TN recent years, various multi-species logarithmic population

Size: px
Start display at page:

Download "TN recent years, various multi-species logarithmic population"

Transcription

1 Th Study on Almot Priodic Solution for A Nutral Multi-pci Logarithmic Population Modl With Fdback Control By Matrix, Spctral Thory Changjin Xu, and Yun Wu Abtract In thi papr, a nutral multi-pci logarithmic population modl i invtigatd. By applying th matrix, pctral thory which i diffrnt from th mthod mployd in th litratur, a t of ufficint condition ar obtaind for th xitnc and uniqun of almot priodic olution of th nutral multi-pci logarithmic population modl. Th obtaind ufficint condition ar givn in trm of pctral radiu of xplicit matric which ar much diffrnt from tho by th algbraic inqualiti. An xampl i givn to illutrat th faibility and ffctivn of th obtaind rult. Th rult of thi papr ar compltly nw and gnraliz tho of th prviou tudi. Indx Trm Nicholon-typ ytm, poitiv olution, xponntial tability, dlay, Lyapunov mthod. I. INTRODUCTION TN rcnt yar, variou multi-pci logarithmic population modl hav bn xtnivly invtigatd by many cholar du to thir thortical and practical ignificanc in biology. Gopalamy 1 and Kirlingr 2 propod th following ingl pci logarithmic modl = N(t)a b ln N(t) c ln N(t τ). (1) In 1997, Li 3 gnralizd ytm (1) to th following nonautonomou form = N(t)a(t)b(t) ln N(t)c(t) ln N(tτ(t)). (2) Applying th coincidnc dgr thory, Li 3 tablihd om ufficint condition for th xitnc of poitiv priodic olution of ytm (2). In 23, Chn t al. 4 gnralizd ytm (2) to th ytm with tat dpndnt dlay and invtigatd th xitnc of poitiv priodic olution of th ytm. In 5, Liu propod th following Manucript rcivd Novmbr 6, 214; rvid Jun 17, 215. Thi work wa upportd in part by th Thi work i upportd by National Natural Scinc Foundation of China(No , No ), Natural Scinc and Tchnology Foundation of Guizhou Provinc(J215225) and 125 Spcial Major Scinc and Tchnology of Dpartmnt of Education of Guizhou Provinc (21211). C. Xu i with th Dpartmnt of Guizhou Ky Laboratory of Economic Sytm Simulation, Guizhou Univrity of Financ and Economic, Guiyang 554, PR China -mail: xcj43@126.com. Y. Wu i with chool of Mathmatic and Statitic, Hnan Univrity of Scinc and Tchnology, Luoyang 47123, PR China, -mail: wuyun621@126.com multipci priodic logarithmic population modl = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)). (3) Applying th coincidnc dgr thory and contructing Lyapunov functional, a t of ufficint condition which guarant th xitnc, uniqun and tability of th poitiv priodic olution of ytm (3) ar tablihd. In 25, Chn 6 propod th following multipci logarithmic population modl = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)) t c ij (t) K ij (t ) ln N j ()d. (4) By uing th fixd point thory and contructing a uitabl Lyapunov functional, a t of aily applicabl critria ar obtaind for th xitnc, uniqun and global attractivity of poitiv priodic olution (poitiv almot priodic olution) of th modl (4). Gopalamy 1 pointd out that in om ca, th nutral dlay population modl ar mor ralitic. Thn Li 7 and Li t al. 8 conidrd th priodic olution or almot priodic olution of th following two ingl pci nutral Logarithmic modl and = N(t) r(t) a(t) ln N(t σ) d ln N(t τ) b(t) = N(t) r(t) a j (t) ln N(t σ j (t)) b j (t) d ln N(t τ j(t)) (5), (6) rpctivly. In 23, Yang and Cao 9 addrd th xitnc of poitiv priodic olution of th nutral logarithmic (Advanc onlin publication: 15 Fbruary 216)

