Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle

Size: px
Start display at page:

Download "Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle"

Transcription

1 Qutu Mechcs Hoework Solutos.5 (pge 6) Show tht the z copoet of gulr oetu for pot prtcle Lz p p whe epressed sphercl coordtes becoes Lz p r s. rcoss rss r(cos s ) r( s ) s r cos cos r(s s ) r(cos ) s r s cos p p r cos s r(s s ) r(cos ) s r s cos r r s s r(cos s ) r( s ) s r cos cos (cos ) s (s ) s r s pr L.7 (p 8) Show tht the eerg of free prtcle be wrtte H r where L r p. Ht: Use the vector relto L r p r p r p defto p r p r. r together wth the Strt wth the Hlto for free prtcle sphercl coordtes: p ˆ r r p r p r p rpr r p H v L L r p r p r p r p r pr p p r r L p p r r pr L H r.8 (p 8) Show tht gulr oetu of free prtcle obes the relto p L L L Lz p. s of 3

2 Qutu Mechcs Hoework Solutos pr L H (fro lst proble) r pr p p H (fro book) r r s L p p p subtrct L p r r r s s. (p. 6) Use the epresso e cos s to derve the followg reltos: e cos s e e cos s cos s e cos s e e cos s cos s e cos s cos s ) cos cos cos s s (fro rel prt ) b) s cos s s cos (fro gr prt ) c) s s s cos (fro I +I ) d) cos cos cos cos (fro Re +Re ) e) cos cos s s (fro Re -Re ) f) cos cos (fro Re ) g) s cos (fro f wth dett s +cos =) h) e e s / / e e e cos s s cos s cos s cos s cos s e s cos s s e ) e e e e e e cos e e e e e e e e e e cos s s cos of 3

3 Qutu Mechcs Hoework Solutos j) Re z z z z e e e cos s cos s cos Re z k) I z z z e e cos s cos s s I z l) e z e z ep(cos s ) ep(cos s ) ep( e ) e ) ep z ep Re z z z z z zz Re z e e e e e e ) e, e, e,... e e cos 4 where,,,... s s s s s 5 9 cos cos cos cos 4 e e e debrogle p E 4.3 (pge 5) Show tht the de Brogle wvelegth of electro of ketc eerg E (ev) s e c d tht of proto s p c. E E h debrogle p p evs3 s h p h E h h c E E where rest ss ev evs3 cs evs3 cs E z 7.7 c e E 6.5 ev 9.86 c ev E E E 3 of 3

4 Qutu Mechcs Hoework Solutos Gve proof tht the Hlto d the ler oetu opertors for free prtcle hve coo egefuctos. Ths proof shows tht the cotrr ssupto leds to cotrdcto. Let be the egefucto of the Hlto opertor d be the egefucto of the ler oetu opertor. Opertor Egevlus for Free Prtcle Egevlue equto Soluto Egefucto Hlto Ler Moetu Hˆ pˆ k E p k Hˆ E pˆ p k k k k k k( k) k Ae k Be k Ce De k k Cobg the egefuctos both = -k : costt Show the costt s equl to, b substtutg the egefuctos d ther dervtves: kace k kbde k 4 of 3 kad kbc Itegrte to get l( ) l( ) costt. Ths s costt. Therefore d represet the se stte vector ccordg to the sttstcl terpretto of the wvefucto.

5 Qutu Mechcs Hoework Solutos 3.6 Estblsh the followg propertes of (): () () = (-) ()= whe d whe =, =- therefore () = (-) Note: Ths s lso see fro the setr the delt fucto plot. Ths s specl cse of prt (d), whch tur s specl cse of prt (). I prt (d), settg = -, () = (-) = - () = () (b) () = -'(-) () = -'() () = '() () = '() () = '() d d df f ( )( ) '( ) d ( f ) d ( f) d ( f ) d f ( ) d d d d therefore: () = '() d () = -'() ( c) () = whe =, () = whe, () =, so () = (d) ()= - () let = the d=d d d d Sce () = (-) f <, d 5 of 3 d

6 Qutu Mechcs Hoework Solutos (e) ( - )= - [(-) + (+)] For the LHS, let = - = (-)(+). = t two plces d d = d Note: fctor of fro the two roots. d d d For the RHS: d d d d d d d (f ) b d b let f() = (-) the use f b bd f ( b b ) (g) f()(-) = f()(-) f d f f ( ) f ( ) d d therefore f f d f (b) 6 of 3

