Assignment 6, Math 575A

Size: px
Start display at page:

Download "Assignment 6, Math 575A"

Transcription

1 Assignment 6, Math 575A Part I Matlab Section: MATLAB has special functions to deal with polynomials. Using these commands is usually recommended, since they make the code easier to write and understand and are usually more efficient. In this HW assignment you should try to use MATLAB polynomial commands (and avoid for loops) as much as possible. The polynomial P (x) = 2x 2 + 2x 4 and Q(x) = x 2 6 are represented in MATLAB by: P = [2 2-4]; Q = [1 0-6]; P (4.7) is evaluated, for example, using: polyval(p,4.7) You can plot Q(x) in the interval [ 6, 6] using: x = [-6:0.1:6]; plot(x,polyval(q,x)) The polynomial S(x) = P (x) + Q(x) is calculated using S = P+Q; (but addition or subtraction of polynomials with different degrees takes somewhat more effort). Multiplication is easy and the degrees do not have to be equal. The multiplication T (x) = P (x) Q(x) is represented by T = conv(p,q); Additional useful commands are prod, roots (finds the roots of a polynomial) and poly (constructs a polynomial with specified roots). For vectors, roots and poly are inverse functions of each other, up to ordering, scaling, and roundoff error. For more info look at the table of the MATLAB Primer and use the online help or ask for technical assistance. In this assignment you are asked to hand in many plots. You can save paper by combining several plots on one page using the subplot command. Use the help feature to find out how to use subplot Part II Theory Part: 1. Find the best approximation in the L 2 -norm of e x on x [ 1, 1]. using polynomials of at most degree 5. Compare this norm to the norm of the polynomial obtained by computing the Taylor series of degree 5 about 0. hint: There is a slick way to do this problem: use Legendre polynomials. 1

2 2. Construct the Lagrange interpolating polynomials for the following functions and find a bound for the absolute error on the interval [x 0, x n ]: (a) f(x) = e 2x cos 3x where x 0 = 0, x 1 = 0.3, x 2 = 0.6, where n = 2. (b) f(x) = cos x + sin x, where x 0 = 0, x 1 = 0.25, x 2 = 0.5, x 3 = 1.0, where n = Find the polynomial of least degree that interpolates these sets of data: (a) (x i, y i ) = (3, 5), (7, 1) (b) (x i, y i ) = (3, 12), (7, 146), (1, 2), (2, 1) 4. In class we discussed piece-wise linear interpolation and introduced the hat functions B i (x) (i = 1, 2, 3,..., n). These were claimed to form a basis for S1 0 ( ), where a = x 1 < x 2 < x 3... < x n 1 < x n = b. Show that these indeed form a basis. 5. Show that the Chebyshev polynomials, which are defined over x [ 1, 1], have the following properties: (a) T n (x) = cos(nθ), where θ = arc cos(x). (b) 1 1 T n(x)t m (x) 1 1 x 2 dx = ɛ π 2 δ n,m, where δ n,m is the Kroneker delta function, and ɛ = 2 when m = n = 0 and 1 otherwise. (c) They satisfy the ordinary differential equation (1 x 2 )y xy + n 2 y = 0 (d) Show that (1 x 2 )T n (x) = n[t n 1(x) xt n (x)] and 2T n (x)t m (x) = T n+m (x) + T n m (x), for n m. (e) Plot a unit circle, centered at 0. Project the location of equally spaced points on this circle to the horizontal axis t, and convince yourself that these lie at locations t k = cos( (2k 1)π ), 2n with k = 1, 2,..., n.. These are called the Chebyshev interpolation points. Part III Experimental Part: For the following exercises you can adapt the following code, which implements Neville s Algorithm for the generation of the Lagrange polynomials. %Lagrange Polynomial Algorithm by %Neville Interpolation at a vector of %points. % coded by Rachel Labes, Oct

