ECE Digital Image Processing and Introduction to Computer Vision. Outline

Size: px
Start display at page:

Download "ECE Digital Image Processing and Introduction to Computer Vision. Outline"

Transcription

1 ECE Digital mage Processing and ntroduction to Computer Vision Depart. of ECE, NC State University nstructor: Tianfu (Matt) Wu Spring Recap Outline 2. Thinking in the frequency domain Convolution for Linear, Time-nvariant System (LT) Fourier series Fourier transform Convolution theorem 1

2 1. Recap, Linear Spatial Filtering Linear spatial filtering can be defined w.r.t. either convolution or crosscorrelation. t is a matter of preference to chose one vs the other. n the literature, it is likely to encounter the terms, convolution filter, convolution mask or convolution kernel. As a rule, these terms are used to denote a spatial filter, and not necessarily that the filter will be used for true convolution. 2. g[x, y] = 3012 /01. w s, t f[x + s, y + t], as cross-correlation if image origin at left-top = w s, t f[x s, y t], as convolution if image origin at right-bottom (i.e. reverse) / Recap, Unsharp Masking and Highboost Filtering = original smoothed (5x5) detail + α = original detail sharpened Source: S. Lazebnik 2

3 1. Recap a)? = D * B b) A =? *? c) F = D *? d)? = D * D F E G A C B H D Source: D. Hoiem 2. Thinking in the Frequency Domain Motivation : Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts? Gaussian Box filter 3

4 2. Thinking in the Frequency Domain Motivation : Why do we get different, distancedependent interpretations of hybrid images?? Source: D. Hoiem 2. Thinking in the Frequency Domain Motivation : Why does a lower resolution image still make sense to us? What do we lose? Why can we compress an image significantly? mage: mage pyramid Source: D. Hoiem 4

5 2. Thinking in the Frequency Domain Motivation V: How to represent signals in a physically meaningful coordinate system? E.g., Taylor series represents any function using polynomials, Which are unstable and not very physically meaningful Source: S. Narasimhan 2. Thinking in the Frequency Domain Motivation V: How to represent signals in a physically meaningful coordinate system? t is easier to talk about signals in terms of frequencies (i.e., how fast/often signals change, etc.) and decompose them accordingly. 5

6 Convolution t describes the output of a Linear and Time- nvariant (LT) system. (or, Translation-nvariant) f(t) LT g(t) Linearity: 8 c 8 f 8 t = 8 c 8 g 8 t Time-nvariance: f t Δt ==> g(t Δt) Any LT system can be characterized entirely by a single function called the system's impulse response h(t) δ(t) LT h(t) mpulses and Their Sifting Properties mpulses (distributions), if t = 0 δ t = A 0, if t 0, δ t = δ t, F δ t dt = 1, x t δ t = x 0 δ(t) 1 Sifting property: F 1 f(t)δ t dt = f(0), F f(t)δ t t J dt = f(t J ) 1 Similarly, we can define discrete impulses x t is continuous at x = 0 6

7 Convolution t describes the output of a Linear and Time- nvariant (LT) system. (Translation-nvariant) Any LT system can be characterized entirely by a single function called the system's impulse response h(t) f(t) LT h(t) g t = f t h(t) g t = F f τ h t τ dτ 1 F δ t τ h τ dτ 1 = F f t τ h t dτ 1 = F δ τ t h τ dτ 1 = h(t) Convolution Exponential functions are Eigenfunctions of a LT system. Ae 3/ LT h(t) H s Ae 3/ s, A C Background: An eigenfunction is a function for which the output of the operator/system H is a scaled version of the same input function f, Hf = λf, (in the spirit similar to the Eigenvectors of a matrix in linear algebra, Ax = λx) eigenvalues 7

