) 0 e Nl/2 0 0 e Nl/2 Y (z) 0 e Ng(z) 0 e Nl/2 with g(z) = log(z x) dµ V (x). A shorter notation is T (z) = e Nlσ 3/2 Y (z)e Ng(z)σ 3 e Nlσ 3/2 where σ 3 = 0. 0

8 Riemann-Hilbert problem for T T is analytic in C \ R. 2 For x R ( e N[g +(x) g (x)] e T + (x) = T (x) N[g+(x)+g ) (x) V (x)+l] 0 e N[g+(x) g, (x)] 3 T (z) = I + O( z ) as z.

9 Riemann-Hilbert problem for T Recall that for x R g + (x)+g (x) = 2 log x t dµ V (t) = 2U(x; µ V ) = V (x) l. and 0, if x > b, g + (x) g (x) = 2πi, if x < a, b 2πi dµ V (t), if x (a, b). x

10 Riemann-Hilbert problem for T For x [a, b] = supp(µ V ) with e 2πiNϕ(x) T + (x) = T (x) 0 e 2πiNϕ(x), and for x (, a] [b, ) b x ϕ(x) = dµ V (t) = dµ V (t), x b e N[2U(x;µ V )+V (x) l] T + (x) = T (x). 0 with 2U(x; µ V ) + V (x) l.

11 Second transformation We want to replace the oscillatory jump on [a, b] by an exponentially decreasing jump on a deformed contour. e 2πiNϕ 0 e 2πiNϕ = ( 0 e 2πiNϕ ) e 2πiNϕ. Instead of jumping over [a, b] in one step, we jump in three steps, using three jump matrices in this product.

12 Opening a lens We introduce two new contours connecting a and b in the upper half plane and the lower half plane a b We jump over the lips of the lens with jump matrix ( ) 0 e 2Nφ where φ is the analytic continuation of iϕ, i.e., φ(z) = z b (q(s)) /2 ds, q = c(s a)(s b).

13 Riemann-Hilbert problem for S Inside the lens we only did one or two of the jumps (instead of all three), but outside the lens everything remains the same (including the asymptotic condition). Define S by S(z) = T (z), outside the lens, 0 S(z) = T (z) e 2Nφ, in the upper part of the lens, 0 S(z) = T (z) e 2Nφ, in the lower part of the lens. 0 S + = S on (a, b) S + = S e 2Nφ on the lips of the lens, 3 e 2NΦ S + = S on (, a) and (b, ). 0

14 The Riemann-Hilbert problem for S Property The lens can be opened so that Rφ < 0 on the upper and lower lips of the lens. This follows from the property that d dx i[g +(x) g (x)] > 0, x (a, b), and the Cauchy-Riemann equations, which then say that the derivative in the vertical direction in < 0 on (a, b). On the real line the real part of φ is 0, hence moving away from the real line in the vertical direction gives Rφ < 0.

15 The Riemann-Hilbert problem for S 0 e 2NΦ e 2Nφ e 2NΦ 0 0 a b 0 0 e 2Nφ 0

16 The global parametrix Four of the jump matrices for S converge to I as N. Only the jump matrix on (a, b) survives the limit. bigskip We expect that the main contribution to S is going to be a matrix G that satisfy the following Riemann-Hilbert problem G is analytic in C \ [a, b]. 2 0 G + = G on (a, b). 0 3 G(z) = I + O( z ) as z.

17 The global parametrix The solution of this Riemann-Hilbert problem is known: G(z) = ( i β(z) 0 i i 0 /β(z) i ) with β(z) = z b /4. z a

18 Third transformation Now consider then R has no jump on (a, b). R(z) = S(z)G R still has jumps on the lips of the lens and on (, a) and (b, ), but these jumps converge to I as N. Warning: this convergence is not uniform in the neighborhood of a and b. Hence we cannot conclude yet that lim N R = I. A local analysis near a and b is still needed.

