E From Hollow and Solid Spheres

Size: px
Start display at page:

Download "E From Hollow and Solid Spheres"

Transcription

1 E From Hollow and Solid Spheres PHYS David Blasing Wednesday June 19th 1 / 32

2 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note: What we are doing today is only an approximation when you get very close to the surface of an object. 2 / 32

3 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note: What we are doing today is only an approximation when you get very close to the surface of an object. Effects from precisely how the individual charges have arranged themselves (each electron s current position) become important when you are less than about 1000 atomic diameters (< 10 7 m) away from the surface. 2 / 32

4 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note: What we are doing today is only an approximation when you get very close to the surface of an object. Effects from precisely how the individual charges have arranged themselves (each electron s current position) become important when you are less than about 1000 atomic diameters (< 10 7 m) away from the surface. Outside this range, the charges can be treated as uniform sheets of charge rather than individual charges. This is how we are treating them from here on out. 2 / 32

5 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note on Gauss s Law 1 Gauss s law can get E net from certain highly symmetric charge distributions very easily. 3 / 32

6 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note on Gauss s Law 1 Gauss s law can get E net from certain highly symmetric charge distributions very easily. 2 Gauss s law is a topic covered later, and we will be able to prove the following then. 3 / 32

7 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note on Gauss s Law 1 Gauss s law can get E net from certain highly symmetric charge distributions very easily. 2 Gauss s law is a topic covered later, and we will be able to prove the following then. 3 It can also be done through direct integration, but its messy. For the sake of time I won t present the derivation, but you should go through it on your own. 3 / 32

8 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions E From Hollow Sphere Q is the total charge on the sphere s surface, R is the radius of the sphere For r > R, E sphere = 1 4πɛ 0 Q r 2 ˆr For r < R, E sphere = 0 4 / 32

9 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge Note: a uniformly charged spherical shell (as long as its stays uniformly charged) interacts with external fields like a point charge The shell must be spherically symmetric and thin enough as to neglect any effects arising from this thickness 5 / 32

10 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge Note: a uniformly charged spherical shell (as long as its stays uniformly charged) interacts with external fields like a point charge The shell must be spherically symmetric and thin enough as to neglect any effects arising from this thickness It does not matter what the spherical shell is made of It only matters that the charge is distributed in a thin, spherically symmetric shell 5 / 32

11 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge A qualitative drawing showing that E net sums to that of a point charge outside the spherical shell of charge: 6 / 32

12 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge A qualitative drawing showing that E net sums to 0 inside a uniform spherical shell of charge: 7 / 32

13 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge Group question: you have a spherical shell that is uniformly charged on only its surface and filled with a plastic. What is the polarization of the molecules in the plastic inside of the charged shell? Why? Is P different very close to the charged surface of the sphere as compared to the center? Why? 8 / 32

14 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge Answer: Recall that P = α E. So no E, no P. It doesn t matter at all if there are charges around, it only matters what the local E net is at the location of the plastic/dielectric material. Since the E net = 0 inside a uniformly charged spherical shell, P = 0 every in the plastic Even if the molecules are very close to the charged surface, E net is still zero. There will be no polarization of those molecules. 9 / 32

15 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Summary: E from a thin uniformly charged shell: for r < R, E = 0 for r > R, E = 1 Q 4πɛ 0 r 2 ˆr Outside, E is exactly that of a point charge with the total charge (Q) located at the center 10 / 32

16 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions A spherical shell of charge 1 E of Hollow Shell vs Distance Q R ) 2 E 1 (Units of 4π ǫ Radial Distance (Units of R) 11 / 32

17 Clicker Question 1 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions 12 / 32

18 Clicker Question 2 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions 13 / 32

19 Clicker Question 3 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions 14 / 32

20 A Vague Group Question Discuss in small group the following question, why can t E = 1 Q 4πɛ 0 ˆr be the whole story for the E field from a point charge? r 2 15 / 32

21 A Vague Group Question Discuss in small group the following question, why can t E = 1 Q 4πɛ 0 ˆr be the whole story for the E field from a point charge? r 2 It is undefined at r=0. E can be made arbitrarily big by making r arbitrarily small. Fields take energy to set up, so that formula says the field from point charges carry an unlimited amount of energy. 15 / 32