8 Thinking in the Frequency Domain Motivation V: How to represent signals in a physically meaningful coordinate system? t is easier to talk about signals in terms of frequencies (i.e., how fast/often signals change, etc.) and decompose them accordingly. e XY/ LT h(t) H u e XY/ Orthonormal basis functions: {e X8[ \/, k Z} in one periodic interval < T = 2π/u J > < e X8[ \/, e Xe[ \/ > = F e X8[ \/ e Xe[ \/ dt fgh = T, if l = k, 0, otherwise Some Background Complex Numbers c = R + i, R, R, i o = 1 Conjugate: c = R i Similarly, Complex functions F(u) = R(u) + i (u) Geometrically: a point (R, ) in a complex plan spanned by real axis and imaginary axis c = c (cos θ + i sin θ), c = R o + o, θ = arctan /R Euler s Formula using Taylor series expansions: e X{ = 1 + ix + (ix)o 2! + (ix)} 3! + (ix) 4! + = 1 + ix xo 2! ix} 3! + x 4! + cos x = 1 xo 2! + x 4! x x} +, sin x = x 6! 3! + x 5! x 7! + So, e X{ = cos x + i sin x, cos x = c = c e X ˆ Š ˆŒ Š o, sin x = ˆ Š1ˆŒ Š o 8

9 Thinking in the Frequency Domain Can we represent any signals in the coordinate system spanned by e XY/, < u <? f so, we can describe convolution in the new space in a simpler way. e XY/ LT h(t) H u e XY/ Building blocks: Asin(ut + φ) Jean Baptiste Joseph Fourier ( )...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigor. Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies. had crazy idea (1807): Don t believe it? Neither did Lagrange, Laplace, Poisson and other big wigs Laplace Not translated into English until 1878! But it s (mostly) true! called Fourier Series there are some subtle restrictions Lagrange Legendre 9

10 The building block: A sin(ut + φ) Add enough of them to get any signal f(t) you want! A Sum of Sinusoids Frequency Spectra Example : g(t) = sin(2πv t) + (1/3)sin(2π(3v) t) = + Slides: Efros 10

11 Frequency Spectra Frequency Spectra = + = 11

12 Frequency Spectra = + = Frequency Spectra = + = 12

13 Frequency Spectra = + = Frequency Spectra = + = 13

14 Frequency Spectra = A å k= 1 1 sin(2 p kt ) k Frequency Spectra A general trigonometric sum (with amplitude and phase shown explicitly), 0 A sin(2πnt + φ ) For the simplicity in calculation, it is rewritten as 0 a cos 2πnt + b sin(2πnt) f a constant term is included (n = 0, as the DC component) a J 2 + a cos 2πnt + b sin(2πnt) 0 Use complex exponentials, 01 c e Xo /, c C 14

15 Fourier Series For a function f t of a continuous variable t that is periodic with period T, the Fourier series is defined as, Where f t = c = 1 T F 01 c e Xo g / = c [cos 2πn 2πn t + i sin T T t] 01 g/o 1g/o f t e1xo g / dt, n = 0, ±1, ±2, Fourier Transform For a function f t of a continuous variable t, the Fourier transform is defined as, F{f t } = F f t e 1Xo [/ dt F(μ) 1 The inverse Fourier transform, f t = F 1 {F(μ)}, f t = F F μ e Xo [/ dμ 1 Symmetry: F F t = f( μ) 15

16 Fourier Transform Some sufficient conditions for the existence Dirichlet conditions f t dt < 1 f t has finite maxima and minima within any finite interval f t has finite number of discontinuities within any finite interval Square integrable function [f(t)] o dt < 1 Fourier Series and Transform Fourier series: representing and analyzing periodic signals Fourier transform: representing and analyzing nonperiodic signals Connection: Considering nonperiodic phenomena (and thus just about any general function) as a limiting case of periodic phenomena as the period tends to infinity. A discrete set of frequencies in the periodic case becomes a continuum of frequencies in the nonperiodic case, the spectrum is born, and with it comes the most important principle of the subject: Every signal has a spectrum and is determined by its spectrum. You can analyze the signal either in the time (or spatial) domain or in the frequency domain. Recall: The true logic of this world is the calculus of probabilities. J. Maxwell 16

17 Example: box function Fourier spectrum Frequency spectrum Sinc function: sinc m = œ ž Ÿ Ÿ Example: impulse 17

18 Example: Music We think of music in terms of frequencies at different magnitudes Slide: Hoiem Other signals We can also think of all kinds of other signals the same way xkcd.com 18