19 Local parametrices We will solve the Riemann-Hilbert problem for S in the neighborhood of a and b exactly, and then match the solution to the global parametrix on the boundary of the neighborhoods. Near b the Riemann-Hilbert problem for the parametrix P b is 0 e 2Nφ 0 e 2NΦ 0 0 b 0 e 2Nφ

20 Local parametrices We make the jumps constant by using P b = P e Nφ 0 b 0 e Nφ The Riemann-Hilbert problem for P b then becomes b 0

21 Local parametrices This Riemann-Hilbert problem corresponds to the Riemann-Hilbert problem for the Airy function. A solution is given by A(z) = ( Ai(z) ω 2π 2 Ai(ω 2 ) z) iai (z) iωai (ω 2, 0 < arg z < 2π/3 z) A(z) = ( ωai(ωz) ω 2π 2 Ai(ω 2 ) z) iω 2 Ai (ωz) iωai (ω 2, 2π/3 < arg z < π z) A(z) = ( ω 2π 2 Ai(ω 2 ) z) ωai(ωz) iωai (ω 2 z) iω 2 Ai, π < arg z < 2π/3 (ωz) A(z) = Ai(z) ωai(ωz) 2π iai (z) iω 2 Ai, 2π/3 < arg z < 0 (ωz) where ω = exp(2πi/3).

22 Local parametrices To match this with the global parametrix on the boundary of the neighborhood, we can multiply on the left by an analytic matrix. The result is that P b (z) = E N (z)a(f N (z)), where and 2 3 f N(z) 3/2 = Nφ(z), E N (z) = ( i (z a) f ) σ3 /4 N(z). 2 i z b

23 The final Riemann-Hilbert problem Now we can define the final matrix R by S(z)G, outside the neighborhoods of a and b, R(z) = S(z)Pa, in the neighborhood of a, S(z)P b, in the neighborhood of b. The jump on (a, b) disappears, and so do the jumps inside the neighborhoods of a and b. The remaining jumps converge to I uniformly (and in L 2 ) on the contour Σ R. lim R(z) = I, N uniformly on compact subsets of C \ Σ R.

24 Undo the transformations Now return to Y by undoing the transformations. S(z)G, outside the neighborhoods of a and b, R(z) = S(z)Pa, in the neighborhood of a, S(z)P b, in the neighborhood of b. T (z), outside the lens, 0 T (z) S(z) = e 2Nφ, in the upper part of the lens, 0 T (z) e 2Nφ, in the lower part of the lens. e Nl/2 0 e Ng(z) 0 e Nl/2 0 T (z) = 0 e Nl/2 Y (z) 0 e Ng(z) 0 e Nl/2

25 Universality: sine kernel in the bulk For x, y (a + δ, b δ) one has ( K N (x, y) = e Nφ +(y) e Nφ+(y)) S e + 2πi(x y) (y)s Nφ +(x) +(x) e Nφ+(x) S+ (y)s +(x) = G+ (y)r (y)r(x)g + (x) ( = G+ (y) I + O( x y ) N ) G + (x) Then K N (x, y) = π(x y) sin(in[φ +(y) φ + (x)]) + O().

26 Universality: sine kernel in the bulk Take x = x u + Nψ V (x ) and y = x v + Nψ V (x ), with ψ V the density of µ V, then ( ( in φ + x v ) ( + φ+ x u ) ) Nψ V (x + ) Nψ V (x ) Hence lim N Nψ V (x ) K ( N x + = πn x v + Nψ V (x ) x u + Nψ V (x ) π(u v). u Nψ V (x ), x v + Nψ V (x ) ψ V (s) ds ) = sin π(u v) π(u v).

27 References P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics 3, Courant Institute, New York, NY, and Amer. Math. Soc., Providence, RI., M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005 (paperback edition 2009) M.L. Mehta, Random Matrices, revised and enlarged second edition, Academic Press, San Diego, CA, 99. E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften 36, Springer-Verlag, Berlin, 997. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Providence, RI, 939; fourth edition 975.

