Projects in Wireless Communication Lecture 1

Size: px
Start display at page:

Download "Projects in Wireless Communication Lecture 1"

Transcription

1 Projects in Wireless Communication Lecture 1 Fredrik Tufvesson/Fredrik Rusek Department of Electrical and Information Technology Lund University, Sweden Lund, Sept 2018

2 Outline Introduction to the course Basics of digital communications Discrete-time implementations Carrier transmission

3 Introduction Lecturer and course responsible: Fredrik Tufvesson, E:2361A 5-6 scheduled lectures Teaching assistants: Guoda Tian, E:2367 MinKeun Chung, E:2334 Computer help sessions in the lab.

4 Introduction Ultimate goals for PWC: 1) Two computers should communicate via speaker/microphones 2) Two computers should communicate using software defined radios The projects should be performed in groups of TWO students (HARD LIMIT)

5 PWC 1 In the first part of PWC we only work in software. For a passing grade you must solve three tasks: 1. A digital baseband BPSK system should be implemented in C++ and its performance should be measured and verified against theoretical results ( ) P e = Q d 2 E b min N 0 2. Later in PWC you will encounter physical passband signals at the input of the microphone. In the first part, we will provide each group with one such signal; the bits carried by the signals correspond to the ASCII code of a secret password. If you can decode the signals and provide me with the password, you have passed task Same as 2 but with OFDM transmission and convolutional code.

6 Recommended reading Software-Defined Radio for Engineers, by Travis F. Collins, Robin Getz, Di Pu, and Alexander M. Wyglinski, 2018, ISBN-13: We will use some chapters in the second half of the course, and it covers many of the aspects in the first half as well. There is a free pdf of the book available, see

7 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII: You have passed PWC1, congratulations...

8 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII: You have passed PWC1, congratulations...

9 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII: You have passed PWC1, congratulations...

10 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII: You have passed PWC1, congratulations...

11 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII:You have passed PWC1, congratulations...

12 Example Assume that you receive the following noisy signal You must remove the noise...done! Decode the bits: Convert to ASCII: You have passed PWC1, congratulations...

13 Introduction Formal descriptions of the tasks can be found online.

14 Basics of Digital Communications This is a recall of baseband digital communications... We need to transmit a bit sequence {u k } = Map to symbols {a k } { 1, u k = 0 BPSK : a k = 1, u k = 1 1, u 2k u 2k+1 = 00 i, u 2k u 2k+1 = 01 QPSK : a k = 1, u 2k u 2k+1 = 10 i, u 2k u 2k+1 = 11

15 Basics of Digital Communications Each symbol is carried by a base pulse p(t) of length T, e.g. the half-cycle sinus p(t) t/t

16 Basics of Digital Communications So the transmission of bits generates the pulse train y(t) Transmission of t/t Mathematically we have y(t) = k a k p(t kt s ) Note that T s is the symbol time while T is the duration of the pulse p(t). How does T and T s relate in this example?t = T s

17 Basics of Digital Communications So the transmission of bits generates the pulse train y(t) Transmission of t/t Mathematically we have y(t) = k a k p(t kt s ) Note that T s is the symbol time while T is the duration of the pulse p(t). How does T and T s relate in this example? T = T s

18 Basics of Digital Communications So the transmission of bits generates the pulse train y(t) Transmission of t/t Mathematically we have y(t) = k a k p(t kt s ) Note that T s is the symbol time while T is the duration of the pulse p(t). How does T and T s relate in this example? T = T s

19 Basics of Digital Communications To avoid intersymbol interference one can use T < T s t/t In this example we have T = T s /2

20 Basics of Digital Communications The channel model assumed in this review is a pure AWGN channel AWGN y(t) r(t) Where the noise n(t) satisfies E{n (t)n(t+τ)} = δ(τ)n 0 /2; such a noise process must have power spectral density R(f) N 0 2 f

21 Basics of Digital Communications What does WGN look like? Can we show an example? Consider the power of the process P = R(f)df n(t) has infinite power! Thus, not possible to show an example of WGN

22 Basics of Digital Communications What does WGN look like? Can we show an example? Consider the power of the process P = R(f)df n(t) has infinite power! Thus, not possible to show an example of WGN

23 Basics of Digital Communications What does WGN look like? Can we show an example? Consider the power of the process P = R(f)df n(t) has infinite power! Thus, not possible to show an example of WGN

24 Basics of Digital Communications Explanation: Every signal we ever see in reality has been filtered by some low-pass filter.

