Problem 1. Produce the linear and quadratic Taylor polynomials for the following functions:

Size: px
Start display at page:

Download "Problem 1. Produce the linear and quadratic Taylor polynomials for the following functions:"

Transcription

1 Problem. Produce the linear and quadratic Taylor polynomials for the following functions: (a) f(x) = e cos(x), a = (b) log( + e x ), a = The general formula for any Taylor Polynomial is as follows: (a) Thus, for the linear and quadratic Taylor Polynomials P n (x) = f n (a) (x a) n n! f(x) = e cos(x) f() = e f (x) = sin(x)e cos(x) f () = f (x) = sin(x)( sin(x)e cos(x) ) cos(x)e cos(x) f () = e P (x) = e P (x) = e e x Plot of Taylor Polynomials for f(x) = e cos(x) (b) Thus, for the linear and quadratic Taylor Polynomials f(x) = log( + e x ) f() = log() f (x) = (+e x ) ex f () = f (x) = e x (+e x ) ex (+e x ) f () = 4 P (x) = log() + x P (x) = log() + x + 4! x = log() + x + 8 x Plot of Taylor Polynomials for f(x) = log( + e x )

2 Code for plots %Code for graphing f(x)=e^cos(x) and the linear and quadraic Taylor %Polynomials of f(x) figure() x=linspace(-,,); y=g(x); clf plot(x,y, b-+ ); hold on %Linear polynomial about x= y=p(x) plot(x,y, r-. ); %Quadratic Polynomial about x= y=p(x); plot(x,y, k--* ) title ( Linear and Quadratic Taylor Approximation to e^cos(x) ) legend( e^cos(x), p_, p_ ) xlabel( x ) ylabel( y ) %Code for graphing f(x)=log(+e^x) and the linear and quadracti Taylor %Polynomials of f(x) figure() f=@(t)log(+exp().^t); y=f(x); clf plot(x,y, b-+ ) hold on %Linear Polynomial about x= p=@(t)log()+.5*t; y=p(x); plot(x,y, r-. ); %Quadratic Polynomial about x=

3 y=p(x); plot(x,y, k--* ) title ( Linear and Quadratic Taylor Approximation to log(+e^x) ) legend( log(+e^x), p_, p_ ) xlabel( x ) ylabel( y ) Problem. Produce a general form for the degree n Taylor Polynomials for the following functions, using a = as the point of expansion (a)f(x) = /(x ) (b)f(x) = ( + x) /3 (a) f(x) = ( x) f() = f (x) = ( x) f () = f (x) = ( x) 3 f () = f (x) = 6 ( x) 4 f () = 6 Thus, inputting into the general equation for a Taylor polynomial gives: Thus, in the general form (b) P 3 (x) = + x + x! P n (x) = + 6x3 n i= = + x + x + x 3 x i f(x) = ( + x) /3 f() = f (x) = 3 ( + x) 3 f () = 3 f (x) = 3 ( 3 )( = x) 3 f () = 3 ( 3 ) f (x) = 3 ( 3 )( 3 )( = x) 3 f () = 3 ( 3 )( 3 ) Thus, using the general form for a Taylor polynomial gives: P 3 (x) = + 3 x + 3 ( 3 ) x +! However, using the notation for binomial coefficients gives ( ) 3 = n 3 ( 3 )( 3 ) 3 ( 3 )( 3 )... ( 3 n + ) n! Thus, the general form for the Taylor polynomial may be given as P n (x) = n i= ( ) 3 x i i Problem 3. Compare f(x) = sin(x) with its Taylor polynomials of degrees,3, and 5. x 3 f(x) = sin(x) f() = f (x) = cos(x) f () = f (x) = sin(x) f () = f (x) = cos(x) f () = 3