OPSF, Random Matrices and Riemann-Hilbert problems

OPSF, Random Matrices and Riemann-Hilbert problems OPSF, Random Matrices and Riemann-Hilbert problems School on Orthogonal Polynomials in Approximation Theory and Mathematical Physics, ICMAT 23 27 October, 2017 Plan of the course lecture 1: Orthogonal

More information

Multiple Orthogonal Polynomials

Multiple Orthogonal Polynomials Summer school on OPSF, University of Kent 26 30 June, 2017 Plan of the course Plan of the course lecture 1: Definitions + basic properties Plan of the course lecture 1: Definitions + basic properties lecture

More information

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS Sheehan Olver NA Group, Oxford We are interested in numerically computing eigenvalue statistics of the GUE ensembles, i.e.,

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

arxiv:math/ v1 [math.ap] 1 Jan 1992

arxiv:math/ v1 [math.ap] 1 Jan 1992 APPEARED IN BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26, Number 1, Jan 1992, Pages 119-124 A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS arxiv:math/9201261v1 [math.ap]

More information

References 167. dx n x2 =2

References 167. dx n x2 =2 References 1. G. Akemann, J. Baik, P. Di Francesco (editors), The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011. 2. G. Anderson, A. Guionnet, O. Zeitouni, An Introduction

More information

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Maxim L. Yattselev joint work with Christopher D. Sinclair International Conference on Approximation

More information

arxiv: v1 [math-ph] 30 Jun 2011

arxiv: v1 [math-ph] 30 Jun 2011 arxiv:1106.6168v1 [math-ph] 30 Jun 2011 Orthogonal polynomials in the normal matrix model with a cubic potential Pavel M. Bleher and Arno B.J. Kuijlaars July 1, 2011 Abstract We consider the normal matrix

More information

A Riemann Hilbert approach to Jacobi operators and Gaussian quadrature

A Riemann Hilbert approach to Jacobi operators and Gaussian quadrature A Riemann Hilbert approach to Jacobi operators and Gaussian quadrature Thomas Trogdon trogdon@cims.nyu.edu Courant Institute of Mathematical Sciences New York University 251 Mercer St. New York, NY, 112,

More information

Some Explicit Biorthogonal Polynomials

Some Explicit Biorthogonal Polynomials Some Explicit Biorthogonal Polynomials D. S. Lubinsky and H. Stahl Abstract. Let > and ψ x) x. Let S n, be a polynomial of degree n determined by the biorthogonality conditions Z S n,ψ,,,..., n. We explicitly

More information

Multiple Orthogonal Polynomials

Multiple Orthogonal Polynomials Summer school on OPSF, University of Kent 26 30 June, 2017 Introduction For this course I assume everybody is familiar with the basic theory of orthogonal polynomials: Introduction For this course I assume

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

Numerical solution of Riemann Hilbert problems: random matrix theory and orthogonal polynomials

Numerical solution of Riemann Hilbert problems: random matrix theory and orthogonal polynomials Numerical solution of Riemann Hilbert problems: random matrix theory and orthogonal polynomials Sheehan Olver and Thomas Trogdon February, 013 Abstract Recently, a general approach for solving Riemann

More information

Simultaneous Gaussian quadrature for Angelesco systems

Simultaneous Gaussian quadrature for Angelesco systems for Angelesco systems 1 KU Leuven, Belgium SANUM March 22, 2016 1 Joint work with Doron Lubinsky Introduced by C.F. Borges in 1994 Introduced by C.F. Borges in 1994 (goes back to Angelesco 1918). Introduced

More information

Orthogonal polynomials with respect to generalized Jacobi measures. Tivadar Danka

Orthogonal polynomials with respect to generalized Jacobi measures. Tivadar Danka Orthogonal polynomials with respect to generalized Jacobi measures Tivadar Danka A thesis submitted for the degree of Doctor of Philosophy Supervisor: Vilmos Totik Doctoral School in Mathematics and Computer

More information

arxiv: v3 [math-ph] 23 May 2017

arxiv: v3 [math-ph] 23 May 2017 arxiv:161.8561v3 [math-ph] 3 May 17 On the probability of positive-definiteness in the ggue via semi-classical Laguerre polynomials Alfredo Deaño and icholas J. Simm May 5, 17 Abstract In this paper, we