25 Basics of Digital Communications Mathematically, in what way should the receiver process the received signal r(t). In other words...?â =...?arg min x r(t) k x k p(t kt s ) 2 dt

26 Basics of Digital Communications Mathematically, in what way should the receiver process the received signal r(t). Maximum-likelihood detection is the answer! â = arg max a P rob{r(t) a}

27 Basics of Digital Communications Mathematically, in what way should the receiver process the received signal r(t). Maximum-likelihood is equivalent to minimum Euclidean distance detection â = arg min a r(t) k a k p(t kt s ) 2 dt

28 Basics of Digital Communications To decode the (complex valued) signal r(t), we pass r(t) through a matched filter z(t) z(t) = p( t) For symmetric pulses p(t), we get Let z(t) = p(t) x(t) = r(t) p(t) = k a k g(t kt s ) + η(t) where η(t) is n(t) p(t) and g(t) = p(t) z(t). Take samples every T s seconds: x k = x(kt s ). Then x k = E p a k + η k where η k is a complex Gaussian random variable with variance E p N 0, that is E p N 0 /2 per dimension!

29 Basics of Digital Communications Energy computations and error probability: The energy per transmitted symbol E s is given by: E s = p 2 (t)dt while } {{ } E p the energy per transmitted bit is { E b = E s, BPSK E s /2, QPSK The physical minimum Euclidean distance is { Dmin 2 4E p, BPSK = 2E p, QPSK In both cases we end up with a normalized distance d 2 min probability is given by ( ) P e Q 2 E b N 0 = 2. The error

30 Discrete-Time Implementations In a computer-based package such as Matlab or C/C++, we cannot represent the signals y(t) as continuous time signals. Hence we must work with sampled versions. Let f s be the sample rate in samples/second and N be the number of samples per symbol. In PWC2, f s = samples/second We get that T s = N f s The symbol rate becomes R s = f s N

31 Discrete-Time Implementations We must sample the base pulse p(t). Assume a sample interval of T s /N seconds T s This is wrong!

32 We must sample the base pulse p(t). Assume a sample interval of T s /N seconds Ts/N T s This is wrong!

33 Discrete-Time Implementations We must sample the base pulse p(t). N+1 samples per symbol implies sample interval of T s /N seconds Ts/N T s This is wrong!

34 Discrete-Time Implementations Explanation: Plot two consecutive pulses Should be one point! 0 There should only be one point.

35 Discrete-Time Implementations Correct sampling! Represent the samples in a vector p = [ ]

36 Discrete-Time Implementations A sampled transmission signal of t/t s Slightly harder mathematical representation. Let {b k } be a zero-padded version of {a k } Then, b = [a }{{} N 1 y k = l b l p k l a }{{} N 1 a }{{} N 1 or simply y = b p a 4...]

37 Discrete-Time Implementations Convolutions in discrete-time: A convolution of x(t) and y(t) in continuous time is carried out as x(τ)y(t τ)dτ (1) Let x and y be sampled version of x(t) and y(t); the sampling rate is f s. The discrete time version of (1) is 1 x l y k l f s l The discrete time convolution must be scaled by the sampling rate!. 1/f s works as dτ in (1). The energy of the pulse p(t) must be approximated as E p = 1 f s k p 2 k

38 Discrete-Time Implementations Matched filters in discrete-time: The pulse train p should be filtered by a discrete-time matched filter. For symmetric pulses, we can take this mathched filter as z = p where p includes the last sample!, i.e. the length of p is N + 1. (This is however not crucial.) Then the output of the matched filter is (N = 20) Peak at sample samples The number of samples in y is N number of symbols and the length of the filter output is N + N number of symbols. The peak occurs at samples 1 + kn, k = 1, 2, 3...

