Multiphysicscouplings and stability in geomechanics

Size: px
Start display at page:

Download "Multiphysicscouplings and stability in geomechanics"

Transcription

1 ALERT Geomaterials 25 th ALERT Workshop, Aussois, France 29 Sept.-1 Oct. 214 Multiphysicscouplings and stability in geomechanics Jean Sulem, Ioannis Stefanou Laboratoire Navier, Ecole des Ponts ParisTech, IFSTTAR, CNRS UMR 825, Université Paris-Est, Marne-la-Vallée, France Aknowledgments: N. Brantut, V. Famin, A. Schubnel, M. Veveakis

2 Seismic event: Unstable slip along a pre-existing mature fault (stick-slip instability) Faultzone embeddedin an elastic crustal block Conceptual model of a spring slider system τ Key factor for the nucleation of seismic slip : Softeningof the shearresistance of the fault zone stable unstable δ 2

3 Exampleof coupled processes during seismic slip

4 8 18 Temperature ( C) km depth f=.1; k f =1-19 m 2 h=5mm T Pp pore pressure (MPa) Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects time (s) The endothermic chemical reaction limits the co-seismic temperature increase Shear stress (MPa) km depth f=.1; k f =1-19 m 2 h=5mm τ P p pore pressure (MPa) -Pore pressure exhibits a maximum and then decreases due to the reduction of solid volume (pore pressure pulse) -Weakening/restrengthening of the shear stress time (s) 6 Sulem& Famin, (29), J. Geoph. Res.

5 A key parameter: Size of the localizedzone

6 ADIABATIC SHEAR BANDING

7 Adiabatic shear-banding (1/3) τ γ& T Strain rate hardening τ c τ ( γ&,t ) and Temperature softening γ τ H = ( > ) & γ τ ξ = ( < ) T Simple model: : strain rate hardening modulus : temperature softening coefficient (& & ) ( ) τ = τ + H γ γ + ξ T T s T s : threshold for temperature softening

8 Adiabatic shear-banding (2/3) We consider a shear experiment at constant strain rate Assumption: all the frictional energy is converted into heat ( ( s )) ρct& = τγ& = τ + ξ T T & γ at t = : T = T and τ = τ s z u z (z,t) & γ = V h σ V/2 h ρc : specific heat Integrating the above differential equation we get: τ = + ξ ξγ& ρc T Ts 1 exp t ξγ& ξ τ c = τ exp t = τ exp γ ρc ρc x τ -V/2 τ c γ for : + and τ t T T s τ ξ

9 Linear stability analysis of adiabatic shear-banding (1/5) To study the stability of adiabatic shear banding we perform a linear perturbation analysis of the uniform solution T ( z, t) = T ( t) + T ( z, t) V ( z, t) = & γ z + V ( z, t) τ ( z, t) = τ ( t) + τ ( z, t) z T1 ( z, t) = Aexp( st) exp 2π i λ z V1 ( z, t) = Bexp( st) exp 2π i λ z τ1( z, t) = Dexp( st) exp 2π i λ s is the growth coefficient in time of the instability λ=h/n is the wave length of the instability (N=1,2, wave number)

10 Governing equations(with heat diffusion term) Constitutive equation: c th : thermal diffusivity Stability analysis of adiabatic shear-banding (2/5) (& & ) ( ) τ = τ + H γ γ + ξ T T Energy balance: 2 T ρc T& cth τγ 2 z = & Momentum balance: τ V = ρ z t s 2π i ξ H 1 λ 2 A 2π 2π i ρc s + cth τ & γ B = λ λ D 2π i ρs λ For non trivial solution :(A,B,C) (,,) π 2π 2π ρcρ s + ρc ( ρcth + H ) ξργ& s + ξτ + ρccthh = λ λ λ Stability condition: All the roots of the characteristic equation have a negative real part

11 Stability analysis of adiabatic shear-banding (3/5) For strain rate and temperature softening (H < and ξ < ), the uniform solution is unstable for all wave lengths of the perturbation For strain rate hardening and temperature softening (H > and ξ < ) Stability condition: ξτ 2 2π + cthhρc > λ < λcr, with λcr = 2 λ π cthhρc ξτ Perturbations with wavelengths shorter than the critical value will decay exponentially; those greater than the critical value will grow exponentially. Only shear zones with a thickness h < λ cr /2 will support stable homogeneous shear.

12 Stability analysis of adiabatic shear-banding (4/5) Numerical example c th 2 1mm / s ρc = 2.7MPa/ C τ H = 7MPa =.5MPa.s ξ =.5MPa/ C λ λ λ cr cr cr = = 2π ( τ 7MPa) ( τ ) = cth H ρc ξτ = =.39mm Growth coefficient s (7) (3) (1) (5) τ λ cr λ λ cr For the growth coefficient s of the instability reaches a maximum for a particular wave length λ Shear will localize in narrow zones with a size controlled by the wave length with fastest growth coefficient of the instability

13 Stability analysis of adiabatic shear-banding (5/5) Mode (1) Evolution in time and spaceof the strain rate (3) (1) Mode (3)

