Modulation-Feature based Textured Image Segmentation Using Curve Evolution

Size: px
Start display at page:

Download "Modulation-Feature based Textured Image Segmentation Using Curve Evolution"

Transcription

1 Modulation-Feature based Textured Image Segmentation Using Curve Evolution Iasonas Kokkinos, Giorgos Evangelopoulos and Petros Maragos Computer Vision, Speech Communication and Signal Processing Group National Technical University of Athens, Greece School of Electrical and Computer Engineering URL:

2 Presentation Overview and Motivation Extracting texture features for segmentation: Intensity does not suffice. High dimensional features, common for texture description (e.g. Gabor filterbanks, orthonormal bases etc.) suboptimal segmentation In this work, we propose a low dimensional texture descriptor, based on the AM-FM image model. Unsupervised segmentation using state of the art techniques: Curve Evolution & Level-Set methods combine efficiency, elegance and mathematical tractability. Region Based Terms guarantee robustness, which is essential to texture segmentation.

3 Modulation Features for Texture Analysis (I) Image AM-FM Modulation Model ( ) ( ) Èf ( ) I xy, = ak xy, cos Î k xy,, k = 1 Estimate amplitude & frequency coefficients via Multiband Gabor filtering Narrowband image components Demodulation using D Energy Operator and the ESA Y K Â ( k ) k k1 ( ) = ( )* ( ) I x, y I x, y h x, y, k ( Ik ) ( I x) + Y( I y) k Y I x ( I ) ( x, y), k k ª (, ) k (, ) =W f k x y x y I I I I Y ( ) - a k ( x, y) Y I y Y ( I ) ª W ( x, y) Y Y ª W ( k ) k k Refs: P. Maragos & A.C. Bovik, JOSA 95, J.E. Daugman, JOSA 85, Havlicek, Harding & Bovik, 1996, 000.

4 Modulation Features for Texture Analysis (II) Dominant Components Analysis (DCA) proposes using at each pixel only the most prominent channel, j a( x, y) = aj ( x, y), W ( xy, ) = W j ( xy, ) G K Use maximization criterion for choosing among channels: Amplitude-Based DCA Teager Energy-Based DCA G (, ) = a ( x, y) k xy max H k ( W) k W j { } = arg max G 1 k K ( xy, ) È( I h)( xy, ) G k =Y Î * Refine results with texture vs. non-texture mask at various scales using multiple statistical hypothesis testing. Using a single channel amounts to locally modeling the texture with a Gabor-like texton whose features are described by the DCA components. Refs: Havlicek, Harding & Bovik, T-Image 000. Kokkinos, Evangelopoulos & Maragos, ICIP 04. k k

5 Modulation Features Extraction Examples Synthetic AM-FM Real Modulation Parameters a( x, y ) W1 ( xy, ) W ( xy), DCA Estimated Parameters ADCA EDCA Amplitude Frequency Magnitude

6 Modulation Features Extraction Examples EDCA Estimates: Amplitude and Spatial Frequencies Texture vs. Non-Texture

7 Region Based Segmentation by Active Contours Functional expressing segmentation cost (Region Competition Algorithm): N v EC [, p] = - log p Y dx+ LenC, ÂÚÚ Model multivariate features within each region using a Gaussian pdf : 1 1 Τ 1 Y µ Σ Y µ R 1 R 3 R p ( ( )) ( ) i i i i= 1 Ri ( I µ ) Y = [ Y,..., Y ] T ( π) i i i d / 1/ Σi p 3 p p 1 1 d C = { C1,..., C N } ( ) ( ) ;, Σ = exp i i i Refs: Zhu & Yuille, PAMI 96 Paragios & Deriche, JVCIR 0 Rousson, Brox & Deriche, CVPR 03

8 Functional Minimization Algorithm Euler-Lagrange equations lead to: C Ê i pi( Y) ˆ = vk i log t Á + Ë p ( Y) c N i Level Set Implementation: view front as zero set of embedding function: df Ê i pi( Y) ˆ = vk i log dt Á + F Ë pc ( Y) i F i Refs: Osher & Sethian, 1988.