4 Thus, using the general form of the Taylor polynomial gives the following: P (x) = x P 3 (x) = x x3 P 5 (x) = x x3 + x5 5! Table for Taylor polynomial error x sin(x) p_(x) sin(x)-p_(x) p_3(x) sin(x)-p_3(x) p_5(x) sin(x)-p_5(x) Code for generating table %Code for finding error in Taylor Polynomials g=@(t)sin(t); x=linspace(-,,); y=g(x); %First Degree Taylor polynomial about x= p=@(t)t; y=p(x); %Third Degree Taylor Polynomial about x= p3=@(t)t-t.^3/factorial(3); y3=p3(x); %Fifth Degree Taylor Polynomial about x= p5=@(t)t-t.^3/factorial(3)+t.^5/factorial(5); y5=p5(x); %Calculating Error in Taylor approximation and actual function err=abs(y-y); err3=abs(y-y3); err5=abs(y-y5); %Code for generating table fprintf( %s %s %s %5s %s %5s %s %5s\n, x, sin(x), p_(x), sin(x)-p_(x), p_3(x), sin(x)-p_3(x), p_5(x), sin(x)-p_5(x) ), for i=: 4

5 fprintf( %.7f %.7f %.7f %5.7f %.7f %5.7f %.7f %5.7f\n, x(i),y(i),y(i),err(i), y3(i),err3(i),y5(i),err5(i)) end Problem 4. Explain why the quotients are undefined for x =, then use Taylor polynomials in the numerator of each quotient to determine the natural definition of g(). (a) g(x) = log( + x) x The function is undefined when x = because of division by zero. However using a Taylor polynomial in the numerator, one can define a natural definition for g(). Let n(x) = log( + x). Thus, n(x) = log( + x) n() = log() = n (x) = (+x) n () = n (x) = (+x) n () = n (x) = (+x) n () = 3 Thus, using the general formula for the Taylor polynomial gives the following Thus, in general P n (x) = i= P 3 (x) = x x! + x3 Then, substituting the Taylor polynomial in the numerator gives Expanding the sum shows Then, g() = as a natural definition. n ( ) i+ x i n ( ) i+ x i = x i i g(x) x n ( ) i+ x i i= i x = i= n ( ) i+ x i i= g(x) x + x 3 + i (b) g(x) = log( x) + xex/ x 3 This function is undefined at x = because of division by zero. However, by approximating the numerator with a Taylor polynomial, one can naturally define g(). A Taylor polynomial will be created for each addition term in the numerator, and then the two Taylor polynomials will be added together to create the complete Taylor polynomial for the numerator. This begin as follows, Thus, the Taylor polynomial may be written as, n (x) = log( x) n () = n (x) = ( x) n () = n (x) = ( x) n () = n (x) = 3 ( x n () = P n, (x) = x x x3 3 + For the second part of the numerator, let n (x) = xe x/. The Taylor polynomial for this function can be found by beginning with the well known Taylor polynomial for e x. P ex,n(x) = + x + x! + 5

6 Thus, to find the Taylor polynomial for e x/ simply replace x with x/ as follows: P e x/,n(x) = + x + ( x )! + = + x + x 4! + Lastly, to obtain the Taylor polynomial for xe x/ simply multiply the Taylor polynomial for e x/ by x, as follows, P n, (x) = x[ + x + x 4! + ] = x + x + x3 4! + Then the Taylor polynomial for the entire numerator may be found by adding P n, to P n, as follows, P n (x) = x + x + x3 x + + x 4! x3 3 + = x3 ( 8 3 ) + Thus, replacing the numerator with the new Taylor polynomial yields Finally, a natural definition for g() can be found as follows. g(x) P n(x) x 3 = x3 ( 8 3 ) + x4 x 3 = ( 8 3 ) + x g() = ( 8 3 ) = 5 4 Problem 5. Find the linear and quadratic Taylor polynomials for f(x) = 3 x about a = 8. f(x) = x /3 f(8) = f (x) = 3 x 3 f (8) = f (x) = 9 x 5 9 f (8) = 44 f (x) = 7 x 8 3 f (8) = Then, using the general formula for a Taylor polynomial gives the linear and quadratic Taylor polynomials to be, (x 8) P (x) = + (x 8) P 3 (x) = + (x 8) 44 The general formula for finding the error in a Taylor approximation can then be found by the following where a c x x Thus finding the error in the linear Taylor polynomial R n (x) = f n+ (c x ) (x a)n+ (n + )! f n+ (c x ) = f (c x ) = 9 c 5 3 x R n (x) = 9 (c x) 5 3! (x 8) On the range x [8, 8 + δ], c x may be bound by (8 + δ) and x may also be bound by (8 + δ), giving Then, when δ =. such that x [8, 8.] R n (x) = 9 (8 + δ) 5 3! R n (x) 9 (8.) 5 3! ((8 + δ) 8) = 9 (8 + δ) 5 3! (.) = (δ) 6