22 A Vague Group Question Discuss in small group the following question, why can t E = 1 Q 4πɛ 0 ˆr be the whole story for the E field from a point charge? r 2 It is undefined at r=0. E can be made arbitrarily big by making r arbitrarily small. Fields take energy to set up, so that formula says the field from point charges carry an unlimited amount of energy. When specifically do you think this formula breaks down? 15 / 32

23 A Vague Group Question Discuss in small group the following question, why can t E = 1 Q 4πɛ 0 ˆr be the whole story for the E field from a point charge? r 2 It is undefined at r=0. E can be made arbitrarily big by making r arbitrarily small. Fields take energy to set up, so that formula says the field from point charges carry an unlimited amount of energy. When specifically do you think this formula breaks down? This formula is not accurate when the distance becomes smaller than the radius of the point charge. Next, we are going to write down a better approximation for the electric field inside a point charge. 15 / 32

24 E from of a solid sphere (radius R, total charge Q) charged throughout its volume: Model the sphere as a series of concentric spherical shells At a location outside the sphere, we are also outside of all spherical shells Each spherical shell creates an electric field like a point charge would at the center of the shell Question: what is the electric field outside a charged solid sphere? 16 / 32

25 Electric field of a solid sphere charged throughout its volume, for r > R: E = 1 4πɛ 0 Q r 2 17 / 32

26 Electric field of a solid sphere charged throughout its volume: Now r < R, same model as above At a location inside the sphere we are inside some of the spherical shells - they contribute nothing to E net At a location inside the sphere we are outside some of the spherical shells - they contribute to E net 18 / 32

27 For r < R 19 / 32

28 For r < R 20 / 32

29 For r < R 21 / 32

30 For r < R 22 / 32

31 For r < R 23 / 32

32 For r < R 24 / 32

33 For r < R 25 / 32

34 For r < R 26 / 32

35 Summary: E from a solid sphere charged throughout its volume: for r < R, E = 1 Q 4πɛ 0 R 3 r ˆr for r > R, E = 1 Q 4πɛ 0 r 2 ˆr Inside E grows linearly; outside it falls 1 r 2 E of a point charge. and is exactly like the 27 / 32

36 1 E of Solid Sphere vs Distance Q R ) 2 E 1 (Units of 4π ǫ Radial Distance (Units of R) 28 / 32

37 E of Solid Sphere vs Distance Sanity Check: E = 0 at r=0 Q R 2) 1 E (Units of 4π ǫ Radial Distance (Units of R) 29 / 32

38 E of Solid Sphere vs Distance Sanity Check: E = 0 at r=0 Q R 2) 1 E (Units of 4π ǫ Radial Distance (Units of R) E grows as we enclose more charge for r < R 29 / 32

39 E of Solid Sphere vs Distance Sanity Check: E = 0 at r=0 Q R 2) 1 E (Units of 4π ǫ Radial Distance (Units of R) E grows as we enclose more charge for r < R E = E Point Charge for r > R 29 / 32

40 1 E of Solid Sphere vs Distance 1 E of Hollow Shell vs Distance Q R 2) 0.7 Q R 2) 0.7 E 1 (Units of 4π ǫ E 1 (Units of 4π ǫ Radial Distance (Units of R) Radial Distance (Units of R) Inside they are different, but outside both are exactly the same as a point charge 30 / 32

41 1 E of Solid Sphere vs Distance 1 E of Hollow Shell vs Distance Q R 2) 0.7 Q R 2) 0.7 E 1 (Units of 4π ǫ E 1 (Units of 4π ǫ Radial Distance (Units of R) Radial Distance (Units of R) Inside they are different, but outside both are exactly the same as a point charge So the sanity check of reducing to a point charge far away doesen t help in this case 30 / 32

42 Note: E always jumps by σ ɛ 0 across a uniformly charged thin surface (can be proved with Gauss s law). 31 / 32

43 E jumps by σ ɛ 0 across a uniformly thing charged surface 1 E of Hollow Shell vs Distance Q R 2) E 1 (Units of 4π ǫ Radial Distance (Units of R) Group discussion question: use this to verify the jump in the above graph. 32 / 32

44 E jumps by σ ɛ 0 across a uniformly thing charged surface 1 E of Hollow Shell vs Distance Q R 2) E 1 (Units of 4π ǫ Radial Distance (Units of R) Group discussion question: use this to verify the jump in the above graph. For the hollow shell, σ, the charge per area ( Q Q A ), is. So E 4πR 2 jumps from 0 to σ ɛ 0 = Q 4πɛ 0 R 2 32 / 32

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+.

