Quality & Information Content Of CHRIS Hyper-Spectral Data

Size: px
Start display at page:

Download "Quality & Information Content Of CHRIS Hyper-Spectral Data"

Transcription

1 Quality & Information Content Of CHRIS Hyper-Spectral Data B. Aiazzi, S. Baronti, P. Marcoionni, I. Pippi, M. Selva Institute of Applied Physics Nello Carrara IFAC-CNR, Florence Italy

2 Information-Theoretic Assessment: Summary! Quality of hyperspectral data: capability to fulfil the user s expectations, together with objective assessments, related to the true information content of the data.! Definition of a procedure for estimating the information content of the data that is related to noise, SNR and entropy of the digitised images.! Modelling of the observation noise and adoption of an advanced decorrelation algorithm to accurately estimated the entropy of data source.! Estimation of the entropy of the noise-free data source by inverting the model of an uncorrelated non-gaussian source with a stationary white Gaussian noise superimposed.! Evaluation of the most significant bands to improve the efficiency of application tasks.

3 Information-Theoretic Assessment: Motivations Digital sensors yield 1-D, 2-D, and M-D signals measuring some physical properties of interest to users. All data are affected by noise that inflates entropy and degrades the quality. Which amount of information is due to the noise-free signal only regardless to the noise? What is the amount of useful information of one pixel (either scalar, or vector) that can be utilized for any application task by user? By Information-Theoretic Assessment we can model noise contribution and try to remove it from the entropy rate of the noisy source to yield the entropy rate of the noise-free source.

4 Information-Theoretic Assessment: Modelling Assume a data source as a correlated random process with superimposed correlated signal-independent noise. The signal is split from the noise contribution: (,,) = (,,) + (,,) g ijk fijk nijk g(i,j,k) is the recorded noisy sample at the i-th row, j th column. k-th band, f(i,j,k) is the noise-free sample and n(i,j,k) is the random noise process, independent of f, stationary, correlated, Gaussian-distributed, with zero mean and variance " n2. About noise, in details: ni (, jk, ) = n() i n( j) n( k) x n () i = ρ n ( i 1) + ε () i x x x x ρ x is the correlation coefficient in the row direction ε x white gaussian noise y λ

5 Information-Theoretic Assessment: Flowchart Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation! Source decorrelation is obtained applying an advanced prediction via DPCM & using entropy coding to yield bit-rate close to entropy rate.! Generalized Gaussian modeling of signal contribution.! Noise parameters estimation via scatterplot method.! Deconvolution.

6 Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation Predictive DPCM Since Differential f and Pulse n are assumed Code Modulation to be independent (DPCM) utilizes of each a other, causal the prediction relationship to achieve among a the statistical variances decorrelation of the three types (2-D, of 3-D) prediction of the errors data. is: Prediction errors e g, i.e., differences between 2 original 2 g(i,j,k) 2 and predicted pixel σ values are entropy e ( coded. e = σ g e + σ f en g i, jk, ) gi (, jk, ) gi ˆ(, jk, ) Use a linear regression predictor, σ en can be estimated from the noise parameters: Moreover e g is the sum of error prediction of free-noise signal and error σ prediction σ (1 ρ )(1 of noise: ρ )(1 ) e n = n x y eg = ef + en ρ λ

7 Generalized Gaussian PDF A suitable PDF model for noise, prediction error e g and prediction error of noise free image e f, is achieved by varying ν (shape factor) and " Generalized Gaussian (standard PDF deviation) of Generalized Gaussian Density (GGD): ν ν η( ν, σ) p - ( ) (, ) x σν, x = ηνσ 2 ( 1/ ν ) e Γ Γ() (, σ ) η ν 1 = σ is the Gamma function Γ Γ ( 3/ ν ) ( 1/ ν ) z 1 t () z = t e dt, z > 0 Γ 0 Unity-variance GGD function plotted for several ν s For ν= 1: Laplacian ESRIN Frascati, PDF, Italy, 21 ν 23 = 2: March Gaussian 2005 PDF

8 Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation Generalized Gaussian PDF Estimation of e g After the DPCM decorrelation, we know the entropy rate (R g ) and the standard deviation (" g ) of noisy image, but for modelling PDF with Generalized Gaussian PDF, we have to estimate # g. Fitting the entropy of the modelled source to that of the empirical data by the entropy function ς, thus defined: 1/2 νg Γ( 3/ ν ) g 1 Rg log2σ g = log 2 + ζ 3/2 H ( ν g) 2 ( 1/ ν ) ν g ln 2 Γ g we find # g, inverting this last function.