2 population modl with multipl dlay = N(t) a(t) β(t)n(t) (b i (t) i=1 N(t τ i (t))) c i (t) d ln N(t γ i(t)). (7) i=1 In 24, Lu and G 1 pointd out that th proof of Thorm 3.1 i incomplt and analyzd th xitnc of poitiv priodic olution for nutral logarithmic population modl with multipl dlay m = N(t) r(t) a i (t) ln N(t σ i (t)) b j (t) d ln N(t τ j(t)). (8) With th hlp of an abtract continuou thorm of k- t contractiv oprator, author obtaind om ufficint condition for th xitnc, global attractivity of poitiv priodic olution of (8). In 29, Wang t al. 11 focud on th xitnc and uniqun of poitiv priodic olution for a following nutral logarithmic population modl = N(t) r(t) a(t) ln N(t) b j (t) ln N(t τ j (t)) c j (t) k j (t ) ln N()d d j (t) d ln N(t η j(t)). (9) Applying an abtract continuou thorm of k-t contractiv oprator, author tablihd om ufficint condition for th xitnc, global attractivity of poitiv priodic olution of (9). In 21 and 211, Alzabut t al tudid th almot priodic olution for dlay logarithmic population modl. Rcntly, Chn 14 had invtigatd th priodic olution and almot priodic olution of th following nutral multi-pci logarithmic population modl = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)) c ij (t) K ij (t ) ln N j ()d d ij (t) d ln N j(t η ij (t), (1) whr i = 1, 2,,, n, a ij (t), b ij (t), c ij (t), d ij (t) C(R, (, )), τ ij (t), η ij (t) C(R, R ) ar all continuou function. K ij ()d = 1, K ij ()d <. Many cholar 15-18,22-24 argu that coytm in th ral world i continuouly ditributd by unprdictabl forc which can rult in chang in th biological paramtr uch a urvival rat. Of practical intrt in cology i th qution of whthr or not an coytm can withtand tho unprdictabl diturbanc which prit for a finit priod of tim. In th languag of control variabl, w call th diturbanc function a control variabl. Motivatd by th dicuion abov, w will invtigat th nutral multipci logarithmic population modl with fdback control a follow = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)) c ij (t) K ij (t ) ln N j ()d d ij (t) d ln N j(t η ij (t) i (t)u i (t) f i (t)u i (t σ i (t)), du i (t) = α i (t)u i (t) β i (t) ln N i (t) γ i (t) ln N i (t δ i (t)), (11) whr i = 1, 2,, n, u i (i = 1, 2,, n) dnot indirct fdback control variabl. Th main aim of thi articl i to tablih om ufficint condition for th xitnc and uniqun of almot priodic olution of (11). Our rult ar nw and complmnt tho of th prviou tudi in To th bt of our knowldg, it i th firt tim to invtigat th nutral multipci logarithmic population modl with fdback control by applying th matrix, pctral thory. So far, thr ar vry fw papr that dal with th almot priodic olution by applying th matrix, pctral thory. Th rmaindr of th papr i organizd a follow. In Sction II, w introduc om notation and aumption, which can b ud to chck th xitnc and uniqun of almot priodic olution of ytm (11). In Sction III, w prnt om ufficint condition for th xitnc and uniqun of almot priodic olution of (11). An xampl i givn to illutrat th ffctivn of th obtaind rult in Sction V. A brif concluion i drawn in Sction VI. II. NOTATIONS AND ASSUMPTIONS In thi ction, w would lik to introduc om notation and aumption which ar ud in what follow. Lt x = (x 1, x 2,, x n ) T R n dnot a column vctor, D = (d ij ) n n b an n n matrix, D T b th tranpo of D, and E n b th idntity matrix of iz n. A matrix or vctor D > man that all ntri of D ar gratr than zro, likwi for D. For matric or vctor D and E, D > E(D E) man that D E > (D E ). ρ(d) dnot th pctral radiu of th matrix D. If v = (v 1, v 2,, v n ) T R n, thn w dfin th com- (Advanc onlin publication: 15 Fbruary 216)

3 monly ud norm a follow v 1 = v i, v 2 = v i 2 1 2, v = max 1 i n v i. If A = (a ij ) n n, thn w dfin th norm of th matrix A a follow A = In particular, Av up = up Av = up Av. v R n,v v v =1 v 1 A 1 = max 1 j n i=1 A = max 1 i n n a ij. Lt m(f) = a ij, A 2 = λ max (A T A) 1 2, 1 T lim f(t) =, T T whr f(t) i almot priodic function. Throughout thi papr, w mak th following aumption. (H1) r i (t), a ij (t), b ij (t), c ij (t), d ij (t), α i (t), β i (t), γ i (t), i (t), f i (t), i, j = 1, 2,, n ar continuou ral-valud nonngativ almot priodic function on R. (H2) Th krnl K ij (.), i, j = 1, 2,, n ar nonngativ continuou function dfind on, ) atifying K ij ()d = 1. (H3) τ ij (t), σ i (t), δ i (t) and η ij (t) ar nonngativ, continuouly diffrntiabl and almot priodic function on t R. Morovr, τ ij (t), σ i (t), δ i (t) and η ij (t) ar all uniformly continuou on R with inf {1 τ ij (t)} >, inf {1 σ i (t)} >, inf {1 δ i (t)} >, inf {1 η ij (t)} >. Sytm (11) i upplmntd with th initial valu condition N i () = ϕ Ni (), Ṅ i () = ϕ Ni (), (,, ϕ Ni () >, up (, ϕ Ni () <, up (, ϕ Ni () <, u i () = ϕ ui (), ϕ ui () >, (,. (12) It i ay to that thr xit a poitiv olution y(t) = (N 1 (t), N 2 (t),, x n (t), u 1 (t), u 2 (t),, u n (t)) of ytm (11) atifying th initial valu condition (12). III. EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC SOLUTION In thi ction, w will tablih ufficint condition on th xitnc and uniqun of almot priodic olution of (11). For convninc, w introduc om dfinition and lmma which will b ud in what follow. Dfinition Lt f(t) : R R n b continuou in t. f(t) i aid to almot priodic on R, if for any ε >, th t T (f, ε) = {δ : f(t δ) f(t) < ε, t R} i rlativly dn, i.., for ε >, it i poibl to find a ral numbr l = l(ε) >, for any intrval with lngth l(ε), thr xit a numbr δ = δ(ε) in thi intrval uch that f(t δ) f(t) < ε, for R. Dfinition 3.2 Lt z R n and Q(t) b a n n continuou matrix dfind on R. Th linar ytm dz = Q(t)z(t) (13) i aid to admit an xponntial dichotomy on R if thr xit contant k, λ >, projction P and th fundamntal matrix Z(t) of (13) atifying Z(t)P Z 1 () k λ(t), for t, Z(t)(I P )Z 1 () k λ(t), for t. Lmma If th linar ytm (13) admit an xponntial dichotomy, thn almot priodic ytm dz = Q(t)z(t) g(t) (14) ha a uniqu almot priodic olution z(t) and z(t) = t Z(t)P Z 1 ()g()d Z(t)(I P )Z 1 ()g()d. Lmma Lt a i (t) b an almot priodic function on R and a i (t) >. Thn th ytm dz = diag(a 1(t), a 2 (t),, a n (t))z(t) (15) admit an xponntial dichotomy. Rmark 3.1 It follow from Lmma 3.2 that ytm (15) ha a uniqu almot priodic olution z(t) which tak th form z(t) = ( = Z(t)Z 1 ()g()d a1(u)du g 1 ()d,, an(u)du g n ()d ). Lmma Aum that v(t), η(t) ar all continuouly diffrntiabl T -priodic function, a(t), b(t) ar all nonngativ continuou T -priodic function uch that T a(t) >, thn a(τ)dτ b()v ()( η())d = c(t)v(t η(t)) whr c() = a(τ)dτ (a()c() c ())(v( η())d, b() 1η (). Lmma 3.4 Lt m b a poitiv intgr and B b an Banach pac. If th mapping Γ : B B i a contraction mapping, thn Γ : B B ha xactly on fixd point in B, whr Γ m = Γ(Γ m1 ). By (H1), m(α i ) >. In viw of Lmma 3.1, w hav th following rult. (Advanc onlin publication: 15 Fbruary 216)