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Phys102 Lecture 4 Phys102 Lecture 4-1 Gauss s Law Key Points Electric Flux Gauss s Law Applications of Gauss s Law References SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Electric Flux Electric flux: The direction

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

AP Physics C. Electric Potential and Capacitance. Free Response Problems

AP Physics C. Electric Potential and Capacitance. Free Response Problems AP Physics C Electric Potential and Capacitance Free Response Problems 1. Two stationary point charges + are located on the y-axis at a distance L from the origin, as shown above. A third charge +q is

More information

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26

B Field Creation Detecting B fields. Magnetic Fields. PHYS David Blasing. Wednesday June 26th 1 / 26 Magnetic Fields PHYS 272 - David Blasing Wednesday June 26th 1 / 26 Magnetic ( B) Fields This is a significant change, until now we have discussed just E fields. Now we are talking about a totally different

More information

More Gauss, Less Potential

More Gauss, Less Potential More Gauss, Less Potential Today: Gauss Law examples Monday: Electrical Potential Energy (Guest Lecturer) new SmartPhysics material Wednesday: Electric Potential new SmartPhysics material Thursday: Midterm

More information

Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A

Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A Name: Date: 1. Sketch the electric field at each of three points along an axis through the centers of the plates: (1) between the capacitor

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 21 Gauss s Law PowerPoint Lecture prepared by Richard Wolfson Slide 21-1 In this lecture you ll learn To represent electric fields using field-line diagrams

More information

Gauss s Law. David J. Starling Penn State Hazleton PHYS 212

Gauss s Law. David J. Starling Penn State Hazleton PHYS 212 implies I have had my results for a long time, but I do not yet know how I am to arrive at them. - Carl Friedrich Gauss David J. Starling Penn State Hazleton PHYS 212 Before we jump right into, we need

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I February 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best or most nearly correct answer For questions 6-9, solutions must

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

Physics 9 WS E3 (rev. 1.0) Page 1

Physics 9 WS E3 (rev. 1.0) Page 1 Physics 9 WS E3 (rev. 1.0) Page 1 E-3. Gauss s Law Questions for discussion 1. Consider a pair of point charges ±Q, fixed in place near one another as shown. a) On the diagram above, sketch the field created

More information

Physics 272: Electricity and Magnetism. Mark Palenik Thursday June 14 th

Physics 272: Electricity and Magnetism. Mark Palenik Thursday June 14 th Physics 272: Electricity and Magnetism Mark Palenik Thursday June 14 th Topics Finish up dipoles Polarization of materials Conductors Charging/discharging iclicker (not credit) An atom is placed in a UNIFORM

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written:

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written: The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

Electric Potential II

Electric Potential II Electric Potential II Physics 2415 Lecture 7 Michael Fowler, UVa Today s Topics Field lines and equipotentials Partial derivatives Potential along a line from two charges Electric breakdown of air Potential

More information

4. Gauss s Law. S. G. Rajeev. January 27, The electric flux through any closed surface is proportional to the total charge contained inside it.

4. Gauss s Law. S. G. Rajeev. January 27, The electric flux through any closed surface is proportional to the total charge contained inside it. 4. Gauss s Law S. G. Rajeev January 27, 2009 1 Statement of Gauss s Law The electric flux through any closed surface is proportional to the total charge contained inside it. In other words E da = Q ɛ 0.

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law Physics 6C Review 1 Eric Reichwein Department of Physics University of California, Santa Cruz July 16, 2012 1 Review 1.1 Coulombs Law Figure 1: Coulombs Law The steps for solving any problem of this type

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ.