9 Unsupervised Segmentation by Active Contours Unsupervised segmentation pdfs not known a priori Fronts are initiated so that the union of their interiors occupies the whole of the image Iterate: Estimate the parameters of the Gaussian p.d.f. for each region, using the front s current position: 1 1 µ Y Σ = Y µ Y µ Τ i = i i ( i i)( i i) R i R R i Ri i i Evolve fronts in the direction dictated by region competition (statistics force + geometrical information) i Refs: Zhu & Yuille, PAMI 1996, Rousson et. al., CVPR 003

10 Modulation Features for Texture Segmentation Dominant Component Features provide a low-dimensional and rich texture descriptor, that contains local information about Oscillation Amplitude Frequency (Scale) Orientation (Variation) Features for segmentation: Amplitude Horizontal & Vertical Frequency ( or ) Frequency Magnitude & Orientation Intensity Τ Y = [ a, Ω, Ω, I] Y = [ a, Ω, Ω, I] 1 Τ

11 Segmentation Examples Using Modulation Features Synthetic Textures DCA Estimated Texture Features a W W Segmentation Regions a W1 W

12 Segmentation Examples Using Modulation Features a DCA Estimated Texture Features W1 W Segmentation Regions

13 Segmentation Examples Using Modulation Features a DCA Estimated Texture Features W1 W a W Segmentation Regions

14 Segmentation Examples Using Modulation Features Segmentation Regions Segmentation Regions

15 Summary & Conclusions Texture representation by simple, information rich, lowdimensional feature vector. Important texture characteristics are captured with good localization. Unsupervised segmentation scheme that combines the merits of region competition and modulation/dca. Efficient segmentation of a wide variety of natural textured images.

16 Evolution of related ideas Zhu & Yuille, 1996: Region Competition (No level set implementation, fixed filterbank) Zray, Havlicek, Acton & Pattichis, 001: Modulation features & GAC (no region based term, curve evolution used for post-processing) Paragios & Deriche, 00: Textured Image Segmentation Using Level Set Methods (Supervised) Sagiv et al., 00. Vese et al, 00 : Unsupervised textured Image Segmentation using active contours (Mostly heuristic methods for dimensionality reduction) Rousson, Brox & Deriche, 003: Unsupervised Image Segmentation using structure tensor features. No scale information, anisotropic diffusion used for feature pre-processing. Kokkinos, Evangelopoulos, Maragos, ICIP 004: Modulation feature extraction and texture vs. non-texture decision as segmentation cues.

17 Appendix: D Energy Operator Continuous Discrete F c ( f)( xy, ) f( xy, ) - f( xy, ) f( xy, ) F d ( f)( i, j) = Ê ˆ Ê ˆ Ê ˆ f Á f Á Ê f ˆ f f f = Á Ë x Ë x Á Ë y Ë y f ( i, j) - f( i- 1, j) f( i+ 1, j) - f( i, j- 1) f( i, j+ 1)

18 Spatial AM-FM signal: j W ( ) 1 xy,, x W= W, W ( ) Energy tracking Appendix: D AM-FM Energy Tracking W ( xy) 1 [ cos( j) ] (, ) (, ) cos Èj (, ) f xy = axy Î xy, f y F ª W F ª a W1 W c a a : Instantaneous Frequency vector [ f ] c x

19 Appendix: D Continuous Energy Separation Algorithm D CESA ˆ Ê f ˆ W ( ) (, ) 1 = FcÁ F c f ªW1 xy Ë x ˆ Ê f ˆ W = F ( ) (, ) cá F c f ªW xy Ë y Fc ( f ) aˆ = ª a( x, y) F +F c ( f x) ( f y) c D cosine: CESA Æ exact estimates: f( x, y) = Acos( W x+w y+ j ) c1 c o W ( xy, ) =Wc W ( xy, ) =Wc axy (, ) =A 1 1

20 Appendix: D Gabor filterbanks and DCA D Gabor function hxy ax by Ux Vy (, ) = exp[ -( ) + ( ) s ] cos[ p( + )] DCA Block diagram, (by Havlicek et. al. 1996)