14 THERMAL PRESSURIZATION OF THE PORE FLUID : A MECHANISM OF THERMAL SOFTENING

15 z x Undrained adiabatic shearing of a saturated rock layer u z (z,t) u x (z,t) Solution: σ n -V/2 ( σ n ) ( σ n p ) V/2 p, T h & γ = f Λ p = p + p 1 exp( γ & t) ρc f Λ = + 1 exp( & γ ) Λ ρc T T t V h p T mass balance: = Λ t t T 1 V energy balance: = ( σ n p) f t ρc h / 2 & γ f = f + H log & γ is the rate-dependent friction coefficient Λ = λ f n λ is the coefficient of thermal pressurization (typical values:.1 to 1 MPa/ C) n β + β f The pore-pressure increases towards the imposed normal stress σ n. In due course of the shear heating and fluid pressurization process, the shear strength τis reduced towards zero. 15

16 Linearstability analysis of undrained adiabatic shearing of a saturated rock layer Stability condition: Rice et al., (214), J. Geoph. Res. λ < λ, with λ = 2π cr cr ( c ) th + chy H ρc f Λ f + H & γ ( 2 ) Only shear zones with a thickness h < λ cr /2 will support stable homogeneous shear. Competing processes: Fluid and thermal diffusion and rate-dependent frictional strengthening tend to expand the localized zone, while thermal pressurization tends to narrow it. For representative material parameters at a seismogenic depth of 7km, V=1m/s, h=1mm λ / 2 = 3µ m for intact material, 23 µ m for damaged material cr The localizedzone thickness may becomparable withthe gouge grain size 16

17 LOCALIZED ZONE THICKNESS AND MICROSTRUCTURE Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure Sulem, Stefanou, Veveakis, (211), Granular Matter Strainhardeningelasto-plasticity for 2D Cosseratcontinuum

18 Rock layer at great depth (7km) Cosserat continuum Cosserat terms are active only in the post localization regime Microinertia Wave length selection is obtained (wave length with fastest growth in time) Cauchy continuum The critical hardening modulus for instability is unchanged (h cr =.15). The growth coefficient tends to infinity for the infinitely small wave length limit (ill-posedness).

19 The selected wave length decreases with decreasing hardening modulus and reaches a minimum (for λ~2). λ is the wave length normalized by the internal length of the Cosserat model R (grain size). With R=1µm(grain size for highly finely granulated fault core) the obtained localized zone thickness is about 1mm which is compatible with field observations of localized shear zones in broader damaged fault zones.

20 Effectof chemicalreactions such as thermal decomposition of minerals on the localized zone thickness t t z 2 p T p = Λ + chy 2 Veveakis, Sulem, Stefanou, (212), J. Stuct. Geol. Mass balance: Pore pressure diffusion and generation + 1 ρ β f m t 1 β d * * n t d Thermal pressurization Fluid diffusion Fluid production Porosity increase (solid decomposition) Energy balance T T 1 v 1 H m t z ρc z M ρc t 2 = cth + τ 2 CaCO 3 d Heat diffusion Frictional heat Heat consumedin the chemical reaction

21 Example: Thermal decomposition of Carbonate For representativematerial parameters at a seismogenic depthof 7km, a selected wave length of 4-5 * Cosserat length scale is obtained The shear band thickness is initially controlled by the thermal pressurization and canbe reducedwhen the temperature of the slippingzone reachesthe critical temperature of mineral decomposition (about 7 C for carbonates)

22 CHEMICAL DEGRADATION AND COMPACTION INSTABILITIES IN GEOMATERIALS Stefanou& Sulem, (214), J. Geoph. Res

23 Theoretical framework for deformation bands formation Criterion for compaction bands without dissolution: β + µ 3 Associate plasticity: β = µ = 3 2 Issen& Rudnicki(2) ζ is a chemical softening parameter (e.g. Grain Dissolution) e.g. Nova et al. (23), Int.J.Num.An.Meth.Geom. Xie et al. (211) Int.J.Rock Mech. Min. Sc, Hu & Hueckel (27), Int.J.Num.An.Meth.Geom. 23

24 Distinction of scales Macro-scale / Elementary volume (REV) - Constitutive behavior - Momentum balance - Mass balance Micro-scale / Single Grain - Reaction kinetics of dissolution - Grain crushing 24

25 Reaction kinetics (micro-scale) solid +solvent solution ( 3) ( 1) ( 2) e.g. dissolution of quartz SiO (solid)+2h O(liquid) H SiO (aqueous solution) or carbonate ( ) CaCO (solid)+h CO (aqueous solution) Ca HCO (aqueous solution) w2 S w2 = k 1 eq t e w2 w 2 k e is the mass fraction of the dissolution product in the fluid is a reaction rate coefficient is the void ratio S 1 D is the specific area of a single grain of diameter D 25

26 Evolution of the effective grain size Grain crushing (micro-scale) a = D D a + E T Lade et al. J. (1996), J.Geotech. Engrg. or S = S + E 1 T a Baud et al. (29),1mm a E T is a material constant which describes grain crushability is the total energy density given to the 26 system