39 Discrete-Time Implementations If there is a guard band (T < T s ), then the pulse is not symmetric and we can not take z = p. We must then use z k = p N+2 k, k = 1...N + 1 It is still true that the peaks occur at samples 1 + kn, k = 1, 2, 3...

40 Discrete-Time Implementations Implementation of discrete-time AWGN: Until now we have constructed a modulation signal y in discrete time. We now seek a noise vector n to be added to y that represents continuous time AWGN (that has inf power). We have that both the real and the imaginary parts of the samples of η(t) = n(t) z(t) are zero-mean and have variance E p N 0 /2. In discrete-time, a sample of the filtered noise process is given by η k = 1 n l z k l f s l

41 Discrete-Time Implementations Assume that the variance of each n k is σ 2 n. From probability theory it follows that η k has variance σ 2 n z 2 k /f 2 s. Since we get that σ 2 n k z 2 k/f 2 s = E p N 0 2 σ 2 N 0 = E p f s 2 = N 0 2 k z2 k 2 f s Thus, The sampling rate affects the variance of the discrete time representation of continuous AWGN

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

Coding theory: Applications

Coding theory: Applications INF 244 a) Textbook: Lin and Costello b) Lectures (Tu+Th 12.15-14) covering roughly Chapters 1,9-12, and 14-18 c) Weekly exercises: For your convenience d) Mandatory problem: Programming project (counts

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Electrical Engineering Written PhD Qualifier Exam Spring 2014

Electrical Engineering Written PhD Qualifier Exam Spring 2014 Electrical Engineering Written PhD Qualifier Exam Spring 2014 Friday, February 7 th 2014 Please do not write your name on this page or any other page you submit with your work. Instead use the student

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

Solutions to Selected Problems

Solutions to Selected Problems Solutions to Selected Problems from Madhow: Fundamentals of Digital Communication and from Johannesson & Zigangirov: Fundamentals of Convolutional Coding Saif K. Mohammed Department of Electrical Engineering

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Application of Matched Filter

Application of Matched Filter Application of Matched Filter Lecture No. 12 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview This lecture will look at the following: Matched filter vs

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Digital Communications

Digital Communications Digital Communications Chapter 9 Digital Communications Through Band-Limited Channels Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications:

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg FBMC/OQAM transceivers for 5G mobile communication systems François Rottenberg Modulation Wikipedia definition: Process of varying one or more properties of a periodic waveform, called the carrier signal,

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

Revision of Lecture 5

Revision of Lecture 5 Revision of Lecture 5 Information transferring across channels Channel characteristics and binary symmetric channel Average mutual information Average mutual information tells us what happens to information

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 13 Linear Zero Forcing Equalization 0 c 2012, Georgia Institute of Technology (lect13 1) Equalization The cascade of the transmit filter g(t), channel c(t), receiver filter

More information

One Lesson of Information Theory

One Lesson of Information Theory Institut für One Lesson of Information Theory Prof. Dr.-Ing. Volker Kühn Institute of Communications Engineering University of Rostock, Germany Email: volker.kuehn@uni-rostock.de http://www.int.uni-rostock.de/

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Multicarrier transmission DMT/OFDM

Multicarrier transmission DMT/OFDM W. Henkel, International University Bremen 1 Multicarrier transmission DMT/OFDM DMT: Discrete Multitone (wireline, baseband) OFDM: Orthogonal Frequency Division Multiplex (wireless, with carrier, passband)

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Introduction to Convolutional Codes, Part 1

Introduction to Convolutional Codes, Part 1 Introduction to Convolutional Codes, Part 1 Frans M.J. Willems, Eindhoven University of Technology September 29, 2009 Elias, Father of Coding Theory Textbook Encoder Encoder Properties Systematic Codes

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

Random Processes Why we Care

Random Processes Why we Care Random Processes Why we Care I Random processes describe signals that change randomly over time. I Compare: deterministic signals can be described by a mathematical expression that describes the signal

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components TUTORIAL ON DIGITAL MODULATIONS Part 3: 4-PSK [2--26] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello Quadrature modulation Consider a 2-D constellation,