21 Appendix: Curve Evolution Γ() t is evolving curve (front) for t 0 Γ(0) is a simple smooth closed curve Position vector = Cpt (,) Normal vector = Npt (,) Speed: V Curvature = = F( K) Kpt (,) curve evolution PDE (flow) Cpt (,) t = VN(,) p t

22 Appendix: Level Set Method for Curve Evolution Embed curve Γ () t as zero-level curve of function Φ(,,) xyt : Γ ( t) = {( x, y) : Φ ( x, y, t) = 0} Φ 0( xy, ) = Φ ( xy,, 0) = signed distance tranform from Γ(0) Function evolution PDE: Φ = V t Φ Advantages of level set method: - Φ remains a function even if topology of Γt () changes - Compute curvature & normal of Γ() t from : κ = div ( Φ/ Φ ) = N Φ N = Φ / Φ - Efficient Numerics: entropy-satisfying finite differences - Extends easily to 3D Ref: Osher & Sethian 1988

23 Appendix: Region Competition N v EC [, p] = - log p I dx+ C ÂÚÚ ( ( )) i i i i= 1 Ri R 1 R i R R Q Forces acting on the contours, (by Zhu and Yuille, 1996)

24 Minimize Image functional (generalized energy ) Euler PDE: Gradient Descent: Solution reached at steady state: Example 1: Example : E[ u] F( x, y, u, u u ) dxdy = D Appendix: Functional Minimization x, u = Fu Fu F x u = t x y y Euler derivative [ F] u = [ F] t u y u 0 u/ t = 0 F = u ut = u t ( ( )/ ) F = u u = curv u u u

25 Appendix: Energy Tracking in AM-FM Signals Cont.-Time AM-FM Discrete-Time AM-FM ( ) = ( n ) ω τ τ xn [ ] = an [ ]cos Ω( mdm ) 0 t xt () at ()cos ( ) d 0 Cont.-Time TK Energy Operator: Discrete-Time TK Energy Operator: c [ ] x( t) = x ( t) x( t) x ( t) Ψ [ ] d Ψ xn [] = x[] n xn [ + 1][ xn 1] Energy Tracking Energy Tracking Ψc [ xt ()] α () tω () t Ψ [ ] δ xn [ ] α [ n]sin ( Ω[ n] )

26 Appendix: 1D Continuous & Discrete-Time ESA Ψ[ xt ( )] Ψ[ xt ( )] at () 1 Ψ[ xt ( )] π Ψ[ xt ( )] f() t Assumption: x(t) is a narrowband AM-FM Signal Ψ[ xn [ ]] [ xn [ 1] xn [ 1] ] Ψ + an [ ] [ xn [ 1] xn [ 1] ] Ψ[ xn] 1 Ψ + arcsin f [ n ] π 4 [ ]

Analysis of Numerical Methods for Level Set Based Image Segmentation

Analysis of Numerical Methods for Level Set Based Image Segmentation Analysis of Numerical Methods for Level Set Based Image Segmentation Björn Scheuermann and Bodo Rosenhahn Institut für Informationsverarbeitung Leibnitz Universität Hannover {scheuerm,rosenhahn}@tnt.uni-hannover.de

More information

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou 1 / 41 Journal Club Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology 2009-12-11 2 / 41 Outline 1 Motivation Diffusion process

More information

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals

Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals Generalizations of the Total Variation and Beltrami Functionals 29 September 2010 International Conference on Image Processing 2010, Hong Kong Anastasios Roussos and Petros Maragos Computer Vision, Speech

More information

Introduction to Nonlinear Image Processing

Introduction to Nonlinear Image Processing Introduction to Nonlinear Image Processing 1 IPAM Summer School on Computer Vision July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Mean and median 2 Observations

More information

Introduction to motion correspondence

Introduction to motion correspondence Introduction to motion correspondence 1 IPAM - UCLA July 24, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Why estimate visual motion? 2 Tracking Segmentation Structure

More information

A Tutorial on Active Contours

A Tutorial on Active Contours Elham Sakhaee March 4, 14 1 Introduction I prepared this technical report as part of my preparation for Computer Vision PhD qualifying exam. Here we discuss derivation of curve evolution function for some