3 clc; clear; format long %Input n = input( Enter the number of points to interpolate at: ); x = input( Enter the vector of points to interpolate at: ); d = input( Enter the vector of function values of interpolation points: ); t = input( Enter the value to approximate the function at: ); %Neville Method Q = zeros(n,n); %Initializes an n x n matrix Q(:,1) = d ; %Enters the vector of % function values as the first column of Q. Q; for i = 2:n for j = 2:i Q(i,j) =... [(t - x(i - 1))*Q(i,j-1) - (t - x(i))*q(i-1,j-1)]/(x(i) - x(i-1)); end end %Q(i,j) calculates the polynomial approximation for each matrix point. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Output% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q %Displays the complete matrix Q. P = input( Enter the point in the matrix to be outputed: ); disp( The value of the polynomial is approximately: ) disp(p) %Displays the function approximation for that Lagrange %polynomial. 1. For P and Q defined in the introduction evaluate T = P Q by hand and compare with 3

4 the result you get from MATLAB. Plot P, Q, T and the x-axis (e.g. using grid on) on the same graph. What do you observe about the roots of the three polynomials? 2. Use appropriate Lagrange interpolation polynomials of degree one, two three and four to approximate each of the following: (a) f(8.4) if f(8) = , f(8.1) = , f(8.3) = , f(8.6) = , f(8.7) = (b) f( 1/3) if f( 1) = , f( 0.75) = , f( 0.5) = , f( 0.25) = , f(0) = To approximate the function f(x) = x, we will use the points (1,1) (4,2) and (9,3). (a) Write the formula for the Lagrange Polynomial P 2 (x) that interpolates these three points. (b) Write a.m function file that implements P 2 (x) using the MATLAB polynomial commands. (c) To see how well the approximation is: i. Plot f and P 2 in the interval [0.01, 12]. ii. Plot f P 2 in the interval [0.01, 12]. iii. Plot abs((f P 2 )./f) in the interval [0.01, 12]. (d) Using the plots determine where the approximation is better/worse. (e) Why do you get these results? Do they agree with the formula derived in class for the error bound? (f) Add the point (0,0) and repeat (a) (c). Do you see any improvement? Deterioration? Where? Why? 4. In this exercise we will pretend that MATLAB stores the values of the function e x only for x = 0, 0.1, 0.2,.... Use these values and the appropriate Lagrange polynomials of degrees zero, one, two three and four to approximate e How does the absolute error change? 5. We would like to approximate the function h(x) = 1/(1 + x 2 ) in the interval [ 5 5] using equally spaced x-values. (a) Write a program that evaluates the corresponding Lagrange polynomials using n points. (b) Plot on one page (using subplot) four plots of the function versus the interpolation polynomial using 3,7,11 and 15 points. (c) What do you observe? 4

5 (d) For each case, plot also the absolute error h P n versus the theoretical error bound n j=0 (x x j ). You may want to plot them initially on separate graphs. Then, come up with a meaningful way to compare the plots using just one graph. (e) What do you observe? 5

6 6. In this exercise you will analyze the problems that arise when the interpolation polynomial is evaluated using the Vandermonde matrix. We will find the interpolation polynomial P n for the nice smooth function sin (x) and see that as n increases problems arise. To do so, run the following program (available as Vandermun.m on the class home page) % Comparison of the interpolation polynomial Pn % for sin(x) in the interval [1 2] with sin(x) % Pn(x) = c_1 x^n +..+ c_n x + c_{n+1} % for i = 0:3 Nx = 10*3^i; dx = 1/Nx; x = [1:dx:2] ; % Find the interpolation polynomial using % the Vandermonde matrix V = vander(x); C = V\sin(x); % Warning: use \, not / % Plot the results at grid values other than the % ones used in the interpolation. y = x+0.1*dx*rand(size(x)); subplot(2,2,i+1) plot(y,polyval(c,y)-sin(y)) xlabel( x ) ylabel( Pn(x)-f(x) ) title([ Nx =,num2str(nx)]) end figure(gcf); Do not submit the plots or the program, but answer the following questions: (a) Using the error formula derived in class, show that sin(x) P n (x) 0 as n for x [0, 2]. (b) Does this agree with your plots? (c) In practice, is larger n good or bad? (d) What is the source of the problem with large n? (Hint: Run the program again but use the grid points x rather than y in the plot command. Also note the MATLAB error messages.) 6

MATH 552 Spectral Methods Spring Homework Set 5 - SOLUTIONS

MATH 552 Spectral Methods Spring Homework Set 5 - SOLUTIONS MATH 55 Spectral Methods Spring 9 Homework Set 5 - SOLUTIONS. Suppose you are given an n n linear system Ax = f where the matrix A is tridiagonal b c a b c. A =.........,. a n b n c n a n b n with x =

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

i x i y i

i x i y i Department of Mathematics MTL107: Numerical Methods and Computations Exercise Set 8: Approximation-Linear Least Squares Polynomial approximation, Chebyshev Polynomial approximation. 1. Compute the linear

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n!