7 Now, finding the error in the quadratic Taylor polynomial, f n+ (c x ) = f 3 (c x ) = R n (x) = 8 7 c 3 x 7 (c x) 8 3 (x 8) 3 On the range x [8, 8 + δ], c x may be bound by (8 + δ) and x may also be bound by (8 + δ), giving R n (x) = Then, when δ =. such that x [8, 8.] 7 (8 + δ) 8 3 ((8 + δ) 8) 3 = R n (x) = 7 (8 + δ) 8 3 (δ) 3 7 (8.) 8 3 (.) 3 =.33 7 Linear and Quadratic Taylor Polynomial Error Code for generating error plot %Code to graph the error in the linear and quadratic Taylor polynomial approximation of %(x)^(/3) %Code for finding the actual value of the function f=@(t)(t).^(/3); x=linspace(7.9,8.,); y=f(x); %Code for the linear Taylor approximation p=@(t)+(t-8)/; y=p(x); %Code for the quadratic Taylor approximation p=@(t)+(t-8)/-(t-8).^/44; y=p(x); %Calculate the error in the liner Taylor polynomial err=y-y clf semilogy(x,abs(err), r.- ); title( Taylor Polynomial Approximation Errors ) xlabel( x ) ylabel( Absolute Value of Approximation Error ) 7

8 hold on %Calculate the error in the quadratic Taylor polynomial err=y-y semilogy(x,abs(err), b*- ) legend( Linear Taylor Polynomial, Quadratic Taylor Polynomial ) Problem 6. Let p n (x) be the Taylor polynomial of degree n of the function f(x) = log( x). How large should one choose n for R n 4? The Taylor approximation for log( x) can be found utilizing the known Taylor approximation for x as shown below: f(x) = log( x) f (x) = = x Since the Taylor polynomial for x is well known as ( + x + x + +x x n + xn+ x ), then the following is true, f(x) = Thus, the error term is given by t t df dx dx = t ( + x + x + x x n )dx + t x n+ x dx and using the integral mean value theorem gives R n = c x t x n+ dx = t n+ c x n + x n+ x dx To determine how large to make n, one needs to know the interval and the target maximum error. In this problem, let R n = 4 (a)x [, ] thus, let t [, ] and since c x x let c x [, ] In creating an upper bound, bound t by and bound c x by, giving: n+ n+ R n = n + = n + 4 Then for n = 8, R n = 4 and for n = 9, R n = 8.9 5, thus a value of n = 9 is needed. (b) x [, ] thus, let t [, ] and since c x x let c x [, ] In creating an upper bound, use t = and c x =, giving Rn = ( ) n+ n + = n + 4 For this inequality to hold, a least value of n = 9998 must be chosen. Problem 7. (a) Give a Taylor approximation to f(x) about x = f(c) = x x cos(t) t dt To write the Taylor polynomial, begin with the well known Taylor polynomial for the cos(t) such that Thus, f(x) may be written as cos(t) = x! + x4 xn + + ( )n 4! (n)! + x n+ ( )n+ (n + )! cos(c) f(x) = x x [ t! + t4 tn 4! + + ( )n (n)! + ( )n+ t ] tn+ (n+)! cos(c) dt 8

9 = x = x = x [ x x x t! t4 tn 4! + + ( )n+ (n)! + ( )n t tn+ (n+)! cos(c)! t t(n ) + + ( )n+ + ( ) n t n 4! (n)! (n + )! cos(c)dt! t t(n ) + + ( )n+ 4! (n)! dt + x dt ( ) n t n ] (n + )! cos(c)dt In bounding the error, cos(c), so for an upper bound, assume cos(c) =, giving R n = x ( ) n t n [ ] x (n + )! dt = ( ) n x n x n = x (n + )(n + )! (n + )(n + )! The complete Taylor polynomial for f(x) may then be given by f(x) = [ x 3 4! + + ( )n+ x n (n )(n)! (b) Bound the error in the degree n approximation for x. On this boundary, one may bound x by, giving R n R n ] + ( ) n x n (n + )(n + )! (n + )(n + )! ( ) n x n (n + )(n + )! (c) Find n so as to have a Taylor approximation with an error of at most 9 on [, ] R n (n + )(n + )! 9 Thus for n = 4, R n 3. 8 and for n = 5, R n Then to satisfy the required error, one should choose n = 54 (d) Plot a graph of Cint(x) on [-,] Cint(x) x [, ] Code for Cint(x) graph %Matlab program to approximate Cint(x) x=linspace(-,,); %Create the x values to be evaluated deg=5; %Enter the degree of the Taylor approximation 9

