1.033/1.57 Mechanics of Material Systems (Mechanics and Durability of Solids I)

Size: px
Start display at page:

Download "1.033/1.57 Mechanics of Material Systems (Mechanics and Durability of Solids I)"

Transcription

1 Mechanics of Material Systems (Mechanics and Durability of Solids I) Franz-Josef Ulm

2 If Mechanics was the answer, what was the question? Traditional: Structural Engineering Geotechnics Structural Design - Service State (Elasticity) - Failure (Plasticity or Fracture) - Mechanism

3 If Mechanics was the answer, what was the question? Material Sciences and Engineering New materials for the Construction Industry Micromechanical Design of a new generation of Engineered materials Concrete with Strength of Steel

4 If Mechanics was the answer, what was the question? Diagnosis and Prognosis Anticipating the Future

5 If Mechanics was the answer, what was the question? Diagnosis and Prognosis Anticipating the Future

6 If Mechanics was the answer, what was the question? Traditional: Structural Engineering Geotechnics Material Sciences and Engineering New materials for the Construction Industry Engineered Biomaterials, Diagnosis and Prognosis Anticipating the Future Pathology of Materials and Structures (Infrastructure Durability, Bone Diseases, etc.) Give numbers to decision makers

7 If Mechanics was the answer, what was the question? Fall Spring 01 Mechanics and Mechanics and Durability of Solids I: Durability of Solids II: Deformation and Strain Damage and Fracture Stress and Stress States Chemo-Mechanics Elasticity and Poro-Mechanics Elasticity Bounds Diffusion and Plasticity and Yield Dissolution Design

8 Content Part I. Deformation and Strain 1 Description of Finite Deformation 2 Infinitesimal Deformation Part II. Momentum Balance and Stresses 3 Momentum Balance 4 Stress States / Failure Criterion Part III. Elasticity and Elasticity Bounds 5 Thermoelasticity, 6 Variational Methods Part IV. Plasticity and Yield Design 7 1D-Plasticity An Energy Approac 8 Plasticity Models 9 Limit Analysis and Yield Design

9 Assignments Part I. Deformation and Strain HW #1 Part II. Momentum Balance and Stresses HW #2 Quiz #1 Part III. Elasticity and Elasticity Bounds HW #3 Quiz #2 Part IV. Plasticity and Yield Design HW #4 Quiz #3 FINAL

10 Part I: Deformation and Strain 1. Finite Deformation

11 Modeling Scales Λ R B l d dω H

12 Modeling Scale (cont d) d << l << H 10 2 m Material Science d 10 3 m l Scale of Continuum Mechanics 10 6 m

13 LEVEL III Mortar, Concrete > 10-3 m LEVEL II Cement Paste < 10-4 m Cement paste plus sand and Aggregates, eventually Interfacial Transition Zone C-S-H matrix plus clinker phases, CH crystals, and macroporosity LEVEL I C-S-H matrix < 10-6 m Low Density and High Density C-S-H phases (incl. gel porosity) LEVEL 0 C-S-H solid m C-S-H solid phase (globules incl. intra-globules nanoporosity) plus inter-globules gel porosity

14 LEVEL III Deposition scale > 10-3 m Scale of deposition layers Visible texture. LEVEL II ( Micro ) Flake aggregation and inclusions m Flakes aggregate into layers, Intermixed with silt size (quartz) grains. LEVEL I ( Nano ) Mineral aggregation m Different minerals aggregate to form solid particles (flakes which include nanoporosity). LEVEL 0 Clay Minerals m x x x Elementary particles (Kaolinite, Smectite, Illite, etc.), and Nanoporosity (10 30 nm). x x

15 Modeling Scales Λ R B l d dω H

16 Transport of a Material Vector dx ξ=x X X x dx e 2 dx=f dx e 3 e 1 Deformation Gradient

17 Exercise: Pure Extension Test e 2 e 1 e 3

18 e 2 (e 3 ) Exercise: Position Vector X [1 β(t)]h x L [1+α]L e 1 x 1 =X 1 (1+α); x 2 =X 2 (1 β); x 3 =X 3 (1 β);

19 e 2 (e 3 ) Exercise: Material Vector / Deformation Gradient X dx [1-β(t)]H x dx L [1+α(t)]L e 1 F 11 = (1+α); F 22 = F 33 = (1-β)

20 Volume Transport dω dx 2 dx 3 dx dω t dx 1 dx 2 dx 3 dx X x dx 1 e 2 dω t = det(f)dω e e 1 3 Jacobian of Deformation

21 Transport of an oriented material surface U NdA nda u=f. U (a) (b) nda=j t F -1 NdA Chapter 1

22 Transport of scalar product of two Material Vectors dy π/2 dy e 2 dx π/2 θ dx e 3 e 1 E = Green-Lagrange Strain Tensor dx dy= dx (2E+1) dy