9 Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation An Example Noise of Parameters $-" Scatterplot Estimation via Scatterplot The parameters of the noisy image may be estimated in homogeneous areas. The estimate of " n is found as the y-intercept of the horizontal regression line drawn on the scatterplot of " g versus $ g of points in homogeneous areas. The estimate of % x is found as the slope coefficient of the regression line drawn on the scatterplot of cross-deviation along x versus " g of points in homogeneous areas.

10 Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation Deconvolution p eg The PDF of residuals found by DPCM is given by the linear convolution of the unknown p e f with a zero mean 2 PDF, having σ en variance, and ν = 2 : p p p ( x) = ( x) ( x) σ, ν σ, ν σ,2.0 e e e e e g g f f n By deconvolving noise from we obtain. p en p eg ν e f

11 Noisy residuals Decorrelation DPCM Generalized Gaussian PDF estimation Noisy image Noise parameters estimation Variance & shape factor of noisy residuals Noise PDF Deconvolution Noise parameters Noise-free residuals PDF Noise-free information estimation Noise-free Information Estimation ν e f Processing the found we obtain the entropic factor c f and so we can measure the entropy rate of noise-free image: f = log 2 { f σe (1 ρx )(1 ρy )(1 ρ ) σ n } R c λ 2 g

12 Information-Theoretic Assessment: Implementation Results Retrieve past results from disk Decorrelation DPCM Hyperspectral input data Process noise std dev Deconvolution Info assessment result Process noise corr. coefficients Flexible architecture & Run single routine. & Process the information assessment retrieving some data from past elaboration.

13 Information-Theoretic Assessment: Evaluation on CHRIS Data over San Rossore Test Site MODE 3 land channel, 18 bands, resolution 17 m, FZA=0 ' 748 rows, 744 columns

14 Analysis Processi ng Effect September 2003

15 Evaluation of Noise Standard Deviation The calibration process reduces the amount of noise.

16 Evaluation on Noise CCs ρ x and ρ y Filtering in the calibration process little increases the ρ x value and quite reduces the ρ y.

17 Evaluation of noise CC ρ λ Since the calibration process doesn t consider the λ direction, it reduces the ρ λ value.

18 Noise Shape Factor Evaluation In the deconvolution: p p p ( x) = ( x) ( x) σ, ν σ, ν σ,2.0 e e e e e g g f f n,2.0 Very good matching between the theoretical and the estimated value.

19 Information Content Evaluation The plots show a coherent behavior between the entropy of the observed source and of the noise-free source. ESRIN Frascati, Italy, March 2005

20 Information Assessment Comparison: R g The bit-rate of noisy data is nearly the same.

21 Information Assessment Comparison : R e n The entropy of noise is lower for calibrated data.

22 Information Assessment Comparison: R f The true information content appears nearly the same.

23 Spatial Analysis on L1B Data! Sea! Land! River 1! River 2

24 Evaluation of Noise Standard Deviation at Different Landscape A good matching between the estimated noise standard deviation has been verified in radiometrically similar sub images.

25 July 2003 January 2004 September 2003 Temporal Analysis on L1B Data

26 Temporal Analysis on L1B Data: Results on noise

27 Conclusions! The proposed method may yield an estimation of the information content of any digitized signal of 1-D, 2-D and M-D, in general.! A procedure for information-theoretic assessment has been developed and applied to both calibrated and raw hyperspectral data coming from push-broom sensor.! Noise estimation has been performed on different landscapes.! Preliminary analysis on multitemporal data has been considered.! Future work will investigate on the information content and the noise model of multi-angle hyperspectral data..