4 Lmma 3.5 (N 1 (t), N 2 (t),, N n (t), u 1 (t), u 2 (t),, u n (t)) T i an almot priodic olution of ytm (11) if and only if it i an almot priodic olution of u i (t) = = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)) c ij (t) K ij (t ) ln N j ()d d ij (t) d ln N j(t η ij (t) i (t)u i (t) f i (t)u i (t σ i (t)), αi(ζ)dζ β i () ln N i () γ i () ln N i ( δ i ())d, (16) whr i = 1, 2,, n. Obviouly, (16) i quivalnt to th following ytm = N i (t) r i (t) a ij (t) ln N j (t) b ij (t) ln N j (t τ ij (t)) c ij (t) K ij (t ) ln N j ()d d ij (t) d ln N j(t η ij (t) i (t) αi(ζ)dζ (β i () ln N i () γ i () ln N i ( δ i ()))d σi(t) f i (t) σ i (t) α i(ζ)dζ (β i () ln N i () γ i () ln N i ( δ i ()))d. (17) Now w ar in a poition to tat our main rult on th xitnc and uniqun of almot priodic olution for ytm (11). Thorm 3.1 In addition to (H1) (H3), if th following condition (H4) ρ(λ) < 1, whr Λ = (Λ ij ) n n and Λ ii = d ii (t) Λ ij = d ij (t) aii(ζ)dζ Θ ii ()d, Θ ii () = a ii () b ii () c ii () aii(ζ)dζ Θ ij ()d, i j, d ii ()(a ii ()d ii () d ii() ) K ii (θ)dθ ( i () f i ()) ξ αi(ζ)dζ (β i (ξ) γ i (ξ))dξ, Θ ij () = (a ij () b ij () c ij () d ij ()(a ii ()d ij () d ij() ), i j. K ij (θ)dθ whr i = 1, 2,, n. Thn ytm (11) ha a uniqu poitiv almot priodic olution. Proof Lt N i (t) = xi(t), thn (17) tak th form dx i (t) = r i (t) a ij (t)x j (t) b ij (t)x j (t τ ij (t)) c ij (t) K ij (t )x j ()d d ij (t)ẋ j (t η ij (t)(1 η ij (t)) i (t) αi(ζ)dζ (β i ()x i () γ i ()x i ( δ i ()))d f i (t) σi(t) γ i ()x i ( δ i ()))d = a ii (t)x i (t) σ i (t) α i(ζ)dζ (β i ()x i (),j i b ij (t)x j (t τ ij (t)) a ij (t)x j (t) c ij (t) K ij (t )x j ()d d ij (t)ẋ j (t η ij (t)(1 η ij (t)) i (t) αi(ζ)dζ (β i ()x i () γ i ()x i ( δ i ()))d f i (t) σi(t) σ i (t) α i(ζ)dζ (β i ()x i () γ i ()x i ( δ i ()))d r i (t). (18) Clarly, if ytm (18) ha an almot priodic olution (x 1(t), x 2(t),, x n(t)) T, thn (N1 (t), N2 (t),, Nn(t)) T = ( x 1 (t), x 1 (t),, x n (t) ) T i an almot priodic olution of (17). In viw of Lmma 3.5, w can conclud that ( x 1 (t), x 1 (t),, x n (t), u 1(t), u 1(t),, u n(t)) T i an almot priodic olution of (11), whr u i (t) = αi(ζ)dζ β i ()x i ()γ i ()x i (δ i ())d, whr i = 1, 2,, n. Now w will how that (18) ha a uniqu almot almot priodic olution. Firtly, w dfin B = {ψ(t) = (ψ 1 (t), ψ 2 (t),, ψ n (t)) T ψ(t) i a continuou almot priodic function}. Obviouly, B i a Banach pac with th norm ψ = max 1 i n up x i (t). (Advanc onlin publication: 15 Fbruary 216)