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ. Slide 1 / 21 1 closed surface, in the shape of a cylinder of radius R and Length L, is placed in a region with a constant electric field of magnitude. The total electric flux through the cylindrical surface

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law 22-1 Electric Flux Electric flux: Electric flux through an area is proportional to the total number of field lines crossing the area. 22-1 Electric Flux Example 22-1: Electric flux.

More information

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau Problem 1 Physics 7B Midterm 2 Solutions - Fall 217 Professor R. Birgeneau (a) Since the wire is a conductor, the electric field on the inside is simply zero. To find the electric field in the exterior

More information

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /.

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /. Practice Questions Exam 1/page1 PES 110 - Physics Practice Exam 1 Questions Name: Score: /. Instructions Time allowed for this is exam is 1 hour 15 minutes 5 multiple choice (5 points) 3 to 5 written problems

More information

Name Date Partners. Lab 2 GAUSS LAW

Name Date Partners. Lab 2 GAUSS LAW L02-1 Name Date Partners Lab 2 GAUSS LAW On all questions, work together as a group. 1. The statement of Gauss Law: (a) in words: The electric flux through a closed surface is equal to the total charge

More information

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_4 Sunday, February 03, 008 Page 1 Name: Date: 1. A point charged particle is placed at the center of a spherical Gaussian surface. The net electric flux Φ net

More information

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally:

where the last equality follows from the divergence theorem. Now since we did this for an arbitrary volume τ, it must hold locally: 8 Electrodynamics Read: Boas Ch. 6, particularly sec. 10 and 11. 8.1 Maxwell equations Some of you may have seen Maxwell s equations on t-shirts or encountered them briefly in electromagnetism courses.

More information

Electric Field Lines

Electric Field Lines Electric Field Lines Electric forces Electric fields: - Electric field lines emanate from positive charges - Electric field lines disappear at negative charges If you see a bunch of field lines emanating

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Physics 208, Spring 2015 Exam #1

Physics 208, Spring 2015 Exam #1 Physics 208, Spring 2015 Exam #1 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.

More information

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions. Gauss Law 1 Name Date Partners 1. The statement of Gauss' Law: (a) in words: GAUSS' LAW Work together as a group on all questions. The electric flux through a closed surface is equal to the total charge

More information

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group. 65 Name Date Partners 1. The statement of Gauss' Law: Lab 4 - GAUSS' LAW On all questions, work together as a group. (a) in words: The electric flux through a closed surface is equal to the total charge

More information

Physics II Fiz Summer 2017

Physics II Fiz Summer 2017 Physics II Fiz138-22 Summer 2017 Instructor: Dr. Mehmet Burak Kaynar Office: H.U. Physics Eng Dept. SNTG Lab. E-mail: bkaynar@hacettepe.edu.tr Office hours: Wednesday 10:00 11:00 Evaluation Attendance:

More information

Physics 9 Spring 2011 Midterm 1 Solutions

Physics 9 Spring 2011 Midterm 1 Solutions Physics 9 Spring 2011 Midterm 1 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something

More information

Electricity & Magnetism Lecture 4: Gauss Law

Electricity & Magnetism Lecture 4: Gauss Law Electricity & Magnetism Lecture 4: Gauss Law Today s Concepts: A) Conductors B) Using Gauss Law Electricity & Magne/sm Lecture 4, Slide 1 Another question... whats the applica=on to real life? Stuff you

More information

Electric flux. You must be able to calculate the electric flux through a surface.

Electric flux. You must be able to calculate the electric flux through a surface. Today s agenda: Announcements. lectric field lines. You must be able to draw electric field lines, and interpret diagrams that show electric field lines. A dipole in an external electric field. You must

More information

Applications of Gauss Law

Applications of Gauss Law Applications of Gauss Law The Gauss Law of electrostatics relates the net electric field flux through a complete surface S of some volume V to the net electric charge inside that volume, Φ E [S] def =

More information

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Today s Concepts: A) Electric Flux B) Field Lines Gauss Law Electricity & Magne@sm Lecture 3, Slide 1 Your Comments What the heck is epsilon

More information

AP Physics II Assignment #3

AP Physics II Assignment #3 AP Physics II Assignment #3 For this assignment, you must submit your final answers on the answer sheet provided with this packet. For full credit, you must explain your reasoning, and your reasoning must