7 Qutu Mechcs Hoework Solutos (h) () = -() f d d d d d f d f d f d f d Ths estblshes df d 3.7 Show tht the followg re vld represettos of (): () e k d use the Fourer Trsfor defto of the drc fucto substtute k = f (b) l s d s d s d f ; f ; - f so s d for d 7 of 3

8 Qutu Mechcs Hoework Solutos 3. Clculte the ucertt Δp for prtcle the stte ψ gve b (3.37). Do ou fd our swer to be cosstet wth the ucertt prcple? (I ths proble oe ust clculte ˆp. The opertor: pˆ.) ˆ p p p ˆ p p p Usg equtos 3.37, 3.38, d 3.39 ( ) p (, t) Aep ep ep( t) 4 A troduce du vrbles d ( ) ( ) Doe book, equto (3.44) ˆ p p d d A p e d p A e d p A p Now fd <p > 8 of 3

9 Qutu Mechcs Hoework Solutos p pp ˆˆ d d ( ) p d ( ) p Aep ep ep( t) d 4 ( ) p ep( t) Aep ep 4 d ( ) p ( ) p Aep( t) ep ep d 4 d ( ) p d ( ) p ( ) p d ( ) p d ( ) p ( ) A ep d ( ) p ( ) p ( ) A ep d 3 p A 3 p A p 4 p 4 p p p p p p 4 p p p p p 4 p Ths s cosstet wth Heseberg s ucertt prcple. 9 of 3

10 Qutu Mechcs Hoework Solutos 4. Wht re the eerg egefuctos d egevlues for the oe-desol bo proble descrbed bove f the eds of the bo re t / d +/? [Check ou swer wth (6.).] ˆ for or H ˆ for - H boudr codtos fro regos outsde the well re: Hˆ E As k B cos k As k B cos k - - As k B cos k As k B cos k repetg As k B cos k - - As k B cos k As k B cos k where k E k k s k s k s k whe,4,6,... cos k cos k cos k whe,3,5,... k E E k whe,3,5,... of 3

11 Qutu Mechcs Hoework Solutos Fd the pltude of the eerg egefucto b orlzto / / / / / / B d B cos d B cos d B The soluto looks lke ths: / / / d B cos d B cos d / / / tegrl over cos s zero, tegrte B The eerg egefuctos re: / / d cos where,3,5,... slrl, b orlzg to get A, s wth (4.3) book: s where,4,6,... The eerg egevlues re: E k of 3

12 Qutu Mechcs Hoework Solutos ˆ ˆ 4.(b) Show tht AB B A Defto of hert djot O of O: ˆ O Oˆ ˆ ˆ ˆ AB ˆ ˆ AB ˆ ˆ ˆ Show tht AB ˆ ˆ Bˆ Aˆ to prove tht AB ˆ ˆ Bˆ Aˆ I Drc Notto: I Itegrl Notto: AB ˆ ˆ d ˆ A Bˆ ˆ ˆ BA AB ˆ ˆ d ˆ A Bˆ d ˆ ˆ BA d 4.4. If  s Hert, show tht A s rel; tht s, show tht A A. AB Hert opertors: If  s Hert, the A ˆ A ˆ. Ths proof uses, fro the defto of er products: A ˆ d ˆ d ( ˆ ) d ( ˆ A A ) d A A ˆ ˆ ˆ ( A) d sce A A A Aother proof: Strt wth the defto of Hert opertor: O ˆ ( ) ( ) ( ) ˆ d O d O( ) O ˆ ( ) ( ) ( ) ˆ d O d O ( ) B A d the propert of of 3

13 Qutu Mechcs Hoework Solutos 4.7. Cosder the opertor Ĉ, ˆ ( ) C ( ) ( ) Is Ĉ Hert? Ths proof shows tht the cotrr ssupto leds to cotrdcto. Strt wth defto of Hert opertor. A opertor s Hert f d ol f: ( ) ˆ ( ) d O d ( ) Oˆ ( ) ˆ C d ( ) ( ) d ( ) ( ) ˆ C d ( ) ( ) d ( ) ( ) d ( ) ( ) sce d ( ) ( ) d ( ) ( ) ˆ ( ) ( ) ( ) ˆ d C d C ( ) Cˆ s ot Hert ( b) Wht re the egefuctos of Ĉ? ( c) Wht re the egevlues of Ĉ? ˆ ( ) ( ) C Cˆ ( ) c( ) c( ) ( ) ˆ ˆ ˆ ˆ C ( ) CC( ) C ( ) ( ) ˆ ( ) c ( ) C c c sce c( ) ( ) f ( ) Re( ), the c f ( ) I( ), the c where cople fucto Hlbert Spce. 3 of 3