19 Properties of the Fourier Transform Let f t, g t and h t be functions satisfying the sufficient conditions of the Fourier transform. Denote by F u, F u, and F (u) the Fourier transforms respectively. Linearity h t = af t + bg t F u = af u + bf (u), a, b C Time/Translation shifting h t = f t t J F u = e 1Xo / \Y F u, t J R Frequency/Modulation shifting h t = e 1Xo /Y \f x F u = F u u J, u J R Properties of the Fourier Transform Time Scaling h t = f at F u = 2 F Conjugation Y 2 principle), a R, a 0 (uncertainty h t = f t F u = F u ntegration Differentiation F F 0 = F f t dt 1 u = i2πu F (n) 19

20 Convolution Theorem f t h t = f τ h t τ dτ F f t h t = f τ h t τ dτ e 1Xo [/ dt = F f(τ) F h t τ e 1Xo [/ dt 1 1 = F f τ [F u e 1Xo Y ] dτ 1 = F (u) F f τ e 1Xo Y dτ 1 = F u F (u) f t h t F u F (u) dτ Convolution Theorem Convolution Multiplication Spatial Forward FT Frequency Frequency nverse FT Spatial 20

21 2-D mpulses and Their Sifting Properties mpulses (distributions), if t = z = 0 δ t, z = A 0, otherwise, F F δ t, z dt dz = 1, f t, z δ t, z = f 0,0 δ(t, z) 1 1 Sifting property: F F f(t, z)δ t, z dt dz = f(0,0), 1 1 F F f(t, z)δ t t J, z z J dt dz = f(t J, z J ) 1 1 Similarly, we can define discrete impulses 2-D Fourier Transform For a function f t, z of two continuous variable t and z, the Fourier transform is defined as, F{f t, z } = F F f t, z e 1Xo [/ ª dt dz F(μ, v) 1 1 The inverse Fourier transform, f t, z = F 1 {F(μ, v)}, f t, z = F F F μ, v e Xo [/ ª dμ dv

22 Fourier analysis in images ntensity mage Fourier mage Signals can be composed + = More: 22

23 Summary Thinking in the frequency domain Convolution for Linear, Time-nvariant System (LT) Fourier series Fourier transform Convolution theorem 23

Filtering, Frequency, and Edges

Filtering, Frequency, and Edges CS450: Introduction to Computer Vision Filtering, Frequency, and Edges Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC),

More information

Slow mo guys Saccades. https://youtu.be/fmg9zohesgq?t=4s

Slow mo guys Saccades. https://youtu.be/fmg9zohesgq?t=4s Slow mo guys Saccades https://youtu.be/fmg9zohesgq?t=4s Thinking in Frequency Computer Vision James Hays Slides: Hoiem, Efros, and others Recap of Wednesday Linear filtering is dot product at each position

More information

Thinking in Frequency

Thinking in Frequency 09/05/17 Thinking in Frequency Computational Photography University of Illinois Derek Hoiem Administrative Matlab/linear algebra tutorial tomorrow, planned for 6:30pm Probably 1214 DCL (will send confirmation

More information

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping Recap of Monday Linear filtering h[ m, n] k, l f [ k, l] I[ m Not a matrix multiplication Sum over Hadamard product k, n l] Can smooth, sharpen, translate (among many other uses) 1 1 1 1 1 1 1 1 1 Be aware

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 8- Linear Filters From Spatial Domain to Frequency Domain Mani Golparvar-Fard Department of Civil and Environmental Engineering 329D,

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017 Image Processing 2 Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 This week What is an image? What is image processing? Point processing Linear (Spatial) filters Frequency domain Deep

More information

The Frequency Domain, without tears. Many slides borrowed from Steve Seitz

The Frequency Domain, without tears. Many slides borrowed from Steve Seitz The Frequency Domain, without tears Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2016

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

CSCI 1290: Comp Photo

CSCI 1290: Comp Photo CSCI 1290: Comp Photo Fall 2018 @ Brown University James Tompkin Many slides thanks to James Hays old CS 129 course, along with all of its acknowledgements. Capture Frequency - Rolling `Shutter James