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Lesson 7 Delta Modulation and DPCM Instructional Objectives At the end of this lesson, the students should be able to: 1. Describe a lossy predictive coding scheme.

More information

Predictive Coding. Prediction Prediction in Images

Predictive Coding. Prediction Prediction in Images Prediction Prediction in Images Predictive Coding Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

Predictive Coding. Prediction

Predictive Coding. Prediction Predictive Coding Prediction Prediction in Images Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

Video Coding with Motion Compensation for Groups of Pictures

Video Coding with Motion Compensation for Groups of Pictures International Conference on Image Processing 22 Video Coding with Motion Compensation for Groups of Pictures Markus Flierl Telecommunications Laboratory University of Erlangen-Nuremberg mflierl@stanford.edu

More information

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition Review of Quantization UMCP ENEE631 Slides (created by M.Wu 004) Quantization UMCP ENEE631 Slides (created by M.Wu 001/004) L-level Quantization Minimize errors for this lossy process What L values to

More information

L. Yaroslavsky. Fundamentals of Digital Image Processing. Course

L. Yaroslavsky. Fundamentals of Digital Image Processing. Course L. Yaroslavsky. Fundamentals of Digital Image Processing. Course 0555.330 Lec. 6. Principles of image coding The term image coding or image compression refers to processing image digital data aimed at

More information

Overview. Analog capturing device (camera, microphone) PCM encoded or raw signal ( wav, bmp, ) A/D CONVERTER. Compressed bit stream (mp3, jpg, )

Overview. Analog capturing device (camera, microphone) PCM encoded or raw signal ( wav, bmp, ) A/D CONVERTER. Compressed bit stream (mp3, jpg, ) Overview Analog capturing device (camera, microphone) Sampling Fine Quantization A/D CONVERTER PCM encoded or raw signal ( wav, bmp, ) Transform Quantizer VLC encoding Compressed bit stream (mp3, jpg,

More information

Noise, Image Reconstruction with Noise!

Noise, Image Reconstruction with Noise! Noise, Image Reconstruction with Noise! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 10! Gordon Wetzstein! Stanford University! What s a Pixel?! photon to electron

More information

Pulse-Code Modulation (PCM) :

Pulse-Code Modulation (PCM) : PCM & DPCM & DM 1 Pulse-Code Modulation (PCM) : In PCM each sample of the signal is quantized to one of the amplitude levels, where B is the number of bits used to represent each sample. The rate from

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on lectures from B. Lee, B. Girod, and A. Mukherjee 1 Outline Digital Signal Representation

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING 5 0 DPCM (Differential Pulse Code Modulation) Making scalar quantization work for a correlated source -- a sequential approach. Consider quantizing a slowly varying source (AR, Gauss, ρ =.95, σ 2 = 3.2).

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series Wavelet Methods for Time Series Analysis Part IV: Wavelet-Based Decorrelation of Time Series DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Audio Coding. Fundamentals Quantization Waveform Coding Subband Coding P NCTU/CSIE DSPLAB C.M..LIU

Audio Coding. Fundamentals Quantization Waveform Coding Subband Coding P NCTU/CSIE DSPLAB C.M..LIU Audio Coding P.1 Fundamentals Quantization Waveform Coding Subband Coding 1. Fundamentals P.2 Introduction Data Redundancy Coding Redundancy Spatial/Temporal Redundancy Perceptual Redundancy Compression

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Jilei Hou, Paul H. Siegel and Laurence B. Milstein Department of Electrical and Computer Engineering

More information

EE/CpE 345. Modeling and Simulation. Fall Class 9

EE/CpE 345. Modeling and Simulation. Fall Class 9 EE/CpE 345 Modeling and Simulation Class 9 208 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation - the behavior

More information

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM ANAYSIS OF A PARTIA DECORREATOR IN A MUTI-CE DS/CDMA SYSTEM Mohammad Saquib ECE Department, SU Baton Rouge, A 70803-590 e-mail: saquib@winlab.rutgers.edu Roy Yates WINAB, Rutgers University Piscataway