More information

Image Segmentation Using A New Scalar Texture Descriptor based on Extended Structure Tensor

Image Segmentation Using A New Scalar Texture Descriptor based on Extended Structure Tensor Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 2073-4212 Ubiquitous International Volume 7, Number 5, September 2016 Image Segmentation Using A New Scalar Texture Descriptor

More information

Segmentation using deformable models

Segmentation using deformable models Segmentation using deformable models Isabelle Bloch http://www.tsi.enst.fr/ bloch Téécom ParisTech - CNRS UMR 5141 LTCI Paris - France Modèles déformables p.1/43 Introduction Deformable models = evolution

More information

Analyzing Image Structure By Multidimensional Frequency Modulation

Analyzing Image Structure By Multidimensional Frequency Modulation IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Analyzing Image Structure By Multidimensional Frequency Modulation Marios S. Pattichis, Senior Member, IEEE, and Alan C. Bovik Fellow, IEEE

More information

Segmenting Images on the Tensor Manifold

Segmenting Images on the Tensor Manifold Segmenting Images on the Tensor Manifold Yogesh Rathi, Allen Tannenbaum Georgia Institute of Technology, Atlanta, GA yogesh.rathi@gatech.edu, tannenba@ece.gatech.edu Oleg Michailovich University of Waterloo,

More information

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Esther Horbert, Konstantinos Rematas, Bastian Leibe UMIC Research Centre, RWTH Aachen

More information

DREAM 2 S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation

DREAM 2 S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation International Journal of Computer Vision 53), 45 0, 003 c 003 Kluwer Academic Publishers. Manufactured in The Netherlands. DREAM S: Deformable Regions Driven by an Eulerian Accurate Minimization Method

More information

IMA Preprint Series # 2098

IMA Preprint Series # 2098 LEVEL SET BASED BIMODAL SEGMENTATION WITH STATIONARY GLOBAL MINIMUM By Suk-Ho Lee and Jin Keun Seo IMA Preprint Series # 9 ( February ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA

More information

A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution

A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1 A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution Junmo Kim, John W. Fisher III, Anthony Yezzi,

More information

Outline Introduction Edge Detection A t c i ti ve C Contours

Outline Introduction Edge Detection A t c i ti ve C Contours Edge Detection and Active Contours Elsa Angelini Department TSI, Telecom ParisTech elsa.angelini@telecom-paristech.fr 2008 Outline Introduction Edge Detection Active Contours Introduction The segmentation

More information

Total Variation Image Edge Detection

Total Variation Image Edge Detection Total Variation Image Edge Detection PETER NDAJAH Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-28, JAPAN ndajah@telecom0.eng.niigata-u.ac.jp

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

2D Wavelets. Hints on advanced Concepts

2D Wavelets. Hints on advanced Concepts 2D Wavelets Hints on advanced Concepts 1 Advanced concepts Wavelet packets Laplacian pyramid Overcomplete bases Discrete wavelet frames (DWF) Algorithme à trous Discrete dyadic wavelet frames (DDWF) Overview

More information

A Localized Linearized ROF Model for Surface Denoising

A Localized Linearized ROF Model for Surface Denoising 1 2 3 4 A Localized Linearized ROF Model for Surface Denoising Shingyu Leung August 7, 2008 5 Abstract 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 Introduction CT/MRI scan becomes a very

More information

Random walks for deformable image registration Dana Cobzas

Random walks for deformable image registration Dana Cobzas Random walks for deformable image registration Dana Cobzas with Abhishek Sen, Martin Jagersand, Neil Birkbeck, Karteek Popuri Computing Science, University of Alberta, Edmonton Deformable image registration?t

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Introduction to Linear Image Processing

Introduction to Linear Image Processing Introduction to Linear Image Processing 1 IPAM - UCLA July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Image Sciences in a nutshell 2 Image Processing Image

More information

Active Contour Models for Manifold Valued Image Segmentation

Active Contour Models for Manifold Valued Image Segmentation Active Contour Models for Manifold Valued Image Segmentation Sumukh Bansal Aditya Tatu arxiv:1306.6269v2 [cs.cv] 11 Nov 2013 September 4, 2018 Abstract Image segmentation is the process of partitioning

More information

A Generative Model Based Approach to Motion Segmentation

A Generative Model Based Approach to Motion Segmentation A Generative Model Based Approach to Motion Segmentation Daniel Cremers 1 and Alan Yuille 2 1 Department of Computer Science University of California at Los Angeles 2 Department of Statistics and Psychology

More information

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany Scale Space and PDE methods in image analysis and processing Arjan Kuijper Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, 64283

More information

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5.