27 Constitutive behavior (macro-scale) Modified Cam-Clay plasticity model f 2 2 q M p p p c + ( ) = c R R ( ) p p p p ζ κ Non local chemical softening ζ µ ρ w = eζ t µ ρ t M 3 f 2 2 s w M 2 1 = w + V T V T w dV w2 lc 2 z l c characteristic length 27

28 Mass balance (macro-scale) p f 1 ε w = c p c t n t t 2 2 hy X f p, ch β f chy n β f c p, ch p f ε is the hydraulic diffusivity is the porosity is the fluid compressibility is the chemical pressurization coefficient is pressure of the fluid is the volumetric strain 28

29 Linear stability analysis of oedometric compaction h (, ) = + % (, ) u z t u u z t z z z h (, ) = + % (, ) p z t p p z t f f f h (, ) = + % (, ) w z t w w z t st z u% z ( z, t) = Ue cos λ st z p% f ( z, t) = Pe sin λ st z w% 2 ( z, t) = We sin λ s is the growth coefficient of the perturbation (Lyapunov exponent) 29

30 Numerical example : Compaction banding in a reservoir Carbonate grainstone Elastic constants K = 5GPa G = 5GPa Cam clay yield surface p R MPa p = 3MPa M =.9 Physical properties c hy = 1 m s n = D =,2mm Chemical parameters k = 1 mols m Grain crushing parameter: Initial stress state at 1.8km (oedometric) σ n p f 45MPa 18MPa a =.5 MPa 3

31 Linear Stability Analysis & zones of instability µ = β = 3 2 Instability region Tendency for grain crushing 1 a Instability region becomes larger 31

32 Oedometric stress path

33 Wave length selection 33

34 Wave length selection influence of the hydraulic diffusivity 34

35 Wave length selection influence of grain crushing and dissolution rate a 35

36 Conclusions - Importance of coupled processesin seismicslip: shearheating, pore fluid pressurization, thermal decomposition of minerals - Thermal decompositionof mineralscanexplainthe lackof pronounced heat outflow along major tectonic faults - A key parameter: thicknessof the localizedzone (competition of several length scales) - Thickness and periodicity of compaction bands: a new chemomechanicalmodel withstrongcouplingthat accounts for the increase of dissolution kinetics rate because of grain crushing 36

Going beyond failure in mechanics From bifurcation theory to strain localization and earthquake control

Going beyond failure in mechanics From bifurcation theory to strain localization and earthquake control Séminaire de Calcul Scientifique du CERMICS Going beyond failure in mechanics From bifurcation theory to strain localization and earthquake control Ioannis Stefanou (Navier, ENPC) 19 avril 2018 Going beyond

More information

Thermal and chemical effects in shear and compaction bands

Thermal and chemical effects in shear and compaction bands Thermal and chemical effects in shear and compaction bands Jean Sulem, Ioannis Stefanou To cite this version: Jean Sulem, Ioannis Stefanou. Thermal and chemical effects in shear and compaction bands. Geomechanics

More information

Bifurcation Analysis in Geomechanics

Bifurcation Analysis in Geomechanics Bifurcation Analysis in Geomechanics I. VARDOULAKIS Department of Engineering Science National Technical University of Athens Greece and J. SULEM Centre d'enseignement et de Recherche en Mecanique des

More information

Shear localization due to thermal pressurization of pore fluids in rapidly sheared granular media

Shear localization due to thermal pressurization of pore fluids in rapidly sheared granular media BIOT-5 Conference, Vienna, 10-12 July 2013, Symposium MS02, Mechanics of fluid-infiltrated earth materials - in memory of Terzaghi and Biot Session MS02-2, Localization and failure, presentation MS02-2.1,

More information

Shear localization due to thermal pressurization of pore fluids in rapidly sheared granular media

Shear localization due to thermal pressurization of pore fluids in rapidly sheared granular media Symposium on the Application of Mechanics to Geophysics Scripps Institute of Oceanography, University of California at San Diego 17 and 18 January 2015 Shear localization due to thermal pressurization

More information

Table of Contents. Foreword... xiii Introduction... xv

Table of Contents. Foreword... xiii Introduction... xv Foreword.... xiii Introduction.... xv Chapter 1. Controllability of Geotechnical Tests and their Relationship to the Instability of Soils... 1 Roberto NOVA 1.1. Introduction... 1 1.2. Load control... 2

More information

Why are earthquake slip zones so narrow?

Why are earthquake slip zones so narrow? Why are earthquake slip zones so narrow? John W. Rudnicki Northwestern University Evanston, IL (with Jim Rice, Harvard University) October 9, 9 University o Minnesota. Geomechanics Seminar F. Chester,

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting 5 Sep. 2017 www.geosc.psu.edu/courses/geosc508 Work of deformation, shear and volume strain Importance of volume change and diltancy rate (rate of volume strain with

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

A PRESSURE VESSEL FOR TRUE-TRIAXIAL DEFORMATION & FLUID FLOW DURING FRICTIONAL SHEAR

A PRESSURE VESSEL FOR TRUE-TRIAXIAL DEFORMATION & FLUID FLOW DURING FRICTIONAL SHEAR A PRESSURE VESSEL FOR TRUE-TRIAXIAL DEFORMATION & FLUID FLOW DURING FRICTIONAL SHEAR Chris Marone, Brett Carperter, Derek Elsworth, Igor Faoro, Matt Ikari, Matt Knuth, André Niemeijer, Demian Saffer, and