5 For any ψ(t) = (ψ 1 (t), ψ 2 (t),, ψ n (t)) T B, w conidr th following almot priodic ytm dx i (t) = a ii (t)x i (t),j i b ij (t)ψ j (t τ ij (t)) a ij (t)ψ j (t) c ij (t) K ij (t )ψ j ()d d ij (t) ψ j (t η ij (t)(1 η ij (t)) i (t) αi(ζ)dζ (β i ()ψ i () γ i ()ψ i ( δ i ()))d f i (t) σi(t) σ i (t) α i(ζ)dζ (β i ()ψ i () γ i ()ψ i ( δ i ()))d r i (t). (19) By (H1), w know that m(a ii >. In viw of Lmma 3.2, th linar ytm dx i (t) = a ii (t)x i (t), i = 1, 2,, n, (2) admit an xponntial dichotomy on T. Thn ytm (2) ha xactly on almot priodic olution a follow whr x ψ i (t) = (xψ 1 (t), xψ 2 (t),, xψ n(t)) T t a11(ζ)dζ h ψ 1 ()d = t a22(ζ)dζ h ψ 2 ()d, (21) t ann(ζ)dζ h ψ n()d h ψ i () = n,j i c ij () a ij ()ψ j () b ij ()ψ j ( τ ij ()) K ij ( θ)ψ j (θ)dθ d ij () ψ j ( η ij ()(1 η ij ()) i () ξ αi(ζ)dζ (β i (ξ)ψ i (ξ) γ i (ξ)ψ i (ξ δ i (ξ)))dξ f i () σi() σi () ξ α i(ζ)dζ (β i (ξ)ψ i (ξ) γ i (ξ)ψ i (ξ δ i (ξ)))d r i (). (22) In viw of Lmma 3.2, x ψ i (t) can b xprd a x ψ i (t) = (xψ 1 (t), xψ 2 (t),, xψ n(t)) T = (A 1, A 2,, A n ) T, (23) whr and A 1 = A 2 = d 1j (t)ψ j (t η 1j (t)) a11(ζ)dζ l ψ 1 ()d, d 2j (t)ψ j (t η 2j (t)) a22(ζ)dζ l ψ 2 ()d, n A n d nj (t)ψ j (t η nj (t)) l ψ i () = n,j i a ij ()ψ j () b ij ()ψ j ( τ ij ()) ann(ζ)dζ l ψ n ()d c ij () K ij ( θ)ψ j (θ)dθ d ij ()(a ii ()d ij () d ij())ψ j ( η ij ()) i () ξ αi(ζ)dζ (β i (ξ)ψ i (ξ) γ i (ξ)ψ i (ξ δ i (ξ)))dξ f i () σi() σi () ξ α i(ζ)dζ (β i (ξ)ψ i (ξ) γ i (ξ)ψ i (ξ δ i (ξ)))dξ r i (). (24) Dfin a mapping F : B B a follow F ψ(t) = Z ψ (t), for any ψ B. (25) For any φ, ψ B, w hav (F (φ) F (ψ)) = ( (F (φ(t)) F (ψ(t))) 1, (F (φ(t)) F (ψ(t))) 2,, (F (φ(t)) F (ψ(t))) n ) T n d 1j(t) φ j (t η 1j (t)) ψ j (t η 1j (t)) t a11(ζ)dζ l φ 1 () lψ 1 () d n d 2j(t) φ j (t η 2j (t)) ψ j (t η 2j (t)) t a22(ζ)dζ l φ 2 () lψ 2 () d. n d nj(t) φ j (t η nj (t)) ψ j (t η nj (t)) t t ann(ζ)dζ ln() φ ln ψ () d (26) On th othr hand, by (24), w gt l φ i () lψ i () = a ij () φ j () ψ j (),j i b ij () φ j ( τ ij ()) ψ j ( τ ij ()) c ij () K ij ( θ) φ j (θ) ψ j (θ) dθ d ij ()(a ii ()d ij () d ij() ) φ j ( η ij ()) (Advanc onlin publication: 15 Fbruary 216)

6 ψ j ( η ij ()) i () ξ αi(ζ)dζ (β i (ξ) φ i (ξ) ψ i (ξ) γ i (ξ) φ i (ξ δ i (ξ)) ψ i (ξ δ i (ξ)) )dξ f i () σi() σi () ξ α i(ζ)dζ (β i (ξ) φ i (ξ) ψ i (ξ) γ i (ξ) φ i (ξ δ i (ξ)) ψ i (ξ δ i (ξ)) )dξ a ij () up φ j (t) ψ j (t),j i b ij () up φ j (t) ψ j (t) c ij () K ij ( θ) up φ j (t) ψ j (t) dθ d ij ()(a ii ()d ij () d ij() ) up φ j (t) ψ j (t) i () (β i (ξ) up φ i (t) ψ i (t) γ i (ξ) up φ i (t) ψ i (t) )dξ f i () σi() σi () ξ ξ αi(ζ)dζ α i(ζ)dζ (β i (ξ) up φ i (t) ψ i (t) γ i (ξ) up φ i (t) ψ i (t) )dξ = a ij () b ij (),j i c ij () K ij (θ)dθ d ij ()(a ii ()d ij () d ij() ) up φ j (t) ψ j (t) ( i () f i ()) ξ αi(ζ)dζ (β i (ξ) γ i (ξ))dξ up φ i (t) ψ i (t) = a ii () b ii () c ii () d ii ()(a ii ()d ii () d ii() ) K ii (θ)dθ ( i () f i ()) ξ αi(ζ)dζ (β i (ξ) γ i (ξ))dξ up φ i (t) ψ i (t) { n (a ij () b ij () c ij () K ij (θ)dθ,j i d ij ()(a ii ()d ij () d ij() ) } up φ j (t) ψ j (t). (27) Lt Θ ii () = a ii () b ii () c ii () d ii ()(a ii ()d ii () d ii() ) ( i () f i ()) Θ ij () = (a ij () b ij () c ij () K ii (θ)dθ ξ αi(ζ)dζ (β i (ξ) γ i (ξ))dξ, d ij ()(a ii ()d ij () d ij() ), i j. whr i = 1, 2,, n. It follow from (27) that K ij (θ)dθ l φ i () lψ i () Θ ii() up φ i (t) ψ i (t),j i whr i = 1, 2,, n. Thn whr Θ ij () up φ j (t) ψ j (t), (28) d ij (t) φ j (t η ij (t)) ψ j (t η ij (t)) aii(ζ)dζ l φ i () lψ i () d d ij (t) up φ j (t) ψ j (t),j i aii(ζ)dζ Θ ii ()d up φ i (t) ψ i (t) up φ j (t) ψ j (t) = Λ ii up φ i (t) ψ i (t),j i Λ ii = d ii (t) Λ ij = d ij (t) aii(ζ)dζ Θ ij ()d Λ ij up φ j (t) ψ j (t), (29) aii(ζ)dζ Θ ii ()d, aii(ζ)dζ Θ ij ()d, i j, whr i = 1, 2,, n. It follow from (26) and (29) that (F (φ) F (ψ)) = ( (F (φ(t)) F (ψ(t))) 1, (F (φ(t)) F (ψ(t))) 2,, (F (φ(t)) F (ψ(t))) n ) T (3) (Advanc onlin publication: 15 Fbruary 216)