More information

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS M. Kawamoto 1,2, Y. Inouye 1, A. Mansour 2, and R.-W. Liu 3 1. Department of Electronic and Control Systems Engineering,

More information

ECE 565 Notes on Shot Noise, Photocurrent Statistics, and Integrate-and-Dump Receivers M. M. Hayat 3/17/05

ECE 565 Notes on Shot Noise, Photocurrent Statistics, and Integrate-and-Dump Receivers M. M. Hayat 3/17/05 ECE 565 Notes on Shot Noise, Photocurrent Statistics, and Integrate-and-Dump Receivers M. M. Hayat 3/17/5 Let P (t) represent time-varying optical power incident on a semiconductor photodetector with quantum

More information

Signal Modeling, Statistical Inference and Data Mining in Astrophysics

Signal Modeling, Statistical Inference and Data Mining in Astrophysics ASTRONOMY 6523 Spring 2013 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Course Approach The philosophy of the course reflects that of the instructor, who takes a dualistic view

More information

BASICS OF COMPRESSION THEORY

BASICS OF COMPRESSION THEORY BASICS OF COMPRESSION THEORY Why Compression? Task: storage and transport of multimedia information. E.g.: non-interlaced HDTV: 0x0x0x = Mb/s!! Solutions: Develop technologies for higher bandwidth Find

More information

MAXIMIZING SIGNAL-TO-NOISE RATIO (SNR) IN 3-D LARGE BANDGAP SEMICONDUCTOR PIXELATED DETECTORS IN OPTIMUM AND NON-OPTIMAL FILTERING CONDITIONS

MAXIMIZING SIGNAL-TO-NOISE RATIO (SNR) IN 3-D LARGE BANDGAP SEMICONDUCTOR PIXELATED DETECTORS IN OPTIMUM AND NON-OPTIMAL FILTERING CONDITIONS 9 International Nuclear Atlantic Conference - INAC 9 Rio de Janeiro,RJ, Brazil, September7 to October, 9 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-994-3-8 MAXIMIZING SIGNAL-TO-NOISE

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

EE5585 Data Compression April 18, Lecture 23

EE5585 Data Compression April 18, Lecture 23 EE5585 Data Compression April 18, 013 Lecture 3 Instructor: Arya Mazumdar Scribe: Trevor Webster Differential Encoding Suppose we have a signal that is slowly varying For instance, if we were looking at

More information

Projects in Wireless Communication Lecture 1

Projects in Wireless Communication Lecture 1 Projects in Wireless Communication Lecture 1 Fredrik Tufvesson/Fredrik Rusek Department of Electrical and Information Technology Lund University, Sweden Lund, Sept 2018 Outline Introduction to the course

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Variational Methods in Bayesian Deconvolution

Variational Methods in Bayesian Deconvolution PHYSTAT, SLAC, Stanford, California, September 8-, Variational Methods in Bayesian Deconvolution K. Zarb Adami Cavendish Laboratory, University of Cambridge, UK This paper gives an introduction to the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 2D SYSTEMS & PRELIMINARIES Hamid R. Rabiee Fall 2015 Outline 2 Two Dimensional Fourier & Z-transform Toeplitz & Circulant Matrices Orthogonal & Unitary Matrices Block Matrices

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #3 Wednesday, September 10, 2003 1.4 Quantization Digital systems can only represent sample amplitudes with a finite set of prescribed values,

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Image Compression using DPCM with LMS Algorithm

Image Compression using DPCM with LMS Algorithm Image Compression using DPCM with LMS Algorithm Reenu Sharma, Abhay Khedkar SRCEM, Banmore -----------------------------------------------------------------****---------------------------------------------------------------

More information

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014 Scalar and Vector Quantization National Chiao Tung University Chun-Jen Tsai 11/06/014 Basic Concept of Quantization Quantization is the process of representing a large, possibly infinite, set of values

More information

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5)

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5) 10 Simple Linear Regression (Chs 12.1, 12.2, 12.4, 12.5) Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 2 Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 3 Simple Linear Regression