More information

A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model

A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model JHUWS05 A thermo-hydro-mechanically coupled analysis of clay using a thermo-elasto-viscoplastic model by F. Oka, S. Kimoto, Y.-S. Kim, N. Takada Department of Civil & Earth Resources Engineering, Kyoto

More information

Localization in Undrained Deformation

Localization in Undrained Deformation Localization in Undrained Deformation J. W. Rudnicki Dept. of Civil and Env. Engn. and Dept. of Mech. Engn. Northwestern University Evanston, IL 621-319 John.Rudnicki@gmail.com Fourth Biot Conference on

More information

Role of in situ stress and fluid compressibility on Slow Slip Events (SSE) & instability triggering (EQ) Derived from a Poro-Plastic Fault Core Model

Role of in situ stress and fluid compressibility on Slow Slip Events (SSE) & instability triggering (EQ) Derived from a Poro-Plastic Fault Core Model Role of in situ stress and fluid compressibility on Slow Slip Events (SSE) & instability triggering (EQ) Derived from a Poro-Plastic Fault Core Model MAURY Vincent*, PIAU Jean-Michel**, FITZENZ Delphine***

More information

Rock and fluid thermodynamics control the dynamics of induced earthquakes

Rock and fluid thermodynamics control the dynamics of induced earthquakes Rock and fluid thermodynamics control the dynamics of induced earthquakes M. Acosta, F. Passelègue, A. Schubnel et M. Violay (mateo.acosta@epfl.ch) Context Induced Seismicity in Enhanced Geothermal Systems

More information

Fault Rocks. EARS5136 slide 1

Fault Rocks. EARS5136 slide 1 Fault Rocks EARS5136 slide 1 Fault rocks Fault rock types Examples of deformation features in cores Microstructures Porosity and permeability Lithological and lithification control EARS5136 slide 2 Deformation

More information

MODELING GEOMATERIALS ACROSS SCALES

MODELING GEOMATERIALS ACROSS SCALES MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AFOSR WORKSHOP ON PARTICULATE MECHANICS JANUARY 2008 COLLABORATORS: DR XUXIN TU AND MR KIRK ELLISON

More information

Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation

Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation B. Pardoen - F. Collin - S. Levasseur - R. Charlier Université de Liège ArGEnCo ALERT Workshop 2012 Aussois,

More information

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008 MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008 COLLABORATORS: DR XUXIN TU AND MR KIRK ELLISON THE ROADMAP MOTIVATION

More information

Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985 #1586}

Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985 #1586} 12.524, 2005 09 28 LE04: Friction and Constitutive Laws 1 Friction in Rocks Assigned Reading: {Marone, 1998 #3905; Chapter 8 in \Paterson, 2005 #5865} Resource reading: {Scholz, 1990 #4288; Ruina, 1985

More information

Faults. Strike-slip fault. Normal fault. Thrust fault

Faults. Strike-slip fault. Normal fault. Thrust fault Faults Strike-slip fault Normal fault Thrust fault Fault any surface or narrow zone with visible shear displacement along the zone Normal fault Strike-slip fault Reverse fault Thrust fault

More information

ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM. Ronaldo I. Borja Stanford University ABSTRACT

ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM. Ronaldo I. Borja Stanford University ABSTRACT ISSUES IN MATHEMATICAL MODELING OF STATIC AND DYNAMIC LIQUEFACTION AS A NON-LOCAL INSTABILITY PROBLEM Ronaldo I. Borja Stanford University ABSTRACT The stress-strain behavior of a saturated loose sand

More information

Strain localization driven by thermal decomposition during seismic shear

Strain localization driven by thermal decomposition during seismic shear JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 12, DOI:1.12/214JB11493, 215 Strain localization driven by thermal decomposition during seismic shear John D. Platt 1,2, Nicolas Brantut 3, and James R. Rice 1,4 Abstract.

More information

Shear heating of a fluid-saturated slip-weakening dilatant fault zone: 2. Quasi-drained regime

Shear heating of a fluid-saturated slip-weakening dilatant fault zone: 2. Quasi-drained regime JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B10, 2472, doi:10.1029/2002jb002218, 2003 Shear heating of a fluid-saturated slip-weakening dilatant fault zone: 2. Quasi-drained regime Dmitry I. Garagash

More information

Influence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions

Influence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jb008556, 2011 Influence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions

More information

Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge, 1. Linearized stability analysis

Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge, 1. Linearized stability analysis JOURNAL OF GOPHYSICAL RSARCH, VOL.???, XXXX, DOI:0.029/, Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge,. Linearized stability analysis James R. Rice,,2, John W. Rudnicki 3,4,

More information

Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge: 1. Linearized Stability Analysis

Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge: 1. Linearized Stability Analysis Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge:. Linearized Stability Analysis The Harvard community has made this article openly available. Please share how this access benefits

More information

Scale Dependence in the Dynamics of Earthquake Rupture Propagation: Evidence from Geological and Seismological Observations