More information

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land Ingmar Land, SIPCom8-1: Information Theory and Coding (2005 Spring) p.1 Overview Basic Concepts of Channel Coding Block Codes I:

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

E&CE 358, Winter 2016: Solution #2. Prof. X. Shen

E&CE 358, Winter 2016: Solution #2. Prof. X. Shen E&CE 358, Winter 16: Solution # Prof. X. Shen Email: xshen@bbcr.uwaterloo.ca Prof. X. Shen E&CE 358, Winter 16 ( 1:3-:5 PM: Solution # Problem 1 Problem 1 The signal g(t = e t, t T is corrupted by additive

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

ECE 564/645 - Digital Communications, Spring 2018 Midterm Exam #1 March 22nd, 7:00-9:00pm Marston 220

ECE 564/645 - Digital Communications, Spring 2018 Midterm Exam #1 March 22nd, 7:00-9:00pm Marston 220 ECE 564/645 - Digital Communications, Spring 08 Midterm Exam # March nd, 7:00-9:00pm Marston 0 Overview The exam consists of four problems for 0 points (ECE 564) or 5 points (ECE 645). The points for each

More information

Model-building and parameter estimation

Model-building and parameter estimation Luleå University of Technology Johan Carlson Last revision: July 27, 2009 Measurement Technology and Uncertainty Analysis - E7021E MATLAB homework assignment Model-building and parameter estimation Introduction

More information

Decision-Point Signal to Noise Ratio (SNR)

Decision-Point Signal to Noise Ratio (SNR) Decision-Point Signal to Noise Ratio (SNR) Receiver Decision ^ SNR E E e y z Matched Filter Bound error signal at input to decision device Performance upper-bound on ISI channels Achieved on memoryless

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

These outputs can be written in a more convenient form: with y(i) = Hc m (i) n(i) y(i) = (y(i); ; y K (i)) T ; c m (i) = (c m (i); ; c m K(i)) T and n

These outputs can be written in a more convenient form: with y(i) = Hc m (i) n(i) y(i) = (y(i); ; y K (i)) T ; c m (i) = (c m (i); ; c m K(i)) T and n Binary Codes for synchronous DS-CDMA Stefan Bruck, Ulrich Sorger Institute for Network- and Signal Theory Darmstadt University of Technology Merckstr. 25, 6428 Darmstadt, Germany Tel.: 49 65 629, Fax:

More information

Digital Modulation 1

Digital Modulation 1 Digital Modulation 1 Lecture Notes Ingmar Land and Bernard H. Fleury Navigation and Communications () Department of Electronic Systems Aalborg University, DK Version: February 5, 27 i Contents I Basic

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 4: Review on Fourier analysis and probabilty theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 19 th, 2015 1 Course Website o http://lms.mans.edu.eg/eng/

More information

Modulation & Coding for the Gaussian Channel

Modulation & Coding for the Gaussian Channel Modulation & Coding for the Gaussian Channel Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology

More information

EE 574 Detection and Estimation Theory Lecture Presentation 8

EE 574 Detection and Estimation Theory Lecture Presentation 8 Lecture Presentation 8 Aykut HOCANIN Dept. of Electrical and Electronic Engineering 1/14 Chapter 3: Representation of Random Processes 3.2 Deterministic Functions:Orthogonal Representations For a finite-energy

More information

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM ANAYSIS OF A PARTIA DECORREATOR IN A MUTI-CE DS/CDMA SYSTEM Mohammad Saquib ECE Department, SU Baton Rouge, A 70803-590 e-mail: saquib@winlab.rutgers.edu Roy Yates WINAB, Rutgers University Piscataway

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information

Communication Theory Summary of Important Definitions and Results

Communication Theory Summary of Important Definitions and Results Signal and system theory Convolution of signals x(t) h(t) = y(t): Fourier Transform: Communication Theory Summary of Important Definitions and Results X(ω) = X(ω) = y(t) = X(ω) = j x(t) e jωt dt, 0 Properties