More information

Double contour integral formulas for the sum of GUE and one matrix model

Double contour integral formulas for the sum of GUE and one matrix model Double contour integral formulas for the sum of GUE and one matrix model Based on arxiv:1608.05870 with Tom Claeys, Arno Kuijlaars, and Karl Liechty Dong Wang National University of Singapore Workshop

More information

Natural boundary and Zero distribution of random polynomials in smooth domains arxiv: v1 [math.pr] 2 Oct 2017

Natural boundary and Zero distribution of random polynomials in smooth domains arxiv: v1 [math.pr] 2 Oct 2017 Natural boundary and Zero distribution of random polynomials in smooth domains arxiv:1710.00937v1 [math.pr] 2 Oct 2017 Igor Pritsker and Koushik Ramachandran Abstract We consider the zero distribution

More information

Submitted Version to CAMWA, September 30, 2009 THE LAPLACE TRANSFORM ON ISOLATED TIME SCALES

Submitted Version to CAMWA, September 30, 2009 THE LAPLACE TRANSFORM ON ISOLATED TIME SCALES Submitted Version to CAMWA, September 30, 2009 THE LAPLACE TRANSFORM ON ISOLATED TIME SCALES MARTIN BOHNER AND GUSEIN SH. GUSEINOV Missouri University of Science and Technology, Department of Mathematics

More information

Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems

Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems Thomas Trogdon 1 and Bernard Deconinck Department of Applied Mathematics University of

More information

RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG

RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG RANDOM HERMITIAN MATRICES AND GAUSSIAN MULTIPLICATIVE CHAOS NATHANAËL BERESTYCKI, CHRISTIAN WEBB, AND MO DICK WONG Abstract We prove that when suitably normalized, small enough powers of the absolute value

More information

ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS. Lecture 3

ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS. Lecture 3 ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS A. POLTORATSKI Lecture 3 A version of the Heisenberg Uncertainty Principle formulated in terms of Harmonic Analysis claims that a non-zero measure (distribution)

More information

Two-periodic Aztec diamond

Two-periodic Aztec diamond Two-periodic Aztec diamond Arno Kuijlaars (KU Leuven) joint work with Maurice Duits (KTH Stockholm) Optimal and Random Point Configurations ICERM, Providence, RI, U.S.A., 27 February 2018 Outline 1. Aztec

More information

The Hermitian two matrix model with an even quartic potential. Maurice Duits Arno B.J. Kuijlaars Man Yue Mo

The Hermitian two matrix model with an even quartic potential. Maurice Duits Arno B.J. Kuijlaars Man Yue Mo The Hermitian two matrix model with an even quartic potential Maurice Duits Arno B.J. Kuijlaars Man Yue Mo First published in Memoirs of the American Mathematical Society in vol. 217, no. 1022, 2012, published

More information

A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS

A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26, Number 1, January 1992 A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS P. DEIFT AND X. ZHOU In this announcement

More information

Introduction to Semiclassical Asymptotic Analysis: Lecture 2

Introduction to Semiclassical Asymptotic Analysis: Lecture 2 Introduction to Semiclassical Asymptotic Analysis: Lecture 2 Peter D. Miller Department of Mathematics University of Michigan Scattering and Inverse Scattering in Multidimensions May 15 23, 2014 University

More information

INTRODUCTION TO PADÉ APPROXIMANTS. E. B. Saff Center for Constructive Approximation

INTRODUCTION TO PADÉ APPROXIMANTS. E. B. Saff Center for Constructive Approximation INTRODUCTION TO PADÉ APPROXIMANTS E. B. Saff Center for Constructive Approximation H. Padé (1863-1953) Student of Hermite Histhesiswon French Academy of Sciences Prize C. Hermite (1822-1901) Used Padé

More information

Some Open Problems Concerning Orthogonal Polynomials on Fractals and Related Questions

Some Open Problems Concerning Orthogonal Polynomials on Fractals and Related Questions Special issue dedicated to Annie Cuyt on the occasion of her 60th birthday, Volume 10 2017 Pages 13 17 Some Open Problems Concerning Orthogonal Polynomials on Fractals and Related Questions Gökalp Alpan