More information

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz The Frequency Domain 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Somewhere in Cinque Terre, May 2005 Many slides borrowed from Steve Seitz Salvador Dali Gala Contemplating the Mediterranean

More information

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform CS 4495 Computer Vision Frequency and Fourier Transforms Aaron Bobick School of Interactive Computing Administrivia Project 1 is (still) on line get started now! Readings for this week: FP Chapter 4 (which

More information

Intelligent Visual Prosthesis

Intelligent Visual Prosthesis Orientation sensor (IMU) Intelligent Visual Prosthesis Depth image-based obstacle detection Depth camera Wideangle RGB camera Simultaneous object recognition, localization, and hand tracking New projects:

More information

Why does a lower resolution image still make sense to us? What do we lose? Image:

Why does a lower resolution image still make sense to us? What do we lose? Image: 2D FREQUENCY DOMAIN The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Image Filtering, Edges and Image Representation

Image Filtering, Edges and Image Representation Image Filtering, Edges and Image Representation Capturing what s important Req reading: Chapter 7, 9 F&P Adelson, Simoncelli and Freeman (handout online) Opt reading: Horn 7 & 8 FP 8 February 19, 8 A nice

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

The Frequency Domain. Many slides borrowed from Steve Seitz

The Frequency Domain. Many slides borrowed from Steve Seitz The Frequency Domain Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Salvador Dali Gala Contemplating the Mediterranean

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Filtering in the Frequency Domain

Filtering in the Frequency Domain Filtering in the Frequency Domain Outline Fourier Transform Filtering in Fourier Transform Domain 2/20/2014 2 Fourier Series and Fourier Transform: History Jean Baptiste Joseph Fourier, French mathematician

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 3 (part 2) Overview of today s lecture Some history. Fourier series. Frequency domain. Fourier

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

Lecture # 06. Image Processing in Frequency Domain

Lecture # 06. Image Processing in Frequency Domain Digital Image Processing CP-7008 Lecture # 06 Image Processing in Frequency Domain Fall 2011 Outline Fourier Transform Relationship with Image Processing CP-7008: Digital Image Processing Lecture # 6 2

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 11 Oct 3 rd, 2017 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review: 2D Discrete Fourier Transform If I is an image of size N then Sin

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

The Fourier series are applicable to periodic signals. They were discovered by the

The Fourier series are applicable to periodic signals. They were discovered by the 3.1 Fourier Series The Fourier series are applicable to periodic signals. They were discovered by the famous French mathematician Joseph Fourier in 1807. By using the Fourier series, a periodic signal

More information

Review of Linear System Theory

Review of Linear System Theory Review of Linear System Theory The following is a (very) brief review of linear system theory and Fourier analysis. I work primarily with discrete signals. I assume the reader is familiar with linear algebra

More information

Computational Data Analysis!

Computational Data Analysis! 12.714 Computational Data Analysis! Alan Chave (alan@whoi.edu)! Thomas Herring (tah@mit.edu),! http://geoweb.mit.edu/~tah/12.714! Concentration Problem:! Today s class! Signals that are near time and band

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Frequency Filtering CSC 767

Frequency Filtering CSC 767 Frequency Filtering CSC 767 Outline Fourier transform and frequency domain Frequency view of filtering Hybrid images Sampling Slide: Hoiem Why does the Gaussian give a nice smooth image, but the square

More information

3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 65 66 3 Fourier Series Representation of Periodic Signals Fourier (or frequency domain) analysis constitutes a tool of great usefulness Accomplishes decomposition of broad classes of signals using complex

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Fourier transform. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Fourier transform Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 27 28 Function transforms Sometimes, operating on a class of functions

More information

ECE Digital Image Processing and Introduction to Computer Vision

ECE Digital Image Processing and Introduction to Computer Vision ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 Outline Recap, image degradation / restoration Template

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

Fourier Series. Spectral Analysis of Periodic Signals

Fourier Series. Spectral Analysis of Periodic Signals Fourier Series. Spectral Analysis of Periodic Signals he response of continuous-time linear invariant systems to the complex exponential with unitary magnitude response of a continuous-time LI system at