Erkut Erdem. Hacettepe University February 24 th, Linear Diffusion 1. 2 Appendix - The Calculus of Variations 5. LINEAR DIFFUSION Erkut Erdem Hacettepe University February 24 th, 2012 CONTENTS 1 Linear Diffusion 1 2 Appendix - The Calculus of Variations 5 References 6 1 LINEAR DIFFUSION The linear diffusion (heat)

More information

STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD

STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD Shape optimization 1 G. Allaire STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD G. ALLAIRE CMAP, Ecole Polytechnique with F. JOUVE and A.-M. TOADER 1. Introduction 2. Setting of the problem 3. Shape differentiation

More information

Carotid Lumen Segmentation Based on Tubular Anisotropy and Contours Without Edges Release 0.00

Carotid Lumen Segmentation Based on Tubular Anisotropy and Contours Without Edges Release 0.00 Carotid Lumen Segmentation Based on Tubular Anisotropy and Contours Without Edges Release 0.00 Julien Mille, Fethallah Benmansour and Laurent D. Cohen July 20, 2009 CEREMADE, UMR CNRS 7534, Université

More information

A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors

A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors Frank R. Schmidt and Daniel Cremers Computer Science Department University of Bonn, Germany Abstract. In this paper, we

More information

Stochastic Mean Curvature Motion in Computer Vision: Stochastic Active Contours

Stochastic Mean Curvature Motion in Computer Vision: Stochastic Active Contours Stochastic Mean Curvature Motion in Computer Vision: Stochastic Active Contours Olivier Juan Renaud Keriven Gheorghe Postelnicu Abstract: This paper presents a novel framework for image segmentation based

More information

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation

Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Level-Set Minimization of Potential Controlled Hadwiger Valuations for Molecular Solvation Bo Li Dept. of Math & NSF Center for Theoretical Biological Physics UC San Diego, USA Collaborators: Li-Tien Cheng

More information

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

A sharp diffuse interface tracking method for approximating evolving interfaces

A sharp diffuse interface tracking method for approximating evolving interfaces A sharp diffuse interface tracking method for approximating evolving interfaces Vanessa Styles and Charlie Elliott University of Sussex Overview Introduction Phase field models Double well and double obstacle

More information

Simultaneous Segmentation and Object Behavior Classification of Image Sequences

Simultaneous Segmentation and Object Behavior Classification of Image Sequences Simultaneous Segmentation and Object Behavior Classification of Image Sequences Laura Gui 1, Jean-Philippe Thiran 1 and Nikos Paragios 1 Signal Processing Institute (ITS), Ecole Polytechnique Fédérale

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 27 Introduction Fredholm first kind integral equation of convolution type in one space dimension: g(x) = 1 k(x x )f(x

More information

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Quantization C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

Key words. Image segmentation, Euler s elastica, level set methods, Mumford-Shah segmentation model, additive model, overlapping objects.

Key words. Image segmentation, Euler s elastica, level set methods, Mumford-Shah segmentation model, additive model, overlapping objects. A VARIATIONAL MODEL FOR SEGMENTATION OF OVERLAPPING OBJECTS WITH ADDITIVE INTENSITY VALUE YAN NEI LAW, HWEE KUAN LEE, CHAOQIANG LIU, AND ANDY M. YIP Abstract. We propose a variant of the Mumford-Shah model

More information

A Tensor Variational Formulation of Gradient Energy Total Variation

A Tensor Variational Formulation of Gradient Energy Total Variation A Tensor Variational Formulation of Gradient Energy Total Variation Freddie Åström, George Baravdish and Michael Felsberg Linköping University Post Print N.B.: When citing this work, cite the original

More information

This dissertation is dedicated to my mother Betty P. Havlicek and the memory of my father Joseph Havlicek, Jr.