More information

SZEGÖ ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT [ 1, +1]: THE CASE OF A MEASURE WITH FINITE DISCRETE PART

SZEGÖ ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT [ 1, +1]: THE CASE OF A MEASURE WITH FINITE DISCRETE PART Georgian Mathematical Journal Volume 4 (27), Number 4, 673 68 SZEGÖ ASYMPOICS OF EXREMAL POLYNOMIALS ON HE SEGMEN [, +]: HE CASE OF A MEASURE WIH FINIE DISCREE PAR RABAH KHALDI Abstract. he strong asymptotics

More information

arxiv: v1 [math.cv] 14 Mar 2015

arxiv: v1 [math.cv] 14 Mar 2015 Newman-Rivlin asymptotics for partial sums of power series arxiv:1503.04262v1 [math.cv] 14 Mar 2015 Antonio R. Vargas Abstract We discuss analogues of Newman and Rivlin s formula concerning the ratio of

More information

Singular Limits for Integrable Equations

Singular Limits for Integrable Equations Singular Limits for Integrable Equations Peter D. Miller Department of Mathematics University of Michigan October 18, 2015 International Workshop on Integrable Systems CASTS, National Taiwan University,

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

ORTHOGONAL POLYNOMIALS WITH EXPONENTIALLY DECAYING RECURSION COEFFICIENTS

ORTHOGONAL POLYNOMIALS WITH EXPONENTIALLY DECAYING RECURSION COEFFICIENTS ORTHOGONAL POLYNOMIALS WITH EXPONENTIALLY DECAYING RECURSION COEFFICIENTS BARRY SIMON* Dedicated to S. Molchanov on his 65th birthday Abstract. We review recent results on necessary and sufficient conditions

More information

Asymptotics of Orthogonal Polynomials on a System of Complex Arcs and Curves: The Case of a Measure with Denumerable Set of Mass Points off the System

Asymptotics of Orthogonal Polynomials on a System of Complex Arcs and Curves: The Case of a Measure with Denumerable Set of Mass Points off the System Int. Journal of Math. Analysis, Vol. 3, 2009, no. 32, 1587-1598 Asymptotics of Orthogonal Polynomials on a System of Complex Arcs and Curves: The Case of a Measure with Denumerable Set of Mass Points off

More information

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation:

More information

arxiv: v1 [math.cv] 30 Jun 2008

arxiv: v1 [math.cv] 30 Jun 2008 EQUIDISTRIBUTION OF FEKETE POINTS ON COMPLEX MANIFOLDS arxiv:0807.0035v1 [math.cv] 30 Jun 2008 ROBERT BERMAN, SÉBASTIEN BOUCKSOM Abstract. We prove the several variable version of a classical equidistribution

More information

Entropy of Hermite polynomials with application to the harmonic oscillator

Entropy of Hermite polynomials with application to the harmonic oscillator Entropy of Hermite polynomials with application to the harmonic oscillator Walter Van Assche DedicatedtoJeanMeinguet Abstract We analyse the entropy of Hermite polynomials and orthogonal polynomials for

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

The elliptic sinh-gordon equation in the half plane

The elliptic sinh-gordon equation in the half plane Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 25), 63 73 Research Article The elliptic sinh-gordon equation in the half plane Guenbo Hwang Department of Mathematics, Daegu University, Gyeongsan

More information

SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS

SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS STEVEN R. ADAMS AND DAVID A. CARDON (Communicated

More information

Hankel determinants for a singular complex weight and the first and third Painlevé transcendents

Hankel determinants for a singular complex weight and the first and third Painlevé transcendents Hankel determinants for a singular complex weight and the first and third Painlevé transcendents arxiv:1509.07015v2 [math.ca] 19 Jan 2016 Shuai-Xia Xu a, Dan Dai b and Yu-Qiu Zhao c a Institut Franco-Chinois