Scale Dependence in the Dynamics of Earthquake Rupture Propagation: Evidence from Geological and Seismological Observations Euroconference of Rock Physics and Geomechanics: Natural hazards: thermo-hydro-mechanical processes in rocks Erice, Sicily, 25-30 September, 2007 Scale Dependence in the Dynamics of Earthquake Rupture

More information

Post failure localization instabilities in chemically active creeping faults: Steady-state bifurcation and transient analysis

Post failure localization instabilities in chemically active creeping faults: Steady-state bifurcation and transient analysis Post failure localization instabilities in chemically active creeping faults: Steady-state bifurcation and transient analysis *Sotirios Alevizos 1), Emmanuil Veveakis 2) and Yannis F. Dafalias 3) 1),3)

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model

Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model Frédéric Collin * and Benoît Pardoen ** Argenco Department University of Liège 1, Chemin des Chevreuils B-4000 Liège, Belgium

More information

NUMERICAL MODELING OF INSTABILITIES IN SAND

NUMERICAL MODELING OF INSTABILITIES IN SAND NUMERICAL MODELING OF INSTABILITIES IN SAND KIRK ELLISON March 14, 2008 Advisor: Jose Andrade Masters Defense Outline of Presentation Randomized porosity in FEM simulations Liquefaction in FEM simulations

More information

Drained Against Undrained Behaviour of Sand

Drained Against Undrained Behaviour of Sand Archives of Hydro-Engineering and Environmental Mechanics Vol. 54 (2007), No. 3, pp. 207 222 IBW PAN, ISSN 1231 3726 Drained Against Undrained Behaviour of Sand Andrzej Sawicki, Waldemar Świdziński Institute

More information

Micromechanics-based model for cement-treated clays

Micromechanics-based model for cement-treated clays THEORETICAL & APPLIED MECHANICS LETTERS 3, 216 (213) Micromechanics-based model for cement-treated clays Zhenyu Yin, 1, a) 2, b) and Pierre Yves Hicher 1) Department of Civil Engineering, Shanghai Jiao

More information

Shear heating of a fluid-saturated slip-weakening dilatant fault zone 1. Limiting regimes

Shear heating of a fluid-saturated slip-weakening dilatant fault zone 1. Limiting regimes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B2, 2121, doi:10.1029/2001jb001653, 2003 Shear heating of a fluid-saturated slip-weakening dilatant fault zone 1. Limiting regimes Dmitry I. Garagash Department

More information

Strain Localization and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material

Strain Localization and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material N. Brantut 1 Department of Earth Sciences, University College London, Rock and Ice Physics Laboratory, WC1E 6BT London, UK; Laboratoire de Géologie, CNRS UMR 8538 École Normale Supérieure, 24 rue Lhomond,

More information

Enabling Technologies

Enabling Technologies Enabling Technologies Mechanical Modelling 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity

More information

3D simulations of an injection test done into an unsaturated porous and fractured limestone

3D simulations of an injection test done into an unsaturated porous and fractured limestone 3D simulations of an injection test done into an unsaturated porous and fractured limestone A. Thoraval *, Y. Guglielmi, F. Cappa INERIS, Ecole des Mines de Nancy, FRANCE *Corresponding author: Ecole des

More information

A simple elastoplastic model for soils and soft rocks

A simple elastoplastic model for soils and soft rocks A simple elastoplastic model for soils and soft rocks A SIMPLE ELASTO-PLASTIC MODEL FOR SOILS AND SOFT ROCKS by Roberto Nova Milan University of Technology 1. MODEL HISTORY The model is the result of the

More information

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Most earthquake simulations study either one large seismic event with full inertial effects or long-term slip history

More information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4-1 4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4.1 Problem Statement The stress and pore pressure changes due to the expansion

More information

Instability analysis and numerical simulation of the dissociation process of methane hydrate bearing soil

Instability analysis and numerical simulation of the dissociation process of methane hydrate bearing soil Computer Methods and Recent Advances in Geomechanics Oka, Murakami, Uzuoka & Kimoto (Eds.) 2015 Taylor & Francis Group, London, ISBN 978-1-138-00148-0 Instability analysis and numerical simulation of the

More information

Permeability Variations During Crack Damage Evolution in Rocks

Permeability Variations During Crack Damage Evolution in Rocks Permeability Variations During Crack Damage Evolution in Rocks Philip Meredith Mineral, Ice & Rock Physics Laboratory Department of Earth Sciences University College London Euroconference, Erice, September

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

friction friction a-b slow fast increases during sliding

friction friction a-b slow fast increases during sliding µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

More information

Qualitative modeling of earthquakes and aseismic slip in the Tohoku-Oki area. Nadia Lapusta, Caltech Hiroyuki Noda, JAMSTEC

Qualitative modeling of earthquakes and aseismic slip in the Tohoku-Oki area. Nadia Lapusta, Caltech Hiroyuki Noda, JAMSTEC Qualitative modeling of earthquakes and aseismic slip in the Tohoku-Oki area Nadia Lapusta, Caltech Hiroyuki Noda, JAMSTEC Constitutive law on the fault: Rate-and-state friction at low slip rates + Potential

More information

Jihoon Kim, George J. Moridis, John Edmiston, Evan S. Um, Ernest Majer. Earth Sciences Division, Lawrence Berkeley National Laboratory 24 Mar.