This dissertation is dedicated to my mother Betty P. Havlicek and the memory of my father Joseph Havlicek, Jr. This dissertation is dedicated to my mother Betty P. Havlicek and the memory of my father Joseph Havlicek, Jr. Acknowledgements It has been a pleasure to work in the stimulating environment provided by

More information

Nonlinear Dynamical Shape Priors for Level Set Segmentation

Nonlinear Dynamical Shape Priors for Level Set Segmentation To appear in the Journal of Scientific Computing, 2008, c Springer. Nonlinear Dynamical Shape Priors for Level Set Segmentation Daniel Cremers Department of Computer Science University of Bonn, Germany

More information

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Commercialization Fellowship Technical Presentation Taylor Clawson Ithaca, NY June 12, 2018 About Me: Taylor Clawson 3 rd year PhD student

More information

Active Contours Snakes and Level Set Method

Active Contours Snakes and Level Set Method Active Contours Snakes and Level Set Method Niels Chr. Overgaard 2010-09-21 N. Chr. Overgaard Lecture 7 2010-09-21 1 / 26 Outline What is an mage? What is an Active Contour? Deforming Force: The Edge Map

More information

Weighted Minimal Surfaces and Discrete Weighted Minimal Surfaces

Weighted Minimal Surfaces and Discrete Weighted Minimal Surfaces Weighted Minimal Surfaces and Discrete Weighted Minimal Surfaces Qin Zhang a,b, Guoliang Xu a, a LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Science, Chinese Academy

More information

NON-LINEAR DIFFUSION FILTERING

NON-LINEAR DIFFUSION FILTERING NON-LINEAR DIFFUSION FILTERING Chalmers University of Technology Page 1 Summary Introduction Linear vs Nonlinear Diffusion Non-Linear Diffusion Theory Applications Implementation References Page 2 Introduction

More information

Feature Extraction and Image Processing

Feature Extraction and Image Processing Feature Extraction and Image Processing Second edition Mark S. Nixon Alberto S. Aguado :*авш JBK IIP AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Linear Diffusion and Image Processing. Outline

Linear Diffusion and Image Processing. Outline Outline Linear Diffusion and Image Processing Fourier Transform Convolution Image Restoration: Linear Filtering Diffusion Processes for Noise Filtering linear scale space theory Gauss-Laplace pyramid for

More information

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice 1 Lecture Notes, HCI, 4.1.211 Chapter 2 Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian

More information

Total Variation Theory and Its Applications

Total Variation Theory and Its Applications Total Variation Theory and Its Applications 2nd UCC Annual Research Conference, Kingston, Jamaica Peter Ndajah University of the Commonwealth Caribbean, Kingston, Jamaica September 27, 2018 Peter Ndajah

More information

Manifold Regularization

Manifold Regularization Manifold Regularization Vikas Sindhwani Department of Computer Science University of Chicago Joint Work with Mikhail Belkin and Partha Niyogi TTI-C Talk September 14, 24 p.1 The Problem of Learning is

More information

Novel integro-differential equations in image processing and its applications

Novel integro-differential equations in image processing and its applications Novel integro-differential equations in image processing and its applications Prashant Athavale a and Eitan Tadmor b a Institute of Pure and Applied Mathematics, University of California, Los Angeles,

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

NONLINEAR DIFFUSION PDES

NONLINEAR DIFFUSION PDES NONLINEAR DIFFUSION PDES Erkut Erdem Hacettepe University March 5 th, 0 CONTENTS Perona-Malik Type Nonlinear Diffusion Edge Enhancing Diffusion 5 References 7 PERONA-MALIK TYPE NONLINEAR DIFFUSION The

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison of different detectors Region descriptors and

More information

Edge Detection. Computer Vision P. Schrater Spring 2003

Edge Detection. Computer Vision P. Schrater Spring 2003 Edge Detection Computer Vision P. Schrater Spring 2003 Simplest Model: (Canny) Edge(x) = a U(x) + n(x) U(x)? x=0 Convolve image with U and find points with high magnitude. Choose value by comparing with