More information

UNIFORM BOUNDS FOR BESSEL FUNCTIONS

UNIFORM BOUNDS FOR BESSEL FUNCTIONS Journal of Applied Analysis Vol. 1, No. 1 (006), pp. 83 91 UNIFORM BOUNDS FOR BESSEL FUNCTIONS I. KRASIKOV Received October 8, 001 and, in revised form, July 6, 004 Abstract. For ν > 1/ and x real we shall

More information

A quick derivation of the loop equations for random matrices

A quick derivation of the loop equations for random matrices Probability, Geometry and Integrable Systems MSRI Publications Volume 55, 2007 A quick derivation of the loop equations for random matrices. M. ERCOLAI AD K. D. T-R MCLAUGHLI ABSTRACT. The loop equations

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

COMPLEX ANALYSIS AND RIEMANN SURFACES

COMPLEX ANALYSIS AND RIEMANN SURFACES COMPLEX ANALYSIS AND RIEMANN SURFACES KEATON QUINN 1 A review of complex analysis Preliminaries The complex numbers C are a 1-dimensional vector space over themselves and so a 2-dimensional vector space

More information

Jacobi-Angelesco multiple orthogonal polynomials on an r-star

Jacobi-Angelesco multiple orthogonal polynomials on an r-star M. Leurs Jacobi-Angelesco m.o.p. 1/19 Jacobi-Angelesco multiple orthogonal polynomials on an r-star Marjolein Leurs, (joint work with Walter Van Assche) Conference on Orthogonal Polynomials and Holomorphic

More information

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS arxiv:083666v [mathpr] 8 Jan 009 Abstract We characterize, up to a conjecture, probability distributions of finite all order moments

More information

Ratio Asymptotics for General Orthogonal Polynomials

Ratio Asymptotics for General Orthogonal Polynomials Ratio Asymptotics for General Orthogonal Polynomials Brian Simanek 1 (Caltech, USA) Arizona Spring School of Analysis and Mathematical Physics Tucson, AZ March 13, 2012 1 This material is based upon work

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

9. Series representation for analytic functions

9. Series representation for analytic functions 9. Series representation for analytic functions 9.. Power series. Definition: A power series is the formal expression S(z) := c n (z a) n, a, c i, i =,,, fixed, z C. () The n.th partial sum S n (z) is

More information

LINEAR FRACTIONAL COMPOSITION OPERATORS ON H 2

LINEAR FRACTIONAL COMPOSITION OPERATORS ON H 2 J Integral Equations and Operator Theory (988, 5 60 LINEAR FRACTIONAL COMPOSITION OPERATORS ON H 2 CARL C COWEN Abstract If ϕ is an analytic function mapping the unit disk D into itself, the composition

More information

Problems Session. Nikos Stylianopoulos University of Cyprus

Problems Session. Nikos Stylianopoulos University of Cyprus [ 1 ] University of Cyprus Problems Session Nikos Stylianopoulos University of Cyprus Hausdorff Geometry Of Polynomials And Polynomial Sequences Institut Mittag-Leffler Djursholm, Sweden May-June 2018

More information

Bergman shift operators for Jordan domains

Bergman shift operators for Jordan domains [ 1 ] University of Cyprus Bergman shift operators for Jordan domains Nikos Stylianopoulos University of Cyprus Num An 2012 Fifth Conference in Numerical Analysis University of Ioannina September 2012

More information

NOTE ON HILBERT-SCHMIDT COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES

NOTE ON HILBERT-SCHMIDT COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES NOTE ON HILBERT-SCHMIDT COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES THEMIS MITSIS DEPARTMENT OF MATHEMATICS UNIVERSITY OF CRETE KNOSSOS AVE. 7149 IRAKLIO GREECE Abstract. We show that if C ϕ is a Hilbert-Schmidt

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Interacting Particle Systems, Growth Models and Random Matrices Workshop Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Leonid Petrov Department of Mathematics, Northeastern University,