More information

Digital Image Processing Lectures 25 & 26

Digital Image Processing Lectures 25 & 26 Lectures 25 & 26, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2015 Area 4: Image Encoding and Compression Goal: To exploit the redundancies in the image

More information

Towards control over fading channels

Towards control over fading channels Towards control over fading channels Paolo Minero, Massimo Franceschetti Advanced Network Science University of California San Diego, CA, USA mail: {minero,massimo}@ucsd.edu Invited Paper) Subhrakanti

More information

Improvement of Himawari-8 observation data quality

Improvement of Himawari-8 observation data quality Improvement of Himawari-8 observation data quality 3 July 2017 Meteorological Satellite Center Japan Meteorological Agency The Japan Meteorological Agency (JMA) plans to modify its Himawari-8 ground processing

More information

CS578- Speech Signal Processing

CS578- Speech Signal Processing CS578- Speech Signal Processing Lecture 7: Speech Coding Yannis Stylianou University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr Univ. of Crete Outline 1 Introduction

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002 EE/CpE 345 Modeling and Simulation Class 0 November 8, 2002 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation

More information

Systematic strategies for real time filtering of turbulent signals in complex systems

Systematic strategies for real time filtering of turbulent signals in complex systems Systematic strategies for real time filtering of turbulent signals in complex systems Statistical inversion theory for Gaussian random variables The Kalman Filter for Vector Systems: Reduced Filters and

More information

Blind Identification of FIR Systems and Deconvolution of White Input Sequences

Blind Identification of FIR Systems and Deconvolution of White Input Sequences Blind Identification of FIR Systems and Deconvolution of White Input Sequences U. SOVERINI, P. CASTALDI, R. DIVERSI and R. GUIDORZI Dipartimento di Elettronica, Informatica e Sistemistica Università di

More information

Adaptive Systems Homework Assignment 1

Adaptive Systems Homework Assignment 1 Signal Processing and Speech Communication Lab. Graz University of Technology Adaptive Systems Homework Assignment 1 Name(s) Matr.No(s). The analytical part of your homework (your calculation sheets) as

More information

The statistics of ocean-acoustic ambient noise

The statistics of ocean-acoustic ambient noise The statistics of ocean-acoustic ambient noise Nicholas C. Makris Naval Research Laboratory, Washington, D.C. 0375, USA Abstract With the assumption that the ocean-acoustic ambient noise field is a random

More information

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure.

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure. STATGRAPHICS Rev. 9/13/213 Calibration Models Summary... 1 Data Input... 3 Analysis Summary... 5 Analysis Options... 7 Plot of Fitted Model... 9 Predicted Values... 1 Confidence Intervals... 11 Observed

More information

Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors

Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors César San Martin Sergio Torres Abstract In this paper, a model-based correlation measure between

More information

Algorithm Baseline for L1 Product and Calibration

Algorithm Baseline for L1 Product and Calibration Algorithm Baseline for L1 Product and Calibration Oliver Reitebuch Uwe Marksteiner, Karsten Schmidt Dorit Huber, Ines Nikolaus Alain Dabas, Pauline Martinet in close cooperation with ESA, Airbus Defense

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801

Rate-Distortion Based Temporal Filtering for. Video Compression. Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801 Rate-Distortion Based Temporal Filtering for Video Compression Onur G. Guleryuz?, Michael T. Orchard y? University of Illinois at Urbana-Champaign Beckman Institute, 45 N. Mathews Ave., Urbana, IL 68 y

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

THEORETICAL CONCEPTS & APPLICATIONS OF INDEPENDENT COMPONENT ANALYSIS

THEORETICAL CONCEPTS & APPLICATIONS OF INDEPENDENT COMPONENT ANALYSIS THEORETICAL CONCEPTS & APPLICATIONS OF INDEPENDENT COMPONENT ANALYSIS SONALI MISHRA 1, NITISH BHARDWAJ 2, DR. RITA JAIN 3 1,2 Student (B.E.- EC), LNCT, Bhopal, M.P. India. 3 HOD (EC) LNCT, Bhopal, M.P.