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n! MATH 63 HOMEWORK Week 3, due Monday April 6 TOPICS 4. Taylor series Reading:.0, pages 770-77 Taylor series. If a function f(x) has a power series representation f(x) = c n (x a) n then c n = f(n) (a) ()

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

1 Lecture 8: Interpolating polynomials.

1 Lecture 8: Interpolating polynomials. 1 Lecture 8: Interpolating polynomials. 1.1 Horner s method Before turning to the main idea of this part of the course, we consider how to evaluate a polynomial. Recall that a polynomial is an expression

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question MA 114 Calculus II Spring 2013 Final Exam 1 May 2013 Name: Section: Last 4 digits of student ID #: This exam has six multiple choice questions (six points each) and five free response questions with points

More information

Math Real Analysis II

Math Real Analysis II Math 432 - Real Analysis II Solutions to Homework due February 3 In class, we learned that the n-th remainder for a smooth function f(x) defined on some open interval containing is given by f (k) () R

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Interpolating Accuracy without underlying f (x)

Interpolating Accuracy without underlying f (x) Example: Tabulated Data The following table x 1.0 1.3 1.6 1.9 2.2 f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623 lists values of a function f at various points. The approximations to f (1.5) obtained

More information

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Polynomial Interpolation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 24, 2013 1.1 Introduction We first look at some examples. Lookup table for f(x) = 2 π x 0 e x2

More information

Investigating Limits in MATLAB

Investigating Limits in MATLAB MTH229 Investigating Limits in MATLAB Project 5 Exercises NAME: SECTION: INSTRUCTOR: Exercise 1: Use the graphical approach to find the following right limit of f(x) = x x, x > 0 lim x 0 + xx What is the

More information

Numerical Analysis: Interpolation Part 1

Numerical Analysis: Interpolation Part 1 Numerical Analysis: Interpolation Part 1 Computer Science, Ben-Gurion University (slides based mostly on Prof. Ben-Shahar s notes) 2018/2019, Fall Semester BGU CS Interpolation (ver. 1.00) AY 2018/2019,

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

BSM510 Numerical Analysis

BSM510 Numerical Analysis BSM510 Numerical Analysis Polynomial Interpolation Prof. Manar Mohaisen Department of EEC Engineering Review of Precedent Lecture Polynomial Regression Multiple Linear Regression Nonlinear Regression Lecture

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

1 Backward and Forward Error

1 Backward and Forward Error Math 515 Fall, 2008 Brief Notes on Conditioning, Stability and Finite Precision Arithmetic Most books on numerical analysis, numerical linear algebra, and matrix computations have a lot of material covering

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012

Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 Physics with Matlab and Mathematica Exercise #1 28 Aug 2012 You can work this exercise in either matlab or mathematica. Your choice. A simple harmonic oscillator is constructed from a mass m and a spring

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Vectors vector - has magnitude and direction (e.g. velocity, specific discharge, hydraulic gradient) scalar - has magnitude only (e.g. porosity, specific yield, storage coefficient) unit vector - a unit

More information

ENGR Spring Exam 2

ENGR Spring Exam 2 ENGR 1300 Spring 013 Exam INSTRUCTIONS: Duration: 60 minutes Keep your eyes on your own work! Keep your work covered at all times! 1. Each student is responsible for following directions. Read carefully..

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 75 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP. Use MATLAB solvers for solving higher order ODEs and systems

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) j! + f n (a)

Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) j! + f n (a) Lecture 34: Recall Defn: The n-th Taylor polynomial for a function f at a is: n f j (a) P n (x) = (x a) j. j! j=0 = f(a)+(f (a))(x a)+(1/2)(f (a))(x a) 2 +(1/3!)(f (a))(x a) 3 +... + f n (a) (x a) n n!