More information

HERMITE-PADÉ APPROXIMANTS FOR A PAIR OF CAUCHY TRANSFORMS WITH OVERLAPPING SYMMETRIC SUPPORTS

HERMITE-PADÉ APPROXIMANTS FOR A PAIR OF CAUCHY TRANSFORMS WITH OVERLAPPING SYMMETRIC SUPPORTS This is the author's manuscript of the article published in final edited form as: Aptekarev, A. I., Van Assche, W. and Yattselev, M. L. 07, Hermite-Padé Approximants for a Pair of Cauchy Transforms with

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

arxiv:hep-th/ v1 14 Oct 1992

arxiv:hep-th/ v1 14 Oct 1992 ITD 92/93 11 Level-Spacing Distributions and the Airy Kernel Craig A. Tracy Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, CA 95616, USA arxiv:hep-th/9210074v1

More information

Notes 14 The Steepest-Descent Method

Notes 14 The Steepest-Descent Method ECE 638 Fall 17 David R. Jackson Notes 14 The Steepest-Descent Method Notes are adapted from ECE 6341 1 Steepest-Descent Method Complex Integral: Ω g z I f z e dz Ω = C The method was published by Peter

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Fredholm determinant with the confluent hypergeometric kernel

Fredholm determinant with the confluent hypergeometric kernel Fredholm determinant with the confluent hypergeometric kernel J. Vasylevska joint work with I. Krasovsky Brunel University Dec 19, 2008 Problem Statement Let K s be the integral operator acting on L 2

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

RIEMANN MAPPING THEOREM

RIEMANN MAPPING THEOREM RIEMANN MAPPING THEOREM VED V. DATAR Recall that two domains are called conformally equivalent if there exists a holomorphic bijection from one to the other. This automatically implies that there is an

More information

An Inverse Problem for the Matrix Schrödinger Equation

An Inverse Problem for the Matrix Schrödinger Equation Journal of Mathematical Analysis and Applications 267, 564 575 (22) doi:1.16/jmaa.21.7792, available online at http://www.idealibrary.com on An Inverse Problem for the Matrix Schrödinger Equation Robert

More information

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Central Limit Theorems for linear statistics for Biorthogonal Ensembles Central Limit Theorems for linear statistics for Biorthogonal Ensembles Maurice Duits, Stockholm University Based on joint work with Jonathan Breuer (HUJI) Princeton, April 2, 2014 M. Duits (SU) CLT s

More information

arxiv:math/ v1 [math.pr] 19 Nov 2004

arxiv:math/ v1 [math.pr] 19 Nov 2004 Quantum Hele-Shaw flow arxiv:math/04437v [math.pr] 9 Nov 2004 Håkan Hedenmalm and Nikolai Makarov Abstract. In this note, we discuss the quantum Hele-Shaw flow, a random measure process in the complex

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

A related space that will play a distinguished role in our space is the Hardy space H (D)

A related space that will play a distinguished role in our space is the Hardy space H (D) Lecture : he Hardy Space on the isc In this first lecture we will focus on the Hardy space H (). We will have a crash course on the necessary theory for the Hardy space. Part of the reason for first introducing

More information

z b k P k p k (z), (z a) f (n 1) (a) 2 (n 1)! (z a)n 1 +f n (z)(z a) n, where f n (z) = 1 C

z b k P k p k (z), (z a) f (n 1) (a) 2 (n 1)! (z a)n 1 +f n (z)(z a) n, where f n (z) = 1 C . Representations of Meromorphic Functions There are two natural ways to represent a rational function. One is to express it as a quotient of two polynomials, the other is to use partial fractions. The

More information

Derivatives of Faber polynomials and Markov inequalities

Derivatives of Faber polynomials and Markov inequalities Derivatives of Faber polynomials and Markov inequalities Igor E. Pritsker * Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, OK 74078-1058, U.S.A. E-mail: igor@math.okstate.edu

More information

Beukers integrals and Apéry s recurrences

Beukers integrals and Apéry s recurrences 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (25), Article 5.. Beukers integrals and Apéry s recurrences Lalit Jain Faculty of Mathematics University of Waterloo Waterloo, Ontario N2L 3G CANADA lkjain@uwaterloo.ca