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc

Linear Diffusion. E9 242 STIP- R. Venkatesh Babu IISc Linear Diffusion Derivation of Heat equation Consider a 2D hot plate with Initial temperature profile I 0 (x, y) Uniform (isotropic) conduction coefficient c Unit thickness (along z) Problem: What is temperature

More information

Computational Analysis and Learning for a Biologically Motivated Model of Boundary Detection

Computational Analysis and Learning for a Biologically Motivated Model of Boundary Detection Computational Analysis and Learning for a Biologically Motivated Model of Boundary Detection Iasonas Kokkinos a Rachid Deriche b Olivier Faugeras b Petros Maragos a a School of Electrical and Computer

More information

Single-Image-Based Rain and Snow Removal Using Multi-guided Filter

Single-Image-Based Rain and Snow Removal Using Multi-guided Filter Single-Image-Based Rain and Snow Removal Using Multi-guided Filter Xianhui Zheng 1, Yinghao Liao 1,,WeiGuo 2, Xueyang Fu 2, and Xinghao Ding 2 1 Department of Electronic Engineering, Xiamen University,

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

arxiv: v1 [cs.cv] 17 Jun 2012

arxiv: v1 [cs.cv] 17 Jun 2012 1 The Stability of Convergence of Curve Evolutions in Vector Fields Junyan Wang* Member, IEEE and Kap Luk Chan Member, IEEE Abstract arxiv:1206.4042v1 [cs.cv] 17 Jun 2012 Curve evolution is often used

More information

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion Nonlinear Diffusion These notes summarize the way I present this material, for my benefit. But everything in here is said in more detail, and better, in Weickert s paper. 1 Introduction: Motivation for

More information

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

ME185 Introduction to Continuum Mechanics

ME185 Introduction to Continuum Mechanics Fall, 0 ME85 Introduction to Continuum Mechanics The attached pages contain four previous midterm exams for this course. Each midterm consists of two pages. As you may notice, many of the problems are

More information

Part III Spectrum Estimation

Part III Spectrum Estimation ECE79-4 Part III Part III Spectrum Estimation 3. Parametric Methods for Spectral Estimation Electrical & Computer Engineering North Carolina State University Acnowledgment: ECE79-4 slides were adapted

More information

Edge Detection. CS 650: Computer Vision

Edge Detection. CS 650: Computer Vision CS 650: Computer Vision Edges and Gradients Edge: local indication of an object transition Edge detection: local operators that find edges (usually involves convolution) Local intensity transitions are

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

Numerical Methods of Applied Mathematics -- II Spring 2009

Numerical Methods of Applied Mathematics -- II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.336 Numerical Methods of Applied Mathematics -- II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Machine Learning and Adaptive Systems. Lectures 3 & 4

Machine Learning and Adaptive Systems. Lectures 3 & 4 ECE656- Lectures 3 & 4, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2015 What is Learning? General Definition of Learning: Any change in the behavior or performance

More information

A Pseudo-distance for Shape Priors in Level Set Segmentation

A Pseudo-distance for Shape Priors in Level Set Segmentation O. Faugeras, N. Paragios (Eds.), 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Nice, 2003. A Pseudo-distance for Shape Priors in Level Set Segmentation Daniel Cremers

More information

Where is the bark, the tree and the forest, mathematical foundations of multi-scale analysis

Where is the bark, the tree and the forest, mathematical foundations of multi-scale analysis Where is the bark, the tree and the forest, mathematical foundations of multi-scale analysis What we observe is not nature itself, but nature exposed to our method of questioning. -Werner Heisenberg M.