More information

Calibration of MERIS on ENVISAT Status at End of 2002

Calibration of MERIS on ENVISAT Status at End of 2002 Calibration of MERIS on ENVISAT Status at End of 2002 Bourg L. a, Delwart S. b, Huot J-P. b a ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia-Antipolis Cedex, France b ESA/ESTEC, P.O. Box 299,

More information

Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta

Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta SUMMARY We propose an algorithm to compute time and space variant prediction

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Guillem Sòria, José A. Sobrino, Juan C. Jiménez-Muñoz, Mónica Gómez, Juan Cuenca, Mireia Romaguera and Malena Zaragoza

Guillem Sòria, José A. Sobrino, Juan C. Jiménez-Muñoz, Mónica Gómez, Juan Cuenca, Mireia Romaguera and Malena Zaragoza Guillem Sòria, José A. Sobrino, Juan C. Jiménez-Muñoz, Mónica Gómez, Juan Cuenca, Mireia Romaguera and Malena Zaragoza University of Valencia, Spain MERIS (A)ATSR WORKSHOP ESRIN, Frascati, Italy 26-30

More information

2.7 The Gaussian Probability Density Function Forms of the Gaussian pdf for Real Variates

2.7 The Gaussian Probability Density Function Forms of the Gaussian pdf for Real Variates .7 The Gaussian Probability Density Function Samples taken from a Gaussian process have a jointly Gaussian pdf (the definition of Gaussian process). Correlator outputs are Gaussian random variables if

More information

New GOME/ERS-2 Level-1 Product In-Flight Calibration and Degradation Monitoring

New GOME/ERS-2 Level-1 Product In-Flight Calibration and Degradation Monitoring www.dlr.de Chart 1 New GOME/ERS-2 Level-1 Product In-Flight Calibration and Degradation Monitoring M. Coldewey-Egbers 1, B. Aberle 1, S. Slijkhuis 1, D. Loyola 1, and A. Dehn 2 1 DLR-IMF and 2 ESA-ESRIN

More information

Lidar data in water resources applications. Paola Passalacqua CE 374K Lecture, April 5 th, 2012

Lidar data in water resources applications. Paola Passalacqua CE 374K Lecture, April 5 th, 2012 Lidar data in water resources applications Paola Passalacqua CE 374K Lecture, April 5 th, 2012 Airborne Lidar Airborne laser altimetry technology (LiDAR, Light Detection And Ranging) provides high-resolution

More information

1 The Classic Bivariate Least Squares Model

1 The Classic Bivariate Least Squares Model Review of Bivariate Linear Regression Contents 1 The Classic Bivariate Least Squares Model 1 1.1 The Setup............................... 1 1.2 An Example Predicting Kids IQ................. 1 2 Evaluating

More information

Ch Inference for Linear Regression

Ch Inference for Linear Regression Ch. 12-1 Inference for Linear Regression ACT = 6.71 + 5.17(GPA) For every increase of 1 in GPA, we predict the ACT score to increase by 5.17. population regression line β (true slope) μ y = α + βx mean

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Independent Component Analysis

Independent Component Analysis Chapter 5 Independent Component Analysis Part I: Introduction and applications Motivation Skillikorn chapter 7 2 Cocktail party problem Did you see that Have you heard So, yesterday this guy I said, darling

More information

Adaptive Filter Theory

Adaptive Filter Theory 0 Adaptive Filter heory Sung Ho Cho Hanyang University Seoul, Korea (Office) +8--0-0390 (Mobile) +8-10-541-5178 dragon@hanyang.ac.kr able of Contents 1 Wiener Filters Gradient Search by Steepest Descent

More information

On Compression Encrypted Data part 2. Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University

On Compression Encrypted Data part 2. Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University On Compression Encrypted Data part 2 Prof. Ja-Ling Wu The Graduate Institute of Networking and Multimedia National Taiwan University 1 Brief Summary of Information-theoretic Prescription At a functional

More information

Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University

Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks Yang Cao Emory University 207..5 Outline Data Mining with Differential Privacy (DP) Scenario: Spatiotemporal Data