7 = = Λ(up Λ 11 up φ 1 (t) ψ 1 (t) n,j 1 Λ 1j up φ j (t) ψ j (t) Λ 22 up φ 2 (t) ψ 2 (t) n,j 2 Λ 2j up φ j (t) ψ j (t) Λ nn up φ n (t) ψ n (t) n,j n Λ nj up φ j (t) ψ j (t) Λ 11 Λ 11 Λ 1n Λ 21 Λ 22 Λ 2n Λ 21 Λ n2 Λ nn up φ 1 (t) ψ 1 (t) up φ 2 (t) ψ 2 (t) up φ n (t) ψ n (t) φ 1 (t) ψ 1 (t), up, up φ n (t) ψ n (t) ) T = Λ(up Thn w gt n n n 1 φ 2 (t) ψ 2 (t), (φ(t) ψ(t) 1, up (φ(t) ψ(t)) 2,, up (φ(t) ψ n (t)) n ) T. (31) up (F (φ(t)) F (ψ(t))) 1 up (F (φ(t)) F (ψ(t))) 2 up (F (φ(t)) F (ψ(t))) n up (φ(t) ψ(t)) 1 up (φ(t) ψ(t)) 2 up (φ(t) ψ(t)) n For any poitiv intgr m, by (31), w hav up (F m (φ(t)) F m (ψ(t))) 1 up (F m (φ(t)) F m (ψ(t))) 2 = up (F m (φ(t)) F m (ψ(t))) n. (32) up (F (F m1 (φ(t))) F (F m1 (ψ(t)))) 1 up (F (F m1 (φ(t))) F (F m1 (ψ(t)))) 2 up (F (F m1 (φ(t))) F (F m1 (ψ(t)))) n Λ Λ m up (F m1 (φ(t)) F m1 (ψ(t))) 1 up (F m1 (φ(t)) F m1 (ψ(t))) 2 up (F m1 (φ(t)) F (F m1 (ψ(t))) n By (H4), w gt up (φ(t) ψ(t)) 1 up (φ(t) ψ(t)) 2 up (φ(t) ψ(t)) n (33) lim m Λm =, (34) which impli that thr xit a poitiv intgr N and a poitiv contant µ < 1 uch that Λ N = (κ ij ) n n and κ ij µ, i = 1, 2,, n. (35) It follow form (32) and (34) that Thu (F N (φ) F N (ψ)) i κ ij up φ(t) ψ(t) max φ(t) ψ(t) up 1 i n j1 κ ij µ φ ψ, i = 1, 2,, n. (36) F N (φ) F N (ψ) = max (F N (φ) F N (ψ)) i µ φ ψ, (37) 1 i n which impli that th mapping F N : B B i a contraction mapping. In viw of Lmma 3.4, F ha a uniqu a fixd point x (t) in B. Thu ytm (18) ha a uniqu almot priodic olution x (t) = (x 1(t), x 2(t),, x n(t)) T, thn (N 1 (t), N 2 (t),, N n(t)) T = ( x 1 (t), x 2 (t),, x n (t) ) T i th uniqu almot priodic olution of (17). Thu, by Lmma 3.5, ( x 1 (t), x 2 (t),, x n (t), u 1(t), u 2(t),, u n(t)) T i th uniqu almot priodic olution of (11). Th proof of Thorm 3.1 i compltd. IV. NUMERICAL EXAMPLE In thi ction, w will giv an xampl to illutrat th faibility and ffctivn of our main rult obtaind in prviou ction. Conidring th following nutral multipci logarithmic population modl with fdback control dn 1 (t) 2 = N 1 (t) r 1 (t) a 1j (t) ln N j (t) 2 b 1j (t) ln N j (t τ 1j (t)) 2 c 1j (t) K 1j (t ) ln N j ()d 2 d 1j (t) d ln N j(t η 1j (t) 1 (t)u 1 (t) f 1 (t)u 1 (t σ 1 (t)), du 1 (t) = α 1 (t)u 1 (t) β 1 (t) ln N 1 (t) γ 1 (t) ln N 1 (t δ 1 (t)), (38) whr k ij =, r 1 (t) = 1 in t, a 11 = 1 in t, a 12 = 1 co t, b 11 =.3 in t, b 12 =.2 co t, c 11 =.1 in t, c 12 =.3 co t, d 11 =.4 in t, d 12 =.5 co t, τ 11 =.2.4 in t, τ 12 =.3.1 co t, η 11 =.3.2 in t, η 12 =.2.1 co t, 1 (t) =.2 in t, f 1 (t) =.2 co t, σ 1 (t) =.4.2 in t, δ 1 (t) =.3.3 in t, α 1 (t) =.4 co t, β 1 (t) =.3 in, γ 1 (t) =.5 co t. Thn by Matlab oftwar, w hav K ij ()d = 1, ρ(λ).3472 < 1. Thu all aumption in Thorm 3.1 ar fulfilld. Thu w can conclud that (37) ha a uniqu poitiv priodic olution. Th rult ar vrifid by th numrical imulation in Fig. 1. (Advanc onlin publication: 15 Fbruary 216)