Jihoon Kim, George J. Moridis, John Edmiston, Evan S. Um, Ernest Majer. Earth Sciences Division, Lawrence Berkeley National Laboratory 24 Mar. TOUGH+ROCMECH for the Analysis of coupled Flow, Thermal, Geomechanical and Geophysical Processes Code Description and Applications to Tight/Shale Gas Problems Jihoon Kim, George J. Moridis, John Edmiston,

More information

*To whom correspondence should be addressed. This file includes text and figures divided into four supplementary items:

*To whom correspondence should be addressed.   This file includes text and figures divided into four supplementary items: Supplementary Materials for: Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation. Violay M., Heap M.J., Acosta M., and Madonna

More information

Unjacketed bulk compressibility of sandstone in laboratory experiments. R. M. Makhnenko 1 and J. F. Labuz 1

Unjacketed bulk compressibility of sandstone in laboratory experiments. R. M. Makhnenko 1 and J. F. Labuz 1 481 Unjacketed bulk compressibility of sandstone in laboratory experiments R. M. Makhnenko 1 and J. F. Labuz 1 1 Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455; PH (612)

More information

1.033/1.57 Mechanics of Material Systems (Mechanics and Durability of Solids I)

1.033/1.57 Mechanics of Material Systems (Mechanics and Durability of Solids I) Mechanics of Material Systems (Mechanics and Durability of Solids I) Franz-Josef Ulm If Mechanics was the answer, what was the question? Traditional: Structural Engineering Geotechnics Structural Design

More information

How pore fluid pressurization influences crack tip processes during dynamic rupture

How pore fluid pressurization influences crack tip processes during dynamic rupture GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:.29/, How pore fluid pressurization influences crack tip processes during dynamic rupture Nicolas Brantut,,2,3 and James R. Rice 3 We calculate temperature

More information

Off-Fault Plasticity and Earthquake Rupture Dynamics: 2. Effects of Fluid Saturation

Off-Fault Plasticity and Earthquake Rupture Dynamics: 2. Effects of Fluid Saturation Off-Fault Plasticity and Earthquake Rupture Dynamics: 2. Effects of Fluid Saturation The Harvard community has made this article openly available. Please share how this access benefits you. Your story

More information

Constitutive modelling of the thermo-mechanical behaviour of soils

Constitutive modelling of the thermo-mechanical behaviour of soils First Training Course: THM behaviour of clays in deep excavation with application to underground radioactive waste disposal Constitutive modelling of the thermo-mechanical behaviour of soils Lyesse LALOUI

More information

Discrete Element Modelling in Granular Mechanics WUHAN seminars, China, 28th august-2nd september 2017

Discrete Element Modelling in Granular Mechanics WUHAN seminars, China, 28th august-2nd september 2017 Discrete Element Modelling in Granular Mechanics WUHAN seminars, China, 28th august-2nd september 2017 F. DARVE, L. SIBILLE, F. DUFOUR Laboratoire Sols, Solides, Structures, Risques, INPG-UGA-CNRS, Grenoble,

More information

Effect of the intermediate principal stress on fault strike and dip - theoretical analysis and experimental verification

Effect of the intermediate principal stress on fault strike and dip - theoretical analysis and experimental verification Effect of the intermediate principal stress on fault strike and dip - theoretical analysis and experimental verification B. Haimson University of Wisconsin, USA J. Rudnicki Northwestern University, USA

More information

Dynamic weakening and the depth dependence of earthquake fauling

Dynamic weakening and the depth dependence of earthquake fauling JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:1.129/, 1 2 Dynamic weakening and the depth dependence of earthquake fauling Nicolas Brantut 1, John D. Platt 2 N. Brantut, Rock and Ice Physics Laboratory,

More information

3D and 2D Formulations of Incremental Stress-Strain Relations for Granular Soils

3D and 2D Formulations of Incremental Stress-Strain Relations for Granular Soils Archives of Hydro-Engineering and Environmental Mechanics Vol. 55 (2008), No. 1 2, pp. 45 5 IBW PAN, ISSN 121 726 Technical Note D and 2D Formulations of Incremental Stress-Strain Relations for Granular

More information

Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization

Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:.9/, Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization Eric G. Daub, M. Lisa Manning, and Jean M. Carlson Abstract.