23 Linear Dilatation and Distortion Length Variation of a Material Vector: Linear Dilatation λ(e α )=(1+2Ε αα ) 1/2 1 Angle Variation of two Material Vectors: Distortion 2Ε αβ sinθ(e α,e β )= [(1+2Εαα ) (1+2Ε ββ )] 1/2

24 Training Set: Simple Shear e 2 e 2 dx dx ξ dx 2 =dx 2 X x dx 1 (a) e 1 e 1 (b)

25 Problem Set #1 α=α(x) R e y R-Y Deformed Fiber y Initial Fiber e x x

26 X 2 double shear α X 1

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity 1.050 Engineering Mechanics Lecture 22: Isotropic elasticity 1.050 Content overview I. Dimensional analysis 1. On monsters, mice and mushrooms 2. Similarity relations: Important engineering tools II. Stresses

More information

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering and Environmental Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Outline of this Lecture 1. Triaxial rock mechanics test Mohr circle Combination of Coulomb shear

More information

Period #1 : CIVIL MATERIALS COURSE OVERVIEW

Period #1 : CIVIL MATERIALS COURSE OVERVIEW Period #1 : CIVIL MATERIALS COURSE OVERVIEW A. Materials Systems to be Addressed Metals and Alloys (steel and aluminum) Portland Cement Concrete Asphalt Cement Concrete Fiber Reinforced Composites Masonry

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

Fault Rocks. EARS5136 slide 1

Fault Rocks. EARS5136 slide 1 Fault Rocks EARS5136 slide 1 Fault rocks Fault rock types Examples of deformation features in cores Microstructures Porosity and permeability Lithological and lithification control EARS5136 slide 2 Deformation

More information

Micro-mechanics in Geotechnical Engineering

Micro-mechanics in Geotechnical Engineering Micro-mechanics in Geotechnical Engineering Chung R. Song Department of Civil Engineering The University of Mississippi University, MS 38677 Fundamental Concepts Macro-behavior of a material is the average

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Probabilistic models of construction materials Prof. Liudmyla Trykoz

Probabilistic models of construction materials Prof. Liudmyla Trykoz Probabilistic models of construction materials Prof. Liudmyla Trykoz Ukrainian State University of Railway Transport, Kharkiv, Ukraine The subject of our research is properties of building materials. The

More information

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Tobias Gasch, PhD Student Co-author: Prof. Anders Ansell Comsol Conference 2016 Munich 2016-10-12 Contents Introduction Isotropic damage

More information

2004 OpenSees User Workshop. OpenSees. Geotechnical Capabilities and Applications. (U.C. San Diego) Roadmap

2004 OpenSees User Workshop. OpenSees. Geotechnical Capabilities and Applications. (U.C. San Diego) Roadmap P E E R 24 OpenSees User Workshop OpenSees Geotechnical Capabilities and Applications Ahmed Elgamal Jinchi Lu Zhaohui Yang Linjun Yan (U.C. San Diego) 1 Roadmap Soil materials and elements (manual and

More information

Geology 229 Engineering Geology. Lecture 7. Rocks and Concrete as Engineering Material (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 7. Rocks and Concrete as Engineering Material (West, Ch. 6) Geology 229 Engineering Geology Lecture 7 Rocks and Concrete as Engineering Material (West, Ch. 6) Outline of this Lecture 1. Rock mass properties Weakness planes control rock mass strength; Rock textures;

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Lecture Notes #10. The "paradox" of finite strain and preferred orientation pure vs. simple shear

Lecture Notes #10. The paradox of finite strain and preferred orientation pure vs. simple shear 12.520 Lecture Notes #10 Finite Strain The "paradox" of finite strain and preferred orientation pure vs. simple shear Suppose: 1) Anisotropy develops as mineral grains grow such that they are preferentially

More information

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008 MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008 COLLABORATORS: DR XUXIN TU AND MR KIRK ELLISON THE ROADMAP MOTIVATION

More information

P program, version 2. Theoretical manual & User guide

P program, version 2. Theoretical manual & User guide Documentation for H E L P program, version 2 Theoretical manual & User guide Jan Vorel 1 May 22, 2015 1 Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics Contents

More information

1.033/1.57 Q#2: Elasticity Bounds Conical Indentation Test

1.033/1.57 Q#2: Elasticity Bounds Conical Indentation Test 1.033/1.57 Q#: Elasticity Bounds Conical Indentation Test November 14, 003 MIT 1.033/1.57 Fall 003 Instructor: Franz-Josef UM Instrumented nano-indentation is a new technique in materials science and engineering

More information

Soil Mechanics: Limitations and Future Directions

Soil Mechanics: Limitations and Future Directions Soil Mechanics: Limitations and Future Directions Amy Rechenmacher! Dept. Civil and Environmental Engineering! University of Southern California! Example of disconnect between granular physics and geomechanics

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Chapter I Basic Characteristics of Soils

Chapter I Basic Characteristics of Soils Chapter I Basic Characteristics of Soils Outline 1. The Nature of Soils (section 1.1