14 Qutu Mechcs Hoework Solutos (I Clss) Prove tht the egefuctos of Hert opertor re orthogol to ech other. Show tht the sclr product of two dfferet egefuctos s zero. Strt wth the defto of Hert opertor: ˆ ( ) ( ) ( ) ˆ d O d O( ) therefore Ad the egevlue equtos: ˆ ( ) ( ) ( ) ˆ d O d O( ) ˆ ( ) ( ) ( ) ˆ d O d O( ) ˆ ˆ O O d ( ) ( ) d ( ) ( ) d ( ) O ( ) d O ( ) ( ) d ( ) O ( ) [ O O ] d ( ) ( ) [ O O ] d ( ) ( ) ˆ ( ) ( ) ( ) ˆ d O d O( ) d O ( ) ( ) Oˆ ( ) O ( ) d Oˆ ( ) O ( ) 4 of 3

15 Qutu Mechcs Hoework Solutos 5.. If Aˆ, Bˆ, d Cˆ re three dstct opertors, show tht: () ˆ ˆ, ˆ ˆ, ˆ ˆ, ˆ A B C A C B C ˆ ˆ, ˆ ˆ ˆ ˆ ˆ ˆ ˆ A B C A B C C A B AC ˆ ˆ BC ˆ ˆ CA ˆ ˆ CB ˆ ˆ AC ˆˆCA ˆ ˆ BC ˆ ˆ CB ˆ ˆ ˆ, ˆ ˆ, ˆ A C B C ( b) ˆ ˆ, ˆ ˆ ˆ, ˆ ˆ, ˆ ˆ AB C A B C A C B Aˆ ˆ, ˆ ˆ, ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ˆ B C A C B A BC CB AC CA B AB ˆ ˆ Cˆ ACB ˆ ˆ ˆ ACB ˆ ˆ ˆ CAB ˆ ˆ ˆ ABC ˆ ˆ ˆ CAB ˆ ˆ ˆ ˆ ˆ, ˆ AB C 5.3. If  d ˆB re both Hert, show tht AB ˆ ˆ s Hert f ˆ, ˆ AB. Usg AB ˆ ˆ = ˆBA ˆ becuse the coute. ˆ ˆ ˆ ˆ If A A d B B : ˆ ˆ ˆ ABˆ Bˆ A BA ˆ If AB ˆ ˆ BA ˆ ˆ AB ˆ ˆ AB ˆ ˆ AB ˆ ˆ s Hert f AB ˆ ˆ BA ˆ ˆ whch s true f ˆ, ˆ A B. 5 of 3

16 Qutu Mechcs Hoework Solutos 6.6 ( ) Show tht ˆ tcoutes wth the oetu opertor pˆ. Ths s, show tht: ˆ, pˆ ˆ pˆ pˆ ˆ Fro the defto of the Prt opertor: ( ) ( ) Show tht: ˆ pˆ pˆ ˆ ˆ pˆ ˆ pˆ ˆ ˆ ˆ ˆ pˆ ( ) ( ) ˆ ( ) ˆ ( ) ( ) pˆ ˆ ( ) ˆ ( ) ˆ pˆ ( ) pˆ ˆ ( ) d ˆ pˆ pˆ ˆ ˆ ( b) Use our swer to prt ( ) to show tht ˆ coutes wth the ketc eerg ˆ opertor ˆ p T. The fctor / s ot portt, just show tht ˆ, pˆ ˆ ˆ ˆ, pˆ pp ˆ ˆ pp ˆ ˆ ˆ pp ˆ ˆ pˆ ( pˆ ˆ) ˆ pˆ pˆ pˆ ˆ pˆ ( pˆ ˆ) pˆ pˆ ˆ pˆ pˆ ˆ pˆ pˆ ˆ pˆ 6 of 3