8 Fig. 1. N 1 (t), u 1 (t) N 1 (t) u 1 (t) t Tim rpon of tat variabl N 1 (t) and u 1 (t). V. CONCLUSIONS In thi papr, w tudy a nutral multi-pci logarithmic population modl. Applying th matrix, pctral thory, w tablih om ufficint condition for th xitnc and uniqun of almot priodic olution of th nutral multi-pci logarithmic population modl. Th obtaind ufficint condition ar givn in trm of pctral radiu of xplicit matric which ar much diffrnt from tho by th algbraic inqualiti. An xampl i givn to illutrat th faibility and ffctivn of th obtaind rult. Th rult of thi papr ar compltly nw and gnraliz tho of th prviou tudi in Rcntly, th almot priodic olution of dicrt nutral multi-pci logarithmic population modl ha alo paid mor attntion by numrou rarchr. Howvr, thr ar vry fw rult on th almot priodic olution of dicrt nutral multi-pci logarithmic population modl, which might b our futur rarch topic. 11 Q. Wang, Y. Wang, and B.X. Dai, Exitnc and uniqun of poitiv priodic olution for a nutral logarithmic population modl, Applid Mathmatic and Computation, vol. 213, no. 1, pp: , J.O. Alzabut, G.T. Stamov, and E. Srmutlu, Poitiv almot priodic olution for a dlay logarithmic population modl, Mathmatical and Computr Modlling, vol. 53, no. 1-2, pp: , J.O. Alzabut, G.T. Stamov, and E. Srmutlu, On almot priodic olution for an impuliv dlay logarithmic population modl, Mathmatical and Computr Modlling, vol. 51, no. 5-6, pp: , F.D. Chn, Priodic olution and almot priodic olution of a nutral multipci Logarithmic population modl, Applid Mathmatic and Computation, vol. 176, no. 2, pp: , Y.H. Xia, Almot priodic olution of a population modl: via pctral radiu of matrix, Bulltin of th Malayian Mathmatical Scinc Socity, vol. 37, no. 1, pp: , L.J. Chn, and X.D. Xi, Prmannc of an N-pci coopration ytm with continuou tim dlay and fdback control, Nonlinar Analyi: Ral World Application, vol. 12, no. 1, pp: 34-38, Y.K. Li, and T.W. Zhang, Prmannc of a dicrt n-pci coopration ytm with tim-varying dlay and fdback control, Mathmatical and Computr Modlling, vol. 53, no. 5-6, pp: , Y.K. Li, and T.W. Zhang, Prmannc and almot priodic qunc olution for a dicrt dlay logitic quation with fdback control, Nonlinar Analyi: Ral World Application, vol. 12, no. 3, pp: , Z. Huang, S. Mohamad, X. Wang, and C. Fng, Convrgnc analyi of gnral nural ntwork undr almot priodic timli, Intrnational Journal of Circuit Thory and Application, vol. 37, no. 6, pp: , F.X. Lin, Exponntial Dichotomi of Linar Sytm, Anhui Univrity Pr, Hfi, 1999 (in Chin). 21 W.A. Coppl, Dichotomi in Stability Thory, Lctur Not in Mathmatic, vol. 629, Springr, Brlin, M. Kolar, M. Bn, D. Svcovic, and J. Kratochvil, Mathmatical modl and computational tudi of dicrt dilocation dynamic, IAENG Intrnational Journal of Applid Mathmatic, vol. 45, no. 3, pp: , L.Y. Pang, and T.W. Zhang, Almot priodic Ocillation in a watttyp prdator-pry modl with diffuion and tim dlay, IAENG Intrnational Journal of Applid Mathmatic, vol. 45, no. 2, pp: 92-11, Z.J. Gng, and M. Liu, Analyi of tochatic Gilpin-Ayala modl in pollutd nvironmnt, IAENG Intrnational Journal of Applid Mathmatic, vol. 45, no. 2, pp: , 215. REFERENCES 1 K. Gopalamy, Stability and Ocillation in Dlay Diffrntial Equation of Population DynamicMathmatic and it Application, vol. 74, Kluwr Acadmic Publihr Group, Dordrcht, G. Kirlingr, Prmannc in Lotka-Voltrra quation linkd pryprdator ytm, Mathmatical Biocinc, vol. 82, no. 2, pp: , Y.K. Li, Attractivity of a poitiv priodic olution for all othr poitiv olution in a dlay population modl, Mathmatica Applicata, vol. 12, no. 3, pp: , (in Chin). 4 F.D. Chn, X.X. Chn, F.X.Lin, and J.L. Shi, Poitiv priodic olution of tat-dpndnt dlay logarithm population modl, Journal of Fuzhou Univrity, vol. 31, no. 3, pp: 1-4, 23. (in Chin). 5 Z.J. Liu, Poitiv priodic olution for dlay multipci logrithmic population modl, Journal of Enginring Mathmatic, vol. 19, no. 2, pp: 11-16, 22. (in Chin). 6 F.D. Chn, Priodic olution and almot priodic olution for a dlay multipci logarithmic population modl, Applid Mathmatic and Computuation, vol. 171, no. 2, pp: 76-77, Y.K. Li, On a priodic nutral dlay logarithmic population modl, Journal of Sytm Scinc and Mathmatical Scinc, vol. 19, no. 1, pp: 34-38, S.P. Lu, and W.G. G, Exitnc of poitiv priodic olution for nutral logarithmic population modl with multipl dlay, Journal of Computational and Applid Mathmatic, vol. 166, no. 2, pp: , Z.H. Yang, and J.D Cao, Sufficint conditon for th xitnc of poitiv priodic olutio of a cla of nutral dlay modl, Applid Mathmatic and Computation, vol. 142, no. 1, pp: , S.P. Lu, and W.G. G, Exitnc of poitiv priodic olution for nutral logarithmic population modl with multipl dlay, Journal of Computational and Applid Mathmatic, vol. 166, no. 2, pp: , 24. (Advanc onlin publication: 15 Fbruary 216)