More information

221A Lecture Notes Steepest Descent Method

221A Lecture Notes Steepest Descent Method Gamma Function A Lecture Notes Steepest Descent Method The best way to introduce the steepest descent method is to see an example. The Stirling s formula for the behavior of the factorial n! for large

More information

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis Zeta Functions and Regularized Determinants for Elliptic Operators Elmar Schrohe Institut für Analysis PDE: The Sound of Drums How Things Started If you heard, in a dark room, two drums playing, a large

More information

On Nonlinear Steepest Descent

On Nonlinear Steepest Descent On Nonlinear Steepest Descent Spyros Kamvissis Department of Applied Mathematics University of Crete February 1, 2007 Rieman-Hilbert factorization The so-called nonlinear stationary-phase-steepest-descent

More information

Global holomorphic functions in several non-commuting variables II

Global holomorphic functions in several non-commuting variables II arxiv:706.09973v [math.fa] 29 Jun 207 Global holomorphic functions in several non-commuting variables II Jim Agler U.C. San Diego La Jolla, CA 92093 July 3, 207 John E. McCarthy Washington University St.

More information

TOPICS. P. Lax, Functional Analysis, Wiley-Interscience, New York, Basic Function Theory in multiply connected domains.

TOPICS. P. Lax, Functional Analysis, Wiley-Interscience, New York, Basic Function Theory in multiply connected domains. TOPICS Besicovich covering lemma. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., 1971. Theorems of Carethedory Toeplitz, Bochner,...

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Journal of Mathematical Analysis and Applications. Non-symmetric fast decreasing polynomials and applications

Journal of Mathematical Analysis and Applications. Non-symmetric fast decreasing polynomials and applications J. Math. Anal. Appl. 394 (22) 378 39 Contents lists available at SciVerse ScienceDirect Journal of Mathematical Analysis and Applications journal homepage: www.elsevier.com/locate/jmaa Non-symmetric fast

More information

Remarks on the Rademacher-Menshov Theorem

Remarks on the Rademacher-Menshov Theorem Remarks on the Rademacher-Menshov Theorem Christopher Meaney Abstract We describe Salem s proof of the Rademacher-Menshov Theorem, which shows that one constant works for all orthogonal expansions in all

More information

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 51, 010, 93 108 Said Kouachi and Belgacem Rebiai INVARIANT REGIONS AND THE GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS WITH A TRIDIAGONAL

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Riemann sphere and rational maps

Riemann sphere and rational maps Chapter 3 Riemann sphere and rational maps 3.1 Riemann sphere It is sometimes convenient, and fruitful, to work with holomorphic (or in general continuous) functions on a compact space. However, we wish

More information

[Review published in SIAM Review, Vol. 59, Issue 3, pp ]

[Review published in SIAM Review, Vol. 59, Issue 3, pp ] [Review published in SIAM Review, Vol. 59, Issue 3, pp. 681 686.] Featured Review: Riemann Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions. By Thomas Trogdon

More information

Fixed Points & Fatou Components

Fixed Points & Fatou Components Definitions 1-3 are from [3]. Definition 1 - A sequence of functions {f n } n, f n : A B is said to diverge locally uniformly from B if for every compact K A A and K B B, there is an n 0 such that f n

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0.

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0. Problem A. Calculus Find the length of the spiral given in polar coordinates by r = e θ, < θ 0. Solution: The length is 0 θ= ds where by Pythagoras ds = dr 2 + (rdθ) 2 = dθ 2e θ, so the length is 0 2e

More information

Constrained Leja points and the numerical solution of the constrained energy problem

Constrained Leja points and the numerical solution of the constrained energy problem Journal of Computational and Applied Mathematics 131 (2001) 427 444 www.elsevier.nl/locate/cam Constrained Leja points and the numerical solution of the constrained energy problem Dan I. Coroian, Peter

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

MATH FINAL SOLUTION

MATH FINAL SOLUTION MATH 185-4 FINAL SOLUTION 1. (8 points) Determine whether the following statements are true of false, no justification is required. (1) (1 point) Let D be a domain and let u,v : D R be two harmonic functions,

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information