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 6 Course announcements Last call for responses to Doodle

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes Convergence 3.4 Introduction In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen that a Fourier series can be found for functions which are not necessarily

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Recap: edge detection. Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei Canny edge detector 1. Filter image with x, y derivatives of Gaussian 2. Find magnitude and orientation of gradient 3. Non-maximum suppression: Thin multi-pixel

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology. Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

More information

Lecture 1 January 5, 2016

Lecture 1 January 5, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture January 5, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long; Edited by E. Candes & E. Bates Outline

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform Computer Vision & Digital Image Processing Fourier Transform Properties, the Laplacian, Convolution and Correlation Dr. D. J. Jackson Lecture 9- Periodicity of the Fourier transform The discrete Fourier

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

6 The Fourier transform

6 The Fourier transform 6 The Fourier transform In this presentation we assume that the reader is already familiar with the Fourier transform. This means that we will not make a complete overview of its properties and applications.

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Fourier Analysis and Power Spectral Density

Fourier Analysis and Power Spectral Density Chapter 4 Fourier Analysis and Power Spectral Density 4. Fourier Series and ransforms Recall Fourier series for periodic functions for x(t + ) = x(t), where x(t) = 2 a + a = 2 a n = 2 b n = 2 n= a n cos

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

Time and Spatial Series and Transforms

Time and Spatial Series and Transforms Time and Spatial Series and Transforms Z- and Fourier transforms Gibbs' phenomenon Transforms and linear algebra Wavelet transforms Reading: Sheriff and Geldart, Chapter 15 Z-Transform Consider a digitized

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform David Hilbert 1 ABSTRACT: In this presentation, the basic theoretical background of the Hilbert Transform is introduced. Using this transform, normal real-valued time domain functions

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Chapter 17: Fourier Series

Chapter 17: Fourier Series Section A Introduction to Fourier Series By the end of this section you will be able to recognise periodic functions sketch periodic functions determine the period of the given function Why are Fourier

More information

Representing a Signal

Representing a Signal The Fourier Series Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity and timeinvariance of the system and represents the

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

ECE 425. Image Science and Engineering

ECE 425. Image Science and Engineering ECE 425 Image Science and Engineering Spring Semester 2000 Course Notes Robert A. Schowengerdt schowengerdt@ece.arizona.edu (520) 62-2706 (voice), (520) 62-8076 (fa) ECE402 DEFINITIONS 2 Image science

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes

06EC44-Signals and System Chapter Fourier Representation for four Signal Classes Chapter 5.1 Fourier Representation for four Signal Classes 5.1.1Mathematical Development of Fourier Transform If the period is stretched without limit, the periodic signal no longer remains periodic but

More information

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Joseph Fourier (1768-1830) upon returning from Egypt in 1801 was appointed by Napoleon Prefect of the Department of Isères (where Grenoble

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 3th, 28 From separation of variables, we move to linear algebra Roughly speaking, this is the study of

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College

Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College Dr. David A. Clifton Group Leader Computational Health Informatics (CHI) Lab Lecturer in Engineering Science, Balliol College 1. Introduction to Fourier analysis, the Fourier series 2. Sampling and Aliasing

More information

01 Harmonic Oscillations

01 Harmonic Oscillations Utah State University DigitalCommons@USU Foundations of Wave Phenomena Library Digital Monographs 8-2014 01 Harmonic Oscillations Charles G. Torre Department of Physics, Utah State University, Charles.Torre@usu.edu

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

JUHA KINNUNEN. Partial Differential Equations

JUHA KINNUNEN. Partial Differential Equations JUHA KINNUNEN Partial Differential Equations Department of Mathematics and Systems Analysis, Aalto University 207 Contents INTRODUCTION 2 FOURIER SERIES AND PDES 5 2. Periodic functions*.............................

More information

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10)

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) What we have seen in the previous lectures, is first

More information

The Laplace Transform

The Laplace Transform C H A P T E R 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive forcing terms. For such problems the methods described

More information