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Section x7 +

Section x7 + Difference Equations to Differential Equations Section 5. Polynomial Approximations In Chapter 3 we discussed the problem of finding the affine function which best approximates a given function about some

More information

Problem 1. Produce the linear and quadratic Taylor polynomials for the following functions:

Problem 1. Produce the linear and quadratic Taylor polynomials for the following functions: Problem. Produce the linear and quadratic Taylor polynomials for the following functions: (a) f(x) = e cos(x), a = (b) log( + e x ), a = The general formula for any Taylor Polynomial is as follows: (a)

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

Math 5334: Homework 2 Solutions

Math 5334: Homework 2 Solutions Math 5334: Homework 2 Solutions Victoria E. Howle February 20, 2008 Problem 2.15 a. The condition number of golub(n) grows exponentially. x = []; y = []; % For golub matrices size n = 1 to 10, we will

More information

WebAssign Lesson 6-3 Taylor Series (Homework)

WebAssign Lesson 6-3 Taylor Series (Homework) WebAssign Lesson 6-3 Taylor Series (Homework) Current Score : / 56 Due : Tuesday, August 5 204 0:59 AM MDT Jaimos Skriletz Math 75, section 3, Summer 2 204 Instructor: Jaimos Skriletz. /4 points Consider

More information

Homework 3 Solutions

Homework 3 Solutions 18-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 2018 Homework 3 Solutions Part One 1. (25 points) The following systems have x(t) or x[n] as input and y(t) or y[n] as output. For each

More information

INTERPOLATION Background Polynomial Approximation Problem:

INTERPOLATION Background Polynomial Approximation Problem: INTERPOLATION Background Polynomial Approximation Problem: given f(x) C[a, b], find P n (x) = a 0 + a 1 x + a 2 x 2 + + a n x n with P n (x) close to f(x) for x [a, b]. Motivations: f(x) might be difficult

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

Solutions to Assignment #7

Solutions to Assignment #7 Math 310 Numerical Analysis (Bueler November 6, 009 Solutions to Assignment #7 Problems 6.1, exercise 13: Let f(x = cosh(x. Let x 0, x 1,..., x be any 3 distinct nodes in [ 1, 1]. Let p(x be the unique

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for solving higher order ODEs and

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0:

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0: TAYLOR SERIES Construct a polynomial with the following behavior at x = 0: CHALLENGE! P( x) = a + ax+ ax + ax + ax 2 3 4 0 1 2 3 4 P(0) = 1 P (0) = 2 P (0) = 3 P (0) = 4 P (4) (0) = 5 Sounds hard right?

More information

Taylor Series and Numerical Approximations

Taylor Series and Numerical Approximations Taylor Series and Numerical Approximations Hilary Weller h.weller@reading.ac.uk August 7, 05 An introduction to the concept of a Taylor series and how these are used in numerical analysis to find numerical

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 103L Fall Test 2 Solutions. Michael R. Gustafson II

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 103L Fall Test 2 Solutions. Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 103L Fall 2017 Test 2 Solutions Michael R. Gustafson II Name (please print) NET ID (please print): In keeping with the Community Standard, I have neither

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 103L Fall Test 2. Michael R. Gustafson II

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 103L Fall Test 2. Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 103L Fall 2017 Test 2 Michael R. Gustafson II Name (please print) NET ID (please print): In keeping with the Community Standard, I have neither provided

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

Math 4310 Solutions to homework 7 Due 10/27/16

Math 4310 Solutions to homework 7 Due 10/27/16 Math 4310 Solutions to homework 7 Due 10/27/16 1. Find the gcd of x 3 + x 2 + x + 1 and x 5 + 2x 3 + x 2 + x + 1 in Rx. Use the Euclidean algorithm: x 5 + 2x 3 + x 2 + x + 1 = (x 3 + x 2 + x + 1)(x 2 x

More information

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number Math 227 Sample Final Examination 1 Name (print) Name (sign) Bing ID number (Your instructor may check your ID during or after the test) No books, notes, or electronic devices (calculators, cell phones,

More information

Math 113 Winter 2005 Departmental Final Exam

Math 113 Winter 2005 Departmental Final Exam Name Student Number Section Number Instructor Math Winter 2005 Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems 2 through are multiple

More information

False. 1 is a number, the other expressions are invalid.

False. 1 is a number, the other expressions are invalid. Ma1023 Calculus III A Term, 2013 Pseudo-Final Exam Print Name: Pancho Bosphorus 1. Mark the following T and F for false, and if it cannot be determined from the given information. 1 = 0 0 = 1. False. 1

More information

Solution/Correction standard, second Test Mathematics A + B1; November 7, 2014.