17 Qutu Mechcs Hoework Solutos Prove the Cuch-Schwrtz Ieqult (fro Dr. She s otes ) vector legth d d d d d d d Here s the trck: = d = Substtute: Prove the Robertso-Schrödger relto: Aˆ d Bˆ re Heret opertors. ˆ ˆ ˆ A, B C Prove tht A B 4 C A A B B B A B A B A 4 4 B A B A B A B A 4 4 B A A B 4 AB BA 4 ( AB BA) 4 A, B 4 C 4 A B A, B A A B B C 7 of 3

18 Qutu Mechcs Hoework Solutos 5.8 (p 43) The TDSE perts the detfcto E t. Usg ths detfcto together wth the rule (5.95), gve forl dervto of the ucertt relto Et. Note tht the sttor stte (egestte H), E. The plcto for ths cse s tht sttor stte lst deftel. Fro the Robertso-Schrodger Equto: E t 4 E, t Et 4 E, t t t t t E, tg tg t g g t g t g g t t t t E, t E t 6... (pge 65) Fd ( t, ) d PE t t, relevt to prtcle oedesol bo wth wlls t (,) for ech of the followg sttes., A s 3 cos () Fd orlzto fctor: d A d A, s 3 cos (fro wolfr tegrtor) 4 A Now fd te depedece: Ht, t e, Ht, t e,,, t e c c Ht Ht Ht E t, t c e c e c e, c c c d, 8 of 3

19 Qutu Mechcs Hoework Solutos s 3 cos 4 4 c d 4 4 E Et, t e s 3 cos d 6. (p 7) Show tht dt A sttor stte, provded A t, usg couttor relto (6.68). d A dt H, A HA AH H A AH E A A 9 of 3

20 Qutu Mechcs Hoework Solutos 7.4 (pge 98) The dervto the tet of the egevlues of ˆN s bsed o the costrt tht there re o sttes correspodg to the egevlues of < -½. Ths costrt ws gurteed b settg ˆ. It would pper tht t c lso be gurteed b settg ˆ for the cse: ˆ Show tht for s defed s egefucto of ˆN wth the egevlue zero; hece s ore properl tered. ˆ ˆ ˆ ˆ Nˆ ˆ ˆ ˆ ˆ 7.5 (pge 98) Usg the fudetl couttor relto ˆ, pˆ ˆˆ,. of 3 show tht ˆ ˆ ˆ pˆ ˆ pˆ ˆ pˆ pˆ ˆ,,,, 7.8 (pge 7) Show drectl fro the for of gve b (7.57) A e tht ˆ ˆ ( ) e e A A A where ˆ s the prt opertor. e

21 Qutu Mechcs Hoework Solutos 7.9 (pge 7) () Show tht the orlzed th egestte s geerted fro the orlzed groud stte ˆ through ˆ ˆ ˆ ˆ. ˆ ˆ ˆ ˆ! ˆ! (b) Show tht prt () ples the followg reltos:!! ˆ ˆ ˆ! ˆ ˆ!ˆ ˆ! ˆ! ˆ ˆ of 3

22 Qutu Mechcs Hoework Solutos 7. (pge 7) Show tht the th egestte of the hroc osclltor, the verge ketc eerg <T> s equl to the verge potetl eerg <V> - the vrl theore. Tht s, V T p E k Usg: d Ad: of 3 k For the Potetl Eerg: V Vˆ k k 4 k 4 k 4 k ( ) k ( ) Tˆ p 4 4 ( ) For the Ketc Eerg: T V 4 ( ) ( ) ( ) T p

23 Qutu Mechcs Hoework Solutos 7.34 (pge ) Show tht the curret dest J be wrtte J ˆ ˆ p p where ˆp s the oetu opertor. Show tht t s equvlet to equto 7.7: J Here s the th: pˆ pˆ pˆ pˆ pˆ pˆ J ths s equto (pge ) Show tht for oe-desol wvefucto of the for [where t, s rel], t Aep, t J A., Strt wth equto 7.7: J J J, t Aep, t, t, t, t, t A e Ae Ae A e A e e e e A e e A A e e 3 of 3