10 %Calculate the coefficients for each term of the Taylor polynomial c=cint_tay(deg); %Calculate the Taylor polynomial p=polyeven(x,c,deg); plot(x,p) hold on xlabel( x ) ylabel( f(x) ) title( Cint(x) x\in [-,] ) function [ coeff ] = cint_tay( m ) %This function calculates the coefficients for the Taylor polynomial that %approximates Cint(x). coeff=ones(m,); sign=-; fact=; for i=:m sign=-sign; d=*i-; fact=fact*(*i)*(*i-); coeff(i)=sign/(d*fact); end end function [ value ] = polyeven( x,coeff,m ) %Evaluate the polynomial xsq=x.*x; value=coeff(m)*ones(size(x)); for i=m-:-: value=coeff(i)+ xsq.*value; end end

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

f (r) (a) r! (x a) r, r=0

f (r) (a) r! (x a) r, r=0 Part 3.3 Differentiation v1 2018 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

Student: Date: Instructor: kumnit nong Course: MATH 105 by Nong https://xlitemprodpearsoncmgcom/api/v1/print/math Assignment: CH test review 1 Find the transformation form of the quadratic function graphed

More information

LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION LEAST SQUARES APPROXIMATION One more approach to approximating a function f (x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

Downloaded from

Downloaded from Question 1: Exercise 2.1 The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) Page 1 of 24 (iv) (v) (v) Page

More information

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n!

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n! MATH 63 HOMEWORK Week 3, due Monday April 6 TOPICS 4. Taylor series Reading:.0, pages 770-77 Taylor series. If a function f(x) has a power series representation f(x) = c n (x a) n then c n = f(n) (a) ()

More information

MORE APPLICATIONS OF DERIVATIVES. David Levermore. 17 October 2000

MORE APPLICATIONS OF DERIVATIVES. David Levermore. 17 October 2000 MORE APPLICATIONS OF DERIVATIVES David Levermore 7 October 2000 This is a review of material pertaining to local approximations and their applications that are covered sometime during a year-long calculus

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

MATH 118, LECTURES 27 & 28: TAYLOR SERIES MATH 8, LECTURES 7 & 8: TAYLOR SERIES Taylor Series Suppose we know that the power series a n (x c) n converges on some interval c R < x < c + R to the function f(x). That is to say, we have f(x) = a 0

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

Families of Functions, Taylor Polynomials, l Hopital s

Families of Functions, Taylor Polynomials, l Hopital s Unit #6 : Rule Families of Functions, Taylor Polynomials, l Hopital s Goals: To use first and second derivative information to describe functions. To be able to find general properties of families of functions.

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

evaluate functions, expressed in function notation, given one or more elements in their domains

evaluate functions, expressed in function notation, given one or more elements in their domains Describing Linear Functions A.3 Linear functions, equations, and inequalities. The student writes and represents linear functions in multiple ways, with and without technology. The student demonstrates

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Taylor series - Solutions

Taylor series - Solutions Taylor series - Solutions. f(x) sin(x) sin(0) + x cos(0) + x x ( sin(0)) +!! ( cos(0)) + + x4 x5 (sin(0)) + 4! 5! 0 + x + 0 x x! + x5 5! x! + 0 + x5 (cos(0)) + x6 6! ( sin(0)) + x 7 7! + x9 9! 5! + 0 +

More information

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Chapter 8. Exploring Polynomial Functions. Jennifer Huss Chapter 8 Exploring Polynomial Functions Jennifer Huss 8-1 Polynomial Functions The degree of a polynomial is determined by the greatest exponent when there is only one variable (x) in the polynomial Polynomial

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

MTH30 Review Sheet. y = g(x) BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