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator Calculation of lctromotiv forc inducd by th lot harmonic and paramtr of th linar gnrator (*)Hui-juan IU (**)Yi-huang ZHANG (*)School of Elctrical Enginring, Bijing Jiaotong Univrity, Bijing,China 8++58483,

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Hacttp Journal of Mathmatics and Statistics Volum 41(6) (2012), 867 874 ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Nourssadat Touafk Rcivd 06:07:2011 : Accptd 26:12:2011 Abstract In this papr, w invstigat

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Inference Methods for Stochastic Volatility Models

Inference Methods for Stochastic Volatility Models Intrnational Mathmatical Forum, Vol 8, 03, no 8, 369-375 Infrnc Mthods for Stochastic Volatility Modls Maddalna Cavicchioli Cá Foscari Univrsity of Vnic Advancd School of Economics Cannargio 3, Vnic, Italy

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Attraction property of local center-unstable manifolds for differential equations with state-dependent delay

Attraction property of local center-unstable manifolds for differential equations with state-dependent delay Elctronic Journal of Qualitativ Thory of Diffrntial Equation 2015, No. 4, 1 45; http://www.math.u-zgd.hu/jqtd/ Attraction proprty of local cntr-untabl manifold for diffrntial quation with tat-dpndnt dlay

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS

ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A3 ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS Edwin D. El-Mahassni Dpartmnt of Computing, Macquari

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation

Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation Ali t al. Advanc in Diffrnc Equation 17) 17:185 DOI 1.1186/1366-17-119-4 R E S E A R C H Opn Acc Modifid implicit fractional diffrnc chm for D modifid anomalou fractional ub-diffuion quation Umair Ali

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Quantum Phase Operator and Phase States

Quantum Phase Operator and Phase States Quantum Pha Oprator and Pha Stat Xin Ma CVS Halth Richardon Txa 75081 USA William Rhod Dpartmnt of Chmitry Florida Stat Univrity Tallaha Florida 3306 USA A impl olution i prntd to th long-tanding Dirac

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN Intrnational Journal of Scintific & Enginring Rsarch, Volum 6, Issu 7, July-25 64 ISSN 2229-558 HARATERISTIS OF EDGE UTSET MATRIX OF PETERSON GRAPH WITH ALGEBRAI GRAPH THEORY Dr. G. Nirmala M. Murugan

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Chapter 10 Time-Domain Analysis and Design of Control Systems

Chapter 10 Time-Domain Analysis and Design of Control Systems ME 43 Sytm Dynamic & Control Sction 0-5: Stady Stat Error and Sytm Typ Chaptr 0 Tim-Domain Analyi and Dign of Control Sytm 0.5 STEADY STATE ERRORS AND SYSTEM TYPES A. Bazoun Stady-tat rror contitut an

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE Dr Amir Aghdam Cncrdia Univrity Part f th nt ar adaptd frm th matrial in th fllwing rfrnc: Mdrn Cntrl Sytm by Richard C Drf and Rbrt H Bihp, Prntic Hall Fdback Cntrl f Dynamic

More information

Application of Vague Soft Sets in students evaluation

Application of Vague Soft Sets in students evaluation Availabl onlin at www.plagiarsarchlibrary.com Advancs in Applid Scinc Rsarch, 0, (6):48-43 ISSN: 0976-860 CODEN (USA): AASRFC Application of Vagu Soft Sts in studnts valuation B. Chtia*and P. K. Das Dpartmnt

More information

HYBRID APPROACH COMPARED TO GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEM OF HYDRAULIC SYSTEM

HYBRID APPROACH COMPARED TO GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEM OF HYDRAULIC SYSTEM www.arpapr.com/volum/vol0iu/ijrras_0 04.pdf HYBRID APPROACH COMPARED TO GRADIENT METHOD FOR OPTIMAL CONTROL PROBLEM OF HYDRAULIC SYSTEM Nrin Majdoub,*, Ani Saly & Mohamd Bnrjb 3,3 Unité d Rchrché LARA

More information

LESSON 10: THE LAPLACE TRANSFORM

LESSON 10: THE LAPLACE TRANSFORM 0//06 lon0t438a.pptx ESSON 0: THE APAE TANSFOM ET 438a Automatic ontrol Sytm Tchnology arning Objctiv Aftr thi prntation you will b abl to: Explain how th aplac tranform rlat to th tranint and inuoidal

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

with Dirichlet boundary conditions on the rectangle Ω = [0, 1] [0, 2]. Here,

with Dirichlet boundary conditions on the rectangle Ω = [0, 1] [0, 2]. Here, Numrical Eampl In thi final chaptr, w tart b illutrating om known rult in th thor and thn procd to giv a fw novl ampl. All ampl conidr th quation F(u) = u f(u) = g, (-) with Dirichlt boundar condition

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Self-interaction mass formula that relates all leptons and quarks to the electron

Self-interaction mass formula that relates all leptons and quarks to the electron Slf-intraction mass formula that rlats all lptons and quarks to th lctron GERALD ROSEN (a) Dpartmnt of Physics, Drxl Univrsity Philadlphia, PA 19104, USA PACS. 12.15. Ff Quark and lpton modls spcific thoris

More information

An Inventory Model with Change in Demand Distribution

An Inventory Model with Change in Demand Distribution Autralian Journal of Baic and Applid cinc, 5(8): 478-488, IN 99-878 An Invntory Modl with Chang in Dmand Ditribution P.. hik Uduman,. rinivaan, 3 Dowlath Fathima and 4 athyamoorthy, R. Aociat Profor, H.O.D