More information

Effect of Anisotropic Permeability on Band Growth

Effect of Anisotropic Permeability on Band Growth Effect of Anisotropic Permeability on Band Growth Jesse Taylor-West October 7, 24 Introduction The mechanics of partially molten regions of the mantle are not well understood- in part due to the inaccessibility

More information

7. STRESS ANALYSIS AND STRESS PATHS

7. STRESS ANALYSIS AND STRESS PATHS 7-1 7. STRESS ANALYSIS AND STRESS PATHS 7.1 THE MOHR CIRCLE The discussions in Chapters and 5 were largely concerned with vertical stresses. A more detailed examination of soil behaviour requires a knowledge

More information

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strains in Soil and Rock Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strain ε 1 1 2 ε 2 ε Dimension 1 2 0 ε ε ε 0 1 2 ε 1 1 2 ε 2 ε Plane Strain = 0 1 2

More information

The depth-dependence of dynamic weakening

The depth-dependence of dynamic weakening JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:1.19/, The depth-dependence of dynamic weakening Nicolas Brantut 1, John D. Platt Abstract. Earthquake propagation along faults is controlled by both

More information

RHEOLOGY OF ROCKS IN NATURAL TECTONIC PROCESSES

RHEOLOGY OF ROCKS IN NATURAL TECTONIC PROCESSES RHEOLOGY OF ROCKS IN NATURAL TECTONIC PROCESSES Evans, Brian Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, USA Keywords: Rock deformation, Brittle fracture,

More information

A micromechanical approach to describe internal erosion effects in soils

A micromechanical approach to describe internal erosion effects in soils A micromechanical approach to describe internal erosion effects in soils Luc Scholtès, Pierre-Yves Hicher, Luc Sibille To cite this version: Luc Scholtès, Pierre-Yves Hicher, Luc Sibille. A micromechanical

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Discrete Element Modeling of Soils as Granular Materials

Discrete Element Modeling of Soils as Granular Materials Discrete Element Modeling of Soils as Granular Materials Matthew R. Kuhn Donald P. Shiley School of Engineering University of Portland National Science Foundation Grant No. NEESR-936408 Outline Discrete

More information

Verification of the asperity model using seismogenic fault materials Abstract

Verification of the asperity model using seismogenic fault materials Abstract Verification of the asperity model using seismogenic fault materials Takehiro Hirose*, Wataru Tanikawa and Weiren Lin Kochi Institute for Core Sample Research/JAMSTEC, JAPAN * Corresponding author: hiroset@jamstec.go.jp

More information

Formation and Extension of Localized Compaction in Porous Sandstone

Formation and Extension of Localized Compaction in Porous Sandstone Formation and Extension of Localized Compaction in Porous Sandstone J. W. Rudnicki Dept. of Civil and Env. Eng. and Dept. of Mechanical Eng. Northwestern University June 26, 20012 Plenary Talk, ARMA, Chicago,

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Improvement of a hypoplastic model to predict clay behaviour under undrained conditions

Improvement of a hypoplastic model to predict clay behaviour under undrained conditions Improvement of a hypoplastic model to predict clay behaviour under undrained conditions Mašín, D. and Herle, I. September 3, 27 Accepted for publication in Acta Geotechnica ABSTRACT A shortcoming of the

More information

Integrated Ground Behavior

Integrated Ground Behavior Integrated Ground Behavior Part A: Particle-level Phenomena & Macroscale Behavior (J. Carlos Santamarina) Georgia Institute of Technology fluid particles microorganisms mineral size shape surface charge

More information

Rock Material. Chapter 3 ROCK MATERIAL HOMOGENEITY AND INHOMOGENEITY CLASSIFICATION OF ROCK MATERIAL

Rock Material. Chapter 3 ROCK MATERIAL HOMOGENEITY AND INHOMOGENEITY CLASSIFICATION OF ROCK MATERIAL Chapter 3 Rock Material In all things of nature there is something of the marvelous. Aristotle ROCK MATERIAL The term rock material refers to the intact rock within the framework of discontinuities. In

More information

Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law

Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law Agnès Helmstetter (LGIT Grenoble) and Bruce Shaw (LDE0 Columbia Univ) Days after Nias earthquake Cumulative number

More information

Friction Constitutive Laws and. The Mechanics of Slow Earthquakes and the Spectrum of Fault Slip Behaviors

Friction Constitutive Laws and. The Mechanics of Slow Earthquakes and the Spectrum of Fault Slip Behaviors Friction Constitutive Laws and. The Mechanics of Slow Earthquakes and the Spectrum of Fault Slip Behaviors Chris Marone, The Pennsylvania State University John Leeman, Marco Scuderi, Elisa Tinti, Cristiano

More information

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams Samuel Forest Centre des Matériaux/UMR 7633 Mines Paris ParisTech /CNRS BP 87, 91003 Evry,

More information

Constitutive Modelling of Granular Materials with Focus to Microstructure and its Effect on Strain-Localization

Constitutive Modelling of Granular Materials with Focus to Microstructure and its Effect on Strain-Localization Constitutive Modelling of Granular Materials with Focus to Microstructure and its Effect on Strain-Localization R.G. Wan University of Calgary, Calgary, Alberta, Canada P.J. Guo McMaster University, Hamilton,

More information

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA 3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA Li Xiaofan MEE09177 Supervisor: Bunichiro Shibazaki ABSTRACT We perform 3D modeling of earthquake generation of the Xianshuihe

More information

Micro-mechanics in Geotechnical Engineering

Micro-mechanics in Geotechnical Engineering Micro-mechanics in Geotechnical Engineering Chung R. Song Department of Civil Engineering The University of Mississippi University, MS 38677 Fundamental Concepts Macro-behavior of a material is the average