MTH30 Review Sheet. y = g(x) BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH0 Review Sheet. Given the functions f and g described by the graphs below: y = f(x) y = g(x) (a)

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

Algebra I Unit Report Summary

Algebra I Unit Report Summary Algebra I Unit Report Summary No. Objective Code NCTM Standards Objective Title Real Numbers and Variables Unit - ( Ascend Default unit) 1. A01_01_01 H-A-B.1 Word Phrases As Algebraic Expressions 2. A01_01_02

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x, srinivasan (rs7) Sample Midterm srinivasan (690) This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Determine if

More information

Math 2233 Homework Set 7

Math 2233 Homework Set 7 Math 33 Homework Set 7 1. Find the general solution to the following differential equations. If initial conditions are specified, also determine the solution satisfying those initial conditions. a y 4

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Ch 7 Summary - POLYNOMIAL FUNCTIONS

Ch 7 Summary - POLYNOMIAL FUNCTIONS Ch 7 Summary - POLYNOMIAL FUNCTIONS 1. An open-top box is to be made by cutting congruent squares of side length x from the corners of a 8.5- by 11-inch sheet of cardboard and bending up the sides. a)

More information

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n Chapter 2 Functions and Graphs Section 4 Polynomial and Rational Functions Polynomial Functions A polynomial function is a function that can be written in the form a n n 1 n x + an 1x + + a1x + a0 for

More information

Advanced Math Quiz Review Name: Dec Use Synthetic Division to divide the first polynomial by the second polynomial.

Advanced Math Quiz Review Name: Dec Use Synthetic Division to divide the first polynomial by the second polynomial. Advanced Math Quiz 3.1-3.2 Review Name: Dec. 2014 Use Synthetic Division to divide the first polynomial by the second polynomial. 1. 5x 3 + 6x 2 8 x + 1, x 5 1. Quotient: 2. x 5 10x 3 + 5 x 1, x + 4 2.

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0:

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0: TAYLOR SERIES Construct a polynomial with the following behavior at x = 0: CHALLENGE! P( x) = a + ax+ ax + ax + ax 2 3 4 0 1 2 3 4 P(0) = 1 P (0) = 2 P (0) = 3 P (0) = 4 P (4) (0) = 5 Sounds hard right?

More information

Chapter 4: More Applications of Differentiation

Chapter 4: More Applications of Differentiation Chapter 4: More Applications of Differentiation Autumn 2017 Department of Mathematics Hong Kong Baptist University 1 / 68 In the fall of 1972, President Nixon announced that, the rate of increase of inflation

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module Order of operations 6 Signed Numbers Factorization of Integers 7 Further Signed Numbers 3 Fractions 8 Power Laws 4 Fractions and Decimals 9 Introduction to Algebra 5 Percentages

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number Math 227 Sample Final Examination 1 Name (print) Name (sign) Bing ID number (Your instructor may check your ID during or after the test) No books, notes, or electronic devices (calculators, cell phones,

More information

Assignment # 8, Math 370, Fall 2018 SOLUTIONS:

Assignment # 8, Math 370, Fall 2018 SOLUTIONS: Assignment # 8, Math 370, Fall 018 SOLUTIONS: Problem 1: Solve the equations (a) y y = 3x + x 4, (i) y(0) = 1, y (0) = 1, y (0) = 1. Characteristic equation: α 3 α = 0 so α 1, = 0 and α 3 =. y c = C 1

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

Function Junction: Homework Examples from ACE

Function Junction: Homework Examples from ACE Function Junction: Homework Examples from ACE Investigation 1: The Families of Functions, ACE #5, #10 Investigation 2: Arithmetic and Geometric Sequences, ACE #4, #17 Investigation 3: Transforming Graphs,

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize). Summer Review Packet for Students Entering Prealculus Radicals: To simplify means that 1) no radicand has a perfect square factor and ) there is no radical in the denominator (rationalize). Recall the

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power.