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline ECE592-064 Digital mage Processing and ntroduction to Computer Vision Depart. of ECE, NC State University nstructor: Tianfu (Matt) Wu Spring 2017 1. Recap Outline 2. Thinking in the frequency domain Convolution

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations 236861 Numerical Geometry of Images Tutorial 1 Introduction to the Calculus of Variations Alex Bronstein c 2005 1 Calculus Calculus of variations 1. Function Functional f : R n R Example: f(x, y) =x 2

More information

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring A New Unsupervised Event Detector for Non-Intrusive Load Monitoring GlobalSIP 2015, 14th Dec. Benjamin Wild, Karim Said Barsim, and Bin Yang Institute of Signal Processing and System Theory of,, Germany

More information

Switching, sparse and averaged control

Switching, sparse and averaged control Switching, sparse and averaged control Enrique Zuazua Ikerbasque & BCAM Basque Center for Applied Mathematics Bilbao - Basque Country- Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ WG-BCAM, February

More information

Basic Concepts of. Feature Selection

Basic Concepts of. Feature Selection Basic Concepts of Pattern Recognition and Feature Selection Xiaojun Qi -- REU Site Program in CVMA (2011 Summer) 1 Outline Pattern Recognition Pattern vs. Features Pattern Classes Classification Feature

More information

Confidence and curvature estimation of curvilinear structures in 3-D

Confidence and curvature estimation of curvilinear structures in 3-D Confidence and curvature estimation of curvilinear structures in 3-D P. Bakker, L.J. van Vliet, P.W. Verbeek Pattern Recognition Group, Department of Applied Physics, Delft University of Technology, Lorentzweg

More information

R. Kimmel, 1 R. Malladi, 1 and N. Sochen 2. Lawrence Berkeley National Laboratory University of California, Berkeley,

R. Kimmel, 1 R. Malladi, 1 and N. Sochen 2. Lawrence Berkeley National Laboratory University of California, Berkeley, Image Processing via the Beltrami Operator? R. Kimmel, 1 R. Malladi, 1 and N. Sochen 2 1 Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720. 2 Electrical Engineering Dept.

More information

Modelling of interfaces and free boundaries

Modelling of interfaces and free boundaries University of Regensburg Regensburg, March 2009 Outline 1 Introduction 2 Obstacle problems 3 Stefan problem 4 Shape optimization Introduction What is a free boundary problem? Solve a partial differential

More information

A variational framework combining level-sets and thresholding.

A variational framework combining level-sets and thresholding. A variational framework combg level-sets and thresholdg. Samuel Dambreville, Marc Niethammer, Anthony Yezzi and Allen Tannenbaum School of Electrical and Computer Engeerg Georgia Institute of Technology

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

Variational Methods in Image Denoising

Variational Methods in Image Denoising Variational Methods in Image Denoising Jamylle Carter Postdoctoral Fellow Mathematical Sciences Research Institute (MSRI) MSRI Workshop for Women in Mathematics: Introduction to Image Analysis 22 January

More information

A Contrario Edge Detection with Edgelets

A Contrario Edge Detection with Edgelets A Contrario Edge Detection with Edgelets Nicolas Widynski, Max Mignotte University of Montreal (Canada) Department of Computer Science and Operations Research (DIRO) ICSIPA 2011 Introduction Context Edge

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT PRASHANT ATHAVALE Abstract. Digital images are can be realized as L 2 (R 2 objects. Noise is introduced in a digital image due to various reasons.

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

CITEC SummerSchool 2013 Learning From Physics to Knowledge Selected Learning Methods

CITEC SummerSchool 2013 Learning From Physics to Knowledge Selected Learning Methods CITEC SummerSchool 23 Learning From Physics to Knowledge Selected Learning Methods Robert Haschke Neuroinformatics Group CITEC, Bielefeld University September, th 23 Robert Haschke (CITEC) Learning From

More information

Convergence Properties of Curvature Scale Space Representations

Convergence Properties of Curvature Scale Space Representations Convergence Properties of Curvature Scale Space Representations Farzin Mokhtarian Department of Electronic and Electrical Engineering University of Surrey Guildford, Surrey GU2 5XH Email: F.Mokhtarian@ee.surrey.ac.uk

More information

Restoration of images with rotated shapes

Restoration of images with rotated shapes Numer Algor (008) 48:49 66 DOI 0.007/s075-008-98-y ORIGINAL PAPER Restoration of images with rotated shapes S. Setzer G. Steidl T. Teuber Received: 6 September 007 / Accepted: 3 January 008 / Published

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information