More information

Simple Linear Regression for the MPG Data

Simple Linear Regression for the MPG Data Simple Linear Regression for the MPG Data 2000 2500 3000 3500 15 20 25 30 35 40 45 Wgt MPG What do we do with the data? y i = MPG of i th car x i = Weight of i th car i =1,...,n n = Sample Size Exploratory

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

E303: Communication Systems

E303: Communication Systems E303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Principles of PCM Prof. A. Manikas (Imperial College) E303: Principles of PCM v.17

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Linear Diffusion and Image Processing. Outline

Linear Diffusion and Image Processing. Outline Outline Linear Diffusion and Image Processing Fourier Transform Convolution Image Restoration: Linear Filtering Diffusion Processes for Noise Filtering linear scale space theory Gauss-Laplace pyramid for

More information

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Quantization C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

Performance analysis and improvement of dither modulation under the composite attacks

Performance analysis and improvement of dither modulation under the composite attacks Zhu and Ding EURASIP Journal on Advances in Signal Processing 212, 212:53 http://asp.eurasipjournals.com/content/212/1/53 RESEARCH Open Access Performance analysis and improvement of dither modulation

More information

Use of the Autocorrelation Function for Frequency Stability Analysis

Use of the Autocorrelation Function for Frequency Stability Analysis Use of the Autocorrelation Function for Frequency Stability Analysis W.J. Riley, Hamilton Technical Services Introduction This paper describes the use of the autocorrelation function (ACF) as a complement

More information

Multimedia communications

Multimedia communications Multimedia communications Comunicazione multimediale G. Menegaz gloria.menegaz@univr.it Prologue Context Context Scale Scale Scale Course overview Goal The course is about wavelets and multiresolution

More information

Chapter 12 - Part I: Correlation Analysis

Chapter 12 - Part I: Correlation Analysis ST coursework due Friday, April - Chapter - Part I: Correlation Analysis Textbook Assignment Page - # Page - #, Page - # Lab Assignment # (available on ST webpage) GOALS When you have completed this lecture,

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density Marginal density If the unknown is of the form x = x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density πx 1 y) = πx 1, x 2 y)dx 2 = πx 2 )πx 1 y, x 2 )dx 2 needs to be

More information

Chapter 10 Applications in Communications

Chapter 10 Applications in Communications Chapter 10 Applications in Communications School of Information Science and Engineering, SDU. 1/ 47 Introduction Some methods for digitizing analog waveforms: Pulse-code modulation (PCM) Differential PCM

More information

Estimation-Theoretic Delayed Decoding of Predictively Encoded Video Sequences

Estimation-Theoretic Delayed Decoding of Predictively Encoded Video Sequences Estimation-Theoretic Delayed Decoding of Predictively Encoded Video Sequences Jingning Han, Vinay Melkote, and Kenneth Rose Department of Electrical and Computer Engineering University of California, Santa

More information

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 I am v Master Student v 6 months @ Music Technology Group, Universitat Pompeu Fabra v Deep learning for acoustic source separation v

More information

When taking a picture, what color is a (Lambertian) surface?

When taking a picture, what color is a (Lambertian) surface? Shadow removal When taking a picture, what color is a (Lambertian) surface? What if it s not a cloudy day? Region lit by skylight only Region lit by sunlight and skylight What great things could we do

More information

Interactions of Information Theory and Estimation in Single- and Multi-user Communications

Interactions of Information Theory and Estimation in Single- and Multi-user Communications Interactions of Information Theory and Estimation in Single- and Multi-user Communications Dongning Guo Department of Electrical Engineering Princeton University March 8, 2004 p 1 Dongning Guo Communications

More information

Towards Multi-field Inflation with a Random Potential

Towards Multi-field Inflation with a Random Potential Towards Multi-field Inflation with a Random Potential Jiajun Xu LEPP, Cornell Univeristy Based on H. Tye, JX, Y. Zhang, arxiv:0812.1944 and work in progress 1 Outline Motivation from string theory A scenario

More information