Unit 1 Vocabulary. A function that contains 1 or more or terms. The variables may be to any non-negative power. MODULE 1 1 Polynomial A function that contains 1 or more or terms. The variables may be to any non-negative power. 1 Modeling Mathematical modeling is the process of using, and to represent real world

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Harman Outline 1A Calculus CENG 5131 PDF

Harman Outline 1A Calculus CENG 5131 PDF Harman Outline 1A Calculus CENG 5131 PDF September 5, 2013 III. Review of Differentiation A.Basic Definitions Harman Ch6,P297 Approximations for the Derivative The expression for the derivative of a function

More information

Further Mathematics SAMPLE. Marking Scheme

Further Mathematics SAMPLE. Marking Scheme Further Mathematics SAMPLE Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers to the questions, and there will

More information

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4

6x 3 12x 2 7x 2 +16x 7x 2 +14x 2x 4 2.3 Real Zeros of Polynomial Functions Name: Pre-calculus. Date: Block: 1. Long Division of Polynomials. We have factored polynomials of degree 2 and some specific types of polynomials of degree 3 using

More information

Polynomial expression

Polynomial expression 1 Polynomial expression Polynomial expression A expression S(x) in one variable x is an algebraic expression in x term as Where an,an-1,,a,a0 are constant and real numbers and an is not equal to zero Some

More information

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. Class X - NCERT Maths EXERCISE NO:.1 Question 1: The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) (iv) (v)

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

UMUC MATH-107 Final Exam Information

UMUC MATH-107 Final Exam Information UMUC MATH-07 Final Exam Information What should you know for the final exam? Here are some highlights of textbook material you should study in preparation for the final exam. Review this material from

More information

How many solutions are real? How many solutions are imaginary? What are the solutions? (List below):

How many solutions are real? How many solutions are imaginary? What are the solutions? (List below): 1 Algebra II Chapter 5 Test Review Standards/Goals: F.IF.7.c: I can identify the degree of a polynomial function. F.1.a./A.APR.1.: I can evaluate and simplify polynomial expressions and equations. F.1.b./

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Quadratic Functions Polynomial Functions of Higher Degree Real Zeros of Polynomial Functions

More information

Assignment 6, Math 575A

Assignment 6, Math 575A Assignment 6, Math 575A Part I Matlab Section: MATLAB has special functions to deal with polynomials. Using these commands is usually recommended, since they make the code easier to write and understand

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Error Bounds in Power Series

Error Bounds in Power Series Error Bounds in Power Series When using a power series to approximate a function (usually a Taylor Series), we often want to know how large any potential error is on a specified interval. There are two

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

Sect Polynomial and Rational Inequalities

Sect Polynomial and Rational Inequalities 158 Sect 10.2 - Polynomial and Rational Inequalities Concept #1 Solving Inequalities Graphically Definition A Quadratic Inequality is an inequality that can be written in one of the following forms: ax

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Math 3 Variable Manipulation Part 3 Polynomials A

Math 3 Variable Manipulation Part 3 Polynomials A Math 3 Variable Manipulation Part 3 Polynomials A 1 MATH 1 & 2 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does

More information

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Power Series for Functions We can create a Power Series (or polynomial series) that can approximate a function around

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Pure Mathematics P1

Pure Mathematics P1 1 Pure Mathematics P1 Rules of Indices x m * x n = x m+n eg. 2 3 * 2 2 = 2*2*2*2*2 = 2 5 x m / x n = x m-n eg. 2 3 / 2 2 = 2*2*2 = 2 1 = 2 2*2 (x m ) n =x mn eg. (2 3 ) 2 = (2*2*2)*(2*2*2) = 2 6 x 0 =

More information

Analysis/Calculus Review Day 3

Analysis/Calculus Review Day 3 Analysis/Calculus Review Day 3 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 15, 2010 Big- Oh and Little- Oh Notation We write

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b).

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b). Definition of Increasing and Decreasing A function f(x) is increasing on an interval if for any two numbers x 1 and x in the interval with x 1 < x, then f(x 1 ) < f(x ). As x gets larger, y = f(x) gets

More information

Polynomial Review Problems

Polynomial Review Problems Polynomial Review Problems 1. Find polynomial function formulas that could fit each of these graphs. Remember that you will need to determine the value of the leading coefficient. The point (0,-3) is on

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

The Plane of Complex Numbers

The Plane of Complex Numbers The Plane of Complex Numbers In this chapter we ll introduce the complex numbers as a plane of numbers. Each complex number will be identified by a number on a real axis and a number on an imaginary axis.

More information