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

Asymptotic Behaviour of the Solutions. of the Falkner-Skan Equations. Governing the Swirling Flow

Asymptotic Behaviour of the Solutions. of the Falkner-Skan Equations. Governing the Swirling Flow Adv. Thor. Appl. Mch., Vol. 3,, no. 4, 5-58 Aymptotic Bhaviour o th Solution o th Falknr-Skan Equation Govrning th Sirling Flo J. Singh Dpartmnt o Civil Enginring, ntitut o Tchnology, Banara Hindu Univrity,

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

An Extensive Study of Approximating the Periodic. Solutions of the Prey Predator System

An Extensive Study of Approximating the Periodic. Solutions of the Prey Predator System pplid athmatical Scincs Vol. 00 no. 5 5 - n xtnsiv Study of pproximating th Priodic Solutions of th Pry Prdator Systm D. Vnu Gopala Rao * ailing addrss: Plot No.59 Sctor-.V.P.Colony Visahapatnam 50 07

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Two Products Manufacturer s Production Decisions with Carbon Constraint

Two Products Manufacturer s Production Decisions with Carbon Constraint Managmnt Scinc and Enginring Vol 7 No 3 pp 3-34 DOI:3968/jms9335X374 ISSN 93-34 [Print] ISSN 93-35X [Onlin] wwwcscanadant wwwcscanadaorg Two Products Manufacturr s Production Dcisions with Carbon Constraint

More information

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator Proprtis of Phas Spac Wavfunctions and Eignvalu Equation of Momntum Disprsion Oprator Ravo Tokiniaina Ranaivoson 1, Raolina Andriambololona 2, Hanitriarivo Rakotoson 3 raolinasp@yahoo.fr 1 ;jacqulinraolina@hotmail.com

More information

NEW INSIGHTS IN ADAPTIVE CASCADED FIR STRUCTURE: APPLICATION TO FULLY ADAPTIVE INTERPOLATED FIR STRUCTURES

NEW INSIGHTS IN ADAPTIVE CASCADED FIR STRUCTURE: APPLICATION TO FULLY ADAPTIVE INTERPOLATED FIR STRUCTURES 5th Europan Signal Procing Confrnc (EUSIPCO 7), Poznan, Pol, Sptmbr 3-7, 7, copyright by EURASIP NEW INSIGHS IN ADAPIVE CASCADED FIR SRUCURE: APPLICAION O FULLY ADAPIVE INERPOLAED FIR SRUCURES Eduardo

More information

Simulation Of Induction Motor Modelling In MATLAB Software.

Simulation Of Induction Motor Modelling In MATLAB Software. Intrnational Journal of Enginring Rarch & Tchnology (IJERT) ol. 2 Iu 4, April - 203 Simulation Of Induction Motor Modlling In MATLAB Softwar. Naintara Wanik Dpartmnt of Elctrical Enginring,Shri Ramdobaba

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1 wald s Mthod Rvisitd: Rapidly Convrgnt Sris Rprsntations of Crtain Grn s Functions Vassilis G. Papanicolaou 1 Suggstd Running Had: wald s Mthod Rvisitd Complt Mailing Addrss of Contact Author for offic

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Content Skills Assessments Lessons. Identify, classify, and apply properties of negative and positive angles.

Content Skills Assessments Lessons. Identify, classify, and apply properties of negative and positive angles. Tachr: CORE TRIGONOMETRY Yar: 2012-13 Cours: TRIGONOMETRY Month: All Months S p t m b r Angls Essntial Qustions Can I idntify draw ngativ positiv angls in stard position? Do I hav a working knowldg of

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices Finding low cost TSP and 2-matching solutions using crtain half intgr subtour vrtics Sylvia Boyd and Robrt Carr Novmbr 996 Introduction Givn th complt graph K n = (V, E) on n nods with dg costs c R E,

More information

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x ±# ( ). A. Limits and Horizontal Asymptots What you ar finding: You can b askd to find lim x "a H.A.) problm is asking you find lim x "# and lim x "$#. or lim x "±#. Typically, a horizontal asymptot algbraically,

More information

A Quadratic Serendipity Plane Stress Rectangular Element

A Quadratic Serendipity Plane Stress Rectangular Element MAE 323: Chaptr 5 Putting It All Togthr A Quadratic Srndipity Plan Str Rctangular Elmnt In Chaptr 2, w larnd two diffrnt nrgy-bad mthod of: 1. Turning diffrntial quation into intgral (or nrgy) quation

More information

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty Funamntal Limit on Data Acquiition: Tra-off btwn Sampl Complxity an Qury Difficulty Hy Won Chung, Ji Oon L, an Alfr O. Hro arxiv:72.0057v2 [c.it] 2 Jan 208 Abtract W conir qury-ba ata acquiition an th

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

Mock Exam 2 Section A

Mock Exam 2 Section A Mock Eam Mock Eam Sction A. Rfrnc: HKDSE Math M Q ( + a) n n n n + C ( a) + C( a) + C ( a) + nn ( ) a nn ( )( n ) a + na + + + 6 na 6... () \ nn ( ) a n( n )( n ) a + 6... () 6 6 From (): a... () n Substituting

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7. Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

More information

On the optimality of a general production lot size inventory model with variable parameters

On the optimality of a general production lot size inventory model with variable parameters On th optimality of a gnral production lot siz invntory modl with variabl paramtrs ZAID.. BALKHI Dpartmnt of Statistics & Oprations Rsarch Collg of Scinc, King Saud Univrsity P.O. Box 55,Riyadh 5 SAUDI

More information