More information

Chemical Influence of Pore Pressure on Brine Flow in Clay-Rich Material

Chemical Influence of Pore Pressure on Brine Flow in Clay-Rich Material Chemical Influence of Pore Pressure on Brine Flow in Clay-Rich Material Etienne Cassini 1(&), Danila Mylnikov 1, and Roman Makhnenko 1,2 1 Laboratory of Soil Mechanics Chair Gaz Naturel Petrosvibri, Swiss

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a

Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a Universidad de Buenos Aires, Fac. Ing., IGPUBA, ARGENTINA b Department of Mathematics, Purdue University, USA c Universidad

More information

Mechanical modelling of SiC/SiC composites and design criteria

Mechanical modelling of SiC/SiC composites and design criteria Mechanical modelling of SiC/SiC composites and design criteria F. Bernachy CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France L. Gélébart CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France J. Crépin Centre des

More information

Granular Mechanics of Geomaterials (presentation in Cassino, Italy, 2006)

Granular Mechanics of Geomaterials (presentation in Cassino, Italy, 2006) Granular Mechanics of Geomaterials (presentation in Cassino, Italy, 2006) Takashi Matsushima University of Tsukuba 1 Where am I from? 2 What is granular mechanics? Particle characteristics (size, shape,

More information

Influence of Dissipated Energy on Shear Band Spacing in HY100 Steel

Influence of Dissipated Energy on Shear Band Spacing in HY100 Steel Influence of Dissipated Energy on Shear Band Spacing in HY100 Steel Omar Oussouaddi, Loïc Daridon, Saïd Ahzi, André Chrysochoos To cite this version: Omar Oussouaddi, Loïc Daridon, Saïd Ahzi, André Chrysochoos.

More information

Frictional rheologies have a wide range of applications in engineering

Frictional rheologies have a wide range of applications in engineering A liquid-crystal model for friction C. H. A. Cheng, L. H. Kellogg, S. Shkoller, and D. L. Turcotte Departments of Mathematics and Geology, University of California, Davis, CA 95616 ; Contributed by D.

More information

The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM

The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM *Yi-Ming Liu 1) and Hua-Bei Liu 2) 1), 2) School of Civil Engineering and Mechanics, Huazhong University

More information

Friction can increase with hold time. This happens through growth and increasing shear strength of contacts ( asperities ).

Friction can increase with hold time. This happens through growth and increasing shear strength of contacts ( asperities ). Friction can increase with hold time. This happens through growth and increasing shear strength of contacts ( asperities ). If sliding speeds up, the average lifespan of asperities decreases This means

More information

Petroleum Geomechanics for Shale Gas

Petroleum Geomechanics for Shale Gas Petroleum Geomechanics for Shale Gas Prof. Lyesse LALOUI Chair Professor «Gaz Naturel» Ecole Polytechnique Fédérale de Lausanne, EPFL Acknowledgement: V. Favero, A. Ferrari, L. Chao Unconventional Gas

More information

Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening

Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening Glaucio H. Paulino 1, Kyoungsoo Park 2, Waldemar Celes 3, Rodrigo Espinha 3 1 Department of Civil and Environmental Engineering

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications

Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications Production-induced stress change in and above a reservoir pierced by two salt domes: A geomechanical model and its applications Peter Schutjens, Jeroen Snippe, Hassan Mahani, Jane Turner, Joel Ita and

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Statement of the Problem Engineering properties of geomaterials are very important for civil engineers because almost everything we build - tunnels, bridges, dams and others

More information

Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization

Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Pulse-like, crack-like, and supershear earthquake ruptures with shear strain localization Eric G. Daub, 1 M. Lisa Manning, 1,2 and Jean M.

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

Influence of Damage on Pore Size Distribution and Permeability of Rocks

Influence of Damage on Pore Size Distribution and Permeability of Rocks Influence of Damage on Pore Size Distribution and Permeability of Rocks C. Arson 1, J.-M. Pereira 2 1. Texas A&M University, College Station, Texas 2. Ecole Nationale des Ponts et Chaussées, France The

More information

FRICTIONAL HEATING DURING AN EARTHQUAKE. Kyle Withers Qian Yao

FRICTIONAL HEATING DURING AN EARTHQUAKE. Kyle Withers Qian Yao FRICTIONAL HEATING DURING AN EARTHQUAKE Kyle Withers Qian Yao Temperature Change Along Fault Mode II (plain strain) crack rupturing bilaterally at a constant speed v r Idealize earthquake ruptures as shear

More information

Earthquake and Volcano Deformation

Earthquake and Volcano Deformation Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c

More information

Formulation of a nonlinear porosity law for fully saturated porous media at finite strains

Formulation of a nonlinear porosity law for fully saturated porous media at finite strains Author manuscript, published in "Journal of the Mechanics and Physics of Solids 61, 2 (2013) 537-556" DOI : 10.1016/j.jmps.2012.09.010 Formulation of a nonlinear porosity law for fully saturated porous

More information

Biot 2013/6/25 14:10 page 1 #1

Biot 2013/6/25 14:10 page 1 #1 Biot 13/6/5 14:1 page 1 #1 Published in Poromechanics V, Proceedings of the Fifth Biot Conference on Poromechanics, Vienna, Austria, 1-1 July, 13. pp 556-565. Publisher : American Society of Civil Engineers

More information