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

Physics 9 Spring 2012 Midterm 1 Solutions

Physics 9 Spring 2012 Midterm 1 Solutions Physics 9 Spring 22 NAME: TA: Physics 9 Spring 22 Midterm s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a Physics 7B Midterm 2 - Fall 207 Professor R. Birgeneau Total Points: 00 ( Problems) This exam is out of 00 points. Show all your work and take particular care to explain your steps. Partial credit will

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

Experiment III Electric Flux

Experiment III Electric Flux Experiment III Electric Flux When a charge distribution is symmetrical, we can use Gauss Law, a special law for electric fields. The Gauss Law method of determining the electric field depends on the idea

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines Lecture 3. Electric Field Flux, Gauss Law Last Lecture: Electric Field Lines 1 iclicker Charged particles are fixed on grids having the same spacing. Each charge has the same magnitude Q with signs given

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

Homework 4 PHYS 212 Dr. Amir

Homework 4 PHYS 212 Dr. Amir Homework 4 PHYS Dr. Amir. (I) A uniform electric field of magnitude 5.8 passes through a circle of radius 3 cm. What is the electric flux through the circle when its face is (a) perpendicular to the field

More information

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. Purpose: Theoretical study of Gauss law. 2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. When drawing field line pattern around charge distributions

More information

Gauss Law. Challenge Problems

Gauss Law. Challenge Problems Gauss Law Challenge Problems Problem 1: The grass seeds figure below shows the electric field of three charges with charges +1, +1, and -1, The Gaussian surface in the figure is a sphere containing two

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Chapter 23 Term083 Term082

Chapter 23 Term083 Term082 Chapter 23 Term083 Q6. Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and Q. The magnitude of the electric

More information

Phys 122 Lecture 3 G. Rybka

Phys 122 Lecture 3 G. Rybka Phys 122 Lecture 3 G. Rybka A few more Demos Electric Field Lines Example Calculations: Discrete: Electric Dipole Overview Continuous: Infinite Line of Charge Next week Labs and Tutorials begin Electric

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

IMPORTANT: LABS START NEXT WEEK

IMPORTANT: LABS START NEXT WEEK Chapter 21: Gauss law Thursday September 8 th IMPORTANT: LABS START NEXT WEEK Gauss law The flux of a vector field Electric flux and field lines Gauss law for a point charge The shell theorem Examples

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E Topic 7 Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E urface enclosing an electric dipole. urface enclosing charges 2q and q. Electric flux Flux density : The number of field

More information

Physics 202: Spring 1999 Solution to Homework Assignment #3

Physics 202: Spring 1999 Solution to Homework Assignment #3 Physics 202: Spring 1999 Solution to Homework Assignment #3 Questions: Q3. (a) The net electric flux through each surface shown is zero, since every electric field line entering from one end exits through

More information

INGENIERÍA EN NANOTECNOLOGÍA

INGENIERÍA EN NANOTECNOLOGÍA ETAPA DISCIPLINARIA TAREAS 385 TEORÍA ELECTROMAGNÉTICA Prof. E. Efren García G. Ensenada, B.C. México 206 Tarea. Two uniform line charges of ρ l = 4 nc/m each are parallel to the z axis at x = 0, y = ±4

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

IClicker question. We have a negative charge q=-e. How electric field is directed at point X? q=-e (negative charge) X A: B: C: D: E: E=0

IClicker question. We have a negative charge q=-e. How electric field is directed at point X? q=-e (negative charge) X A: B: C: D: E: E=0 We have a negative charge q=-e. How electric field is directed at point X? IClicker question q=-e (negative charge) X A: B: C: D: E: E=0 1 A: q=-e (negative charge) F X E Place positive charge q0 Force

More information

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

Physics 212. Lecture 3. Gauss s Law. Today's Concepts: Electric Flux and Field Lines. Physics 212 Lecture 3, Slide 1

Physics 212. Lecture 3. Gauss s Law. Today's Concepts: Electric Flux and Field Lines. Physics 212 Lecture 3, Slide 1 Physics 212 Lecture 3 Today's Concepts: lectric Flux and Field Lines Gauss s Law Physics 212 Lecture 3, Slide 1 Introduce a new constant: 0 q k r r 2 ˆ k 1 4 0 k = 9 x 10 9 N m 2 / C 2 0 = 8.85 x 10-12