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations

Summary: SER formulation. Binary antipodal constellation. Generic binary constellation. Constellation gain. 2D constellations TUTORIAL ON DIGITAL MODULATIONS Part 8a: Error probability A [2011-01-07] 07] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello 1 Part 8a: Error

More information

Computing Probability of Symbol Error

Computing Probability of Symbol Error Computing Probability of Symbol Error I When decision boundaries intersect at right angles, then it is possible to compute the error probability exactly in closed form. I The result will be in terms of

More information

CHIRP spread spectrum (CSS) is a spread spectrum technique

CHIRP spread spectrum (CSS) is a spread spectrum technique Bit-Error-Rate Performance Analysis of an Overlap-based CSS System Taeung Yoon, Dahae Chong, Sangho Ahn, and Seokho Yoon Abstract In a chirp spread spectrum (CSS system, the overlap technique is used for

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 15: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 29 th, 2015 1 Example: Channel Capacity of BSC o Let then: o For

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS

ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS EC 32 (CR) Total No. of Questions :09] [Total No. of Pages : 02 III/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 207 Second Semester ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS Time: Three Hours

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

Outline Digital Communications. Lecture 02 Signal-Space Representation. Energy Signals. MMSE Approximation. Pierluigi SALVO ROSSI

Outline Digital Communications. Lecture 02 Signal-Space Representation. Energy Signals. MMSE Approximation. Pierluigi SALVO ROSSI Outline igital Communications Lecture 2 Signal-Space Representation Pierluigi SALVO ROSSI epartment of Industrial and Information Engineering Second University of Naples Via Roma 29, 8131 Aversa (CE, Italy

More information

Sample Problems for the 9th Quiz

Sample Problems for the 9th Quiz Sample Problems for the 9th Quiz. Draw the line coded signal waveform of the below line code for 0000. (a Unipolar nonreturn-to-zero (NRZ signaling (b Polar nonreturn-to-zero (NRZ signaling (c Unipolar

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

EE4304 C-term 2007: Lecture 17 Supplemental Slides

EE4304 C-term 2007: Lecture 17 Supplemental Slides EE434 C-term 27: Lecture 17 Supplemental Slides D. Richard Brown III Worcester Polytechnic Institute, Department of Electrical and Computer Engineering February 5, 27 Geometric Representation: Optimal

More information

1-bit quantization and oversampling at the receiver: Sequence based communication

1-bit quantization and oversampling at the receiver: Sequence based communication Landau et al. EURASIP Journal on Wireless Communications and Networking (208) 208:83 https://doi.org/0.86/s3638-08-07-z RESEARCH -bit quantization and oversampling at the receiver: Sequence based communication

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Convolutional Coded Faster-than-Nyquist. Transmission

Convolutional Coded Faster-than-Nyquist. Transmission Faster-than-Nyquist ( ) ( ) 2009 Faster-than-Nyquist Convolutional Coded Faster-than-Nyquist Transmission Convolutional Coded Faster-than-Nyquist Transmission by Dong Shin Song Department of Electronic

More information

Notes on a posteriori probability (APP) metrics for LDPC

Notes on a posteriori probability (APP) metrics for LDPC Notes on a posteriori probability (APP) metrics for LDPC IEEE 802.3an Task Force November, 2004 Raju Hormis, Xiaodong Wang Columbia University, NY e-mail: raju@ee.columbia.edu Outline Section 55.3.11.3

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL T F T I G E O R G A I N S T I T U T E O H E O F E A L P R O G R ESS S A N D 1 8 8 5 S E R V L O G Y I C E E C H N O Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak

More information

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Objectives Scope of this lecture: If a Continuous Time (C.T.) signal is to be uniquely represented

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00 NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR Sp ' 00 May 3 OPEN BOOK exam (students are permitted to bring in textbooks, handwritten notes, lecture notes

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Kevin Buckley a i. communication. information source. modulator. encoder. channel. encoder. information. demodulator decoder. C k.

Kevin Buckley a i. communication. information source. modulator. encoder. channel. encoder. information. demodulator decoder. C k. Kevin Buckley - -4 ECE877 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set Review of Digital Communications, Introduction to

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information