Solution/Correction standard, second Test Mathematics A + B1; November 7, 2014. Solution/Correction standard, second Test Mathematics A + B1; November 7, 014. Kenmerk : Leibniz/toetsen/Re-Exam-Math-A-B1-141-Solutions Course : Mathematics A + B1 (Leibniz) Vakcode : 1911010 Date : November

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics 856-57 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Numerical methods and simulations. Lecture 4: Solution of nonlinear systems of equations and nonlinear boundary value problems B.

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 008 Final Exam Sample Solutions In these solutions, FD refers to the course textbook (PreCalculus (4th edition), by Faires and DeFranza, published by

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #2 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Math 253 Homework due Wednesday, March 9 SOLUTIONS

Math 253 Homework due Wednesday, March 9 SOLUTIONS Math 53 Homework due Wednesday, March 9 SOLUTIONS 1. Do Section 8.8, problems 11,, 15, 17 (these problems have to do with Taylor s Inequality, and they are very similar to what we did on the last homework.

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. The objective of this section is to become familiar with the theory and application of power series and Taylor series. By

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem Green s Theorem MATH 311, alculus III J. obert Buchanan Department of Mathematics Fall 2011 Main Idea Main idea: the line integral around a positively oriented, simple closed curve is related to a double

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

2D Plotting with Matlab

2D Plotting with Matlab GEEN 1300 Introduction to Engineering Computing Class Meeting #22 Monday, Nov. 9 th Engineering Computing and Problem Solving with Matlab 2-D plotting with Matlab Script files User-defined functions Matlab

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

Problem 1 (10 points)

Problem 1 (10 points) y x CHEN 1703 - HOMEWORK 4 Submit your MATLAB solutions via the course web site. Be sure to include your name and UNID in your m-file. Submit each solution seperately. Also be sure to document your solutions

More information

Lecture 28 The Main Sources of Error

Lecture 28 The Main Sources of Error Lecture 28 The Main Sources of Error Truncation Error Truncation error is defined as the error caused directly by an approximation method For instance, all numerical integration methods are approximations

More information

Maple for Math Majors. 3. Solving Equations

Maple for Math Majors. 3. Solving Equations Maple for Math Majors Roger Kraft Department of Mathematics, Computer Science, and Statistics Purdue University Calumet roger@calumet.purdue.edu 3.1. Introduction 3. Solving Equations Two of Maple's most

More information

Math 409/509 (Spring 2011)

Math 409/509 (Spring 2011) Math 409/509 (Spring 2011) Instructor: Emre Mengi Study Guide for Homework 2 This homework concerns the root-finding problem and line-search algorithms for unconstrained optimization. Please don t hesitate

More information

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009 Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 0 February 009 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show all

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2013 14 CALCULUS AND MULTIVARIABLE CALCULUS MTHA4005Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

MATH 2400: Calculus III, Fall 2013 FINAL EXAM

MATH 2400: Calculus III, Fall 2013 FINAL EXAM MATH 2400: Calculus III, Fall 2013 FINAL EXAM December 16, 2013 YOUR NAME: Circle Your Section 001 E. Angel...................... (9am) 002 E. Angel..................... (10am) 003 A. Nita.......................

More information

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at MATH 100, EXAM SOLUTIONS 1. Find an equation for the tangent line to at the point ( π 4, 0). f(x) = sin x cos x f (x) = cos(x) + sin(x) Thus, f ( π 4 ) = which is the slope of the tangent line at ( π 4,

More information

Linear Algebra Using MATLAB

Linear Algebra Using MATLAB Linear Algebra Using MATLAB MATH 5331 1 May 12, 2010 1 Selected material from the text Linear Algebra and Differential Equations Using MATLAB by Martin Golubitsky and Michael Dellnitz Contents 1 Preliminaries

More information

Polynomial Interpolation

Polynomial Interpolation Chapter Polynomial Interpolation. Introduction Suppose that we have a two sets of n + real numbers {x i } n+ i= and {y i} n+ i=, and that the x i are strictly increasing: x < x < x 2 < < x n. Interpolation

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions Math 0: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 30 Homework 4 Solutions Please write neatly, and show all work. Caution: An answer with no work is wrong! Problem A. Use Weierstrass (ɛ,δ)-definition

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information