24 Qutu Mechcs Hoework Solutos 8.34 (pge 33) Costruct the egesttes d egeeerges of prtcle twodesol rectgulr bo of edge legths d. Tke the org to be t the corer of the rectgle. Accout geoetrcll for the reovl of ost of the degeerc preset the cse of the squre, two-desol bo descrbed prevousl. The degeerc preset for ths cofgurto (e.g., the eerg 5E s doubl degeerte) s soetes cll ccdetl degeerc, tht t s ether echge- or setrdegeerte. E E, s s E E E s E E E Degeerc = +(/) (/) For =squre_root( ) - Ol survvor: (/) Double degeerc t 5E wth,=(4,3) d (3,4). Degeerc occurs t Pthgore trples (pge 36) Wht s the order of degeerc of the egestte E s the two-desol hroc osclltor? S of The degeerc equls the uber of ws of wrtg teger s s the ordered su of two whole teger ubers (strtg t ). There re (s+) ws to do ths. 4 of 3

25 Qutu Mechcs Hoework Solutos 8.36 (pge 36) () Wrte dow the Hltos, egeeerges, d egesttes for two-desol hroc osclltor wth dstct sprg costts K d K. V()= K /= / where = K / d V()= K /= / where = K / The Hlto for ths -D hroc osclltor: H H H p K p K p p The Schroedger Equto s: Seprto of vrbles c be used to epress s: (,, z) X ( ) Y ( ) E X ( ) Y ( ) X ( ) Y ( ) Y ( ) X ( ) X ( ) Y ( ) X ( ) Y ( ) X ( ) Y ( ) ( ) ( ) X( ) X ( ) Y( ) Y ( ) X ( ) Y ( ) EX ( ) Y ( ) X Y Ech vrble s -D Hroc osclltor Defe:, E E E E E d E The egesttes d egeeerges of the Hltos H d H re: k X A e E ( ) H ( ),,,3, k Y A e E ( ) ( ),,,3, H th Where H re the order Herte polols d A re the orlzto costts. The totl egestte s d egeeerg s: (, ) A H ( ) H ( ) e E E E where,,,,3, ( ) 5 of 3

26 Qutu Mechcs Hoework Solutos (b) If K=4K show tht the egeeerges be 3 correspods to oto d wrtte: E where oto. The egeeerges of the Hltos H d H re: to k k 4k k E,,,3,,,,3, 3 E E E E where +,,,,3, ( c) For prt (b), wht s the order of degeerc of E,3? Lst the correspodg egesttes. Accout for the bsece of setr degeerc og these sttes. +,,,,3, =+6+=9 How ws c we get =9? There re 5 dfferet ws to get =9. The bsece of setr degeerc rses becuse of the fctor of o. 6 of 3

27 Qutu Mechcs Hoework Solutos Proble to solve. Wht s the groud stte eerg for ech of the followg -Prtcle sstes?.) H, deutero d electro.) He +, sgle ozed Helu to 3.) Postrou, boud postro d electro 4.) Ecto, wth ε= (delectrc costt) gore CM sste ' k E Z,,, M N C 9.9 kg.6 C e ev N s.6 J ev e =9.9-3 kg p = kg = kg Z ' Z 4 e 4 kg ev ' E ev Z + p e 9.65e p e 9.65e e e e e e e of 3

28 Qutu Mechcs Hoework Solutos 9.5 p 365 Show tht the frequeces of photos due to eerg decs betwee successve levels of rottor wth oet of ert I re gve b l or l ˆ ˆ L H I ˆ ˆ L,, ( ), l, H l l l l l E l I I ˆ ˆ L,, ( ), l, H l l l l l E l I I ˆ ˆ L,, ( )( ), l,. H l l l l l E l I I E El El l( l ) l( l ) l l I I I I E El El ( l )( l ) l( l ) l l I I I I 9.6 p 365 A HCl olecule rotte s well s vbrte. Dscuss the dfferece esso frequeces ssocted wth these two odes of ectto. Assue tht ol lltrstos betwee rottol sttes re llowed. Assue the se for vbrtol levels. For rottol levels ssue l 5. Sprg costt d oet of ert be ferred fro the equvlet teperture vlues for HCl: kb 45 K; IkB 5.K Hˆ rottol l l5 ˆ L I Erottol El El l ~ kb (5. K) l ()(5.)( K) ev/k=.6 ev I Erottol El El l ~ kb (5. K) (5)(5.)( K) ev/k=.3 ev I E vbrtol E E E 45K eV/K=.36eV vbrtol l l The vbrtol eerg s orders of gtude lrger th the lowest rottol sttes, but roud rottol sttes t l=5 t s ol 3 eerg. I I 8 of 3