More information

A B C D E. 1 Two charges +Q and -3Q are placed in opposite corners of a square. The work required to move a test charge q from point A to point B is:

A B C D E. 1 Two charges +Q and -3Q are placed in opposite corners of a square. The work required to move a test charge q from point A to point B is: Slide 1 / 40 1 Two charges +Q and -3Q are placed in opposite corners of a square. The work required to move a test charge q from point to point is: dependent on the path taken from to directly proportional

More information

Charge Conservation and Polarization

Charge Conservation and Polarization Charge Conservation and PHYS 272 - David Blasing Wednesday June 18th, 2014 Quiz!!!!!!!!! On a half sheet up paper, write a main (red) result that we have seen so far in the course. 1 point for the name

More information

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name:

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name: Phy207 Exam I (Form1) Professor Zuo Fall Semester 2015 On my honor, I have neither received nor given aid on this examination Signature: Name: ID number: Enter your name and Form 1 (FM1) in the scantron

More information

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0 PHY2049 Fall 2010 Profs. S. Hershfield, A. Petkova Exam 1 Solution 1. Four charges are placed at the corners of a rectangle as shown in the figure. If Q 1 = 1µC, Q 2 = 2µC, Q 3 = 1µC, and Q 4 = 2µC, what

More information

Physics Lecture: 09

Physics Lecture: 09 Physics 2113 Jonathan Dowling Physics 2113 Lecture: 09 Flux Capacitor (Schematic) Gauss Law II Carl Friedrich Gauss 1777 1855 Gauss Law: General Case Consider any ARBITRARY CLOSED surface S -- NOTE: this

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

Physics 2049 Exam 1 Solutions Fall 2002

Physics 2049 Exam 1 Solutions Fall 2002 Physics 2049 xam 1 Solutions Fall 2002 1. A metal ball is suspended by a string. A positively charged plastic ruler is placed near the ball, which is observed to be attracted to the ruler. What can we

More information

Physics Lecture 13

Physics Lecture 13 Physics 113 Jonathan Dowling Physics 113 Lecture 13 EXAM I: REVIEW A few concepts: electric force, field and potential Gravitational Force What is the force on a mass produced by other masses? Kepler s

More information

Physics 208 Test 2 Spring 2000

Physics 208 Test 2 Spring 2000 Spring 2000 Problems 1-5. Multiple Choice/Short Answer (5 points each / 25 points total) no explanation required, but no partial credit either. However, a bonus of up to two points may be awarded if an

More information

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11 : olution et One Northwestern University, Electrodynamics I Wednesday, January 13, 2016 Contents 1 Problem #1: General Forms of Gauss and tokes Theorems. 2 1.1 Gauss Theorem - Ordinary Product............................

More information

PHY 2049: Introductory Electromagnetism

PHY 2049: Introductory Electromagnetism PHY 2049: Introductory Electromagnetism Notes From the Text 1 Introduction Chris Mueller Dept. of Physics, University of Florida 3 January, 2009 The subject of this course is the physics of electricity

More information

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark Physics 2B Lecture 24B Gauss 10 Deutsche Mark Electric Flux Flux is the amount of something that flows through a given area. Electric flux, Φ E, measures the amount of electric field lines that passes

More information

3: Gauss s Law July 7, 2008

3: Gauss s Law July 7, 2008 3: Gauss s Law July 7, 2008 3.1 Electric Flux In order to understand electric flux, it is helpful to take field lines very seriously. Think of them almost as real things that stream out from positive charges

More information

Read this cover page completely before you start.

Read this cover page completely before you start. I affirm that I have worked this exam independently, without texts, outside help, integral tables, calculator, solutions, or software. (Please sign legibly.) Read this cover page completely before you

More information

Lecture 13. PHYC 161 Fall 2016

Lecture 13. PHYC 161 Fall 2016 Lecture 13 PHYC 161 Fall 2016 Gauss s law Carl Friedrich Gauss helped develop several branches of mathematics, including differential geometry, real analysis, and number theory. The bell curve of statistics

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information