29 Qutu Mechcs Hoework Solutos 9.3 (pge 385) Assue tht prtcle hs orbtl gulr oetu wth z ll. copoet d squre gtude () Show tht ths stte L L. L l, Lˆ l, l, Lˆ l, l, Lˆ l, l l l, l, l l l, l, L l, Lˆ l, l, Lˆ l, l, Lˆ l, l l l, l, l l l, l, (b) Show tht L L. Lˆ L L L L L L L L L L 4 Lˆ L L L L L L L L L L L L L L L L 4 4 Lˆ Lˆ L L Lˆ Lˆ Lˆ Lˆ Lˆ Lˆ Lˆ Lˆ z z L l, Lˆ l, l, Lˆ Lˆ l, l l l, l, z 9.4 (p 385) The se codtos hold s Proble 9.3. Wht s the epectto of the opertor LL LL the Y l? LL LL L L L L L L L L L L L L L L L L L L L L L L L L L L LL 4 L L 4 L L Yl Y L L L L Y Y l l l Y L c Y Y L d Y l 4 l, l l 4 l, l Y c c Y Y d d Y l 4 l, l, l l 4 l, l, l c c Y Y d 4 l, l, l l 4 l, dl, Yl Y l 9 of 3

30 Qutu Mechcs Hoework Solutos.6 (p 43) The curret vector J ssocted wth wvefucto rt, 7.7: J. J. p correspodg to the egevlue of k? The wvefucto be tered source-free f () Wht s the egefucto of ˆ r pˆ r r r r pˆ k r k k rk kk r r rk k r r k e e A k r r r kr kr Et / krt A k A e e (b) Clculte J for ths egefucto. s gve b A A A A J e e e e r r r r A krt A krt A krt e r e kr e r r r r r r r A krt krt Ak krt k e kr ke e r r A krt A krt A krt e r e kr e r r r r r r r A krt krt Ak krt k e kr ke e r r A krt Ak krt A krt Ak J e e e e r r r r k A r kr t kr t kr t kr t krt 3 of 3

31 Qutu Mechcs Hoework Solutos.45 p 55 () For sp correspodg to s=/, show tht the egevectors S d S re: Obes the egevlues equtos for s=/. S z S z (b) Wht re the egevlues correspodg to these egevectors? S S S S ( c) Show tht the egevectors coprse two sets of orthoorl vectors. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 of 3

24 Concept of wave function. x 2. Ae is finite everywhere in space.

24 Concept of wave function. x 2. Ae is finite everywhere in space. 4 Cocept of wve fucto Chpter Cocept of Wve Fucto. Itroucto : There s lwys qutty sscocte wth y type of wves, whch vres peroclly wth spce te. I wter wves, the qutty tht vres peroclly s the heght of the wter

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER- WAVEFUNCTIONS, OBSERVABLES d OPERATORS. Represettos the sptl d mometum spces..a Represetto of the wvefucto the sptl coordtes

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS ITS-FT-II Pper-)-PCM-Sol-JEEdvced)/7 I JEE dvced 6, FIITJEE Studets bg 6 Top IR, 75 Top IR, 8 Top 5 IR. 5 Studets from Log Term Clssroom/ Itegrted School Progrm & Studets from ll Progrms hve qulfed JEE

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettos the sptl d mometum spces 0..A Represetto of the wefucto the sptl

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS Pweł Pędzch Jerzy Blcerz Wrsw Uversty of Techology Fculty of Geodesy d Crtogrphy Astrct Usully to pproto of

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Postulates of quantum mechanics

Postulates of quantum mechanics Postultes of qutum mechics P1. The stte of qutum mechicl sstem is completel specified b wvefuctio Ψ(q,t) P. For ever mesurble propert of the sstem, there eists correspodig opertor i QM (mesuremet i the

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

St John s College. UPPER V Mathematics: Paper II. Learning Outcomes 3 and 4. Examiner: SLS / BH Marks: 150 Moderator: DG

St John s College. UPPER V Mathematics: Paper II. Learning Outcomes 3 and 4. Examiner: SLS / BH Marks: 150 Moderator: DG St Joh s College St Joh s College UPPER V Mthemtcs: Pper II Lerg Outcomes 3 d 4 ugust 00 Tme: 3 hours Emer: SLS / BH Mrks: 50 Modertor: DG PLESE RED THE FOLLOWING INSTRUCTIONS CREFULLY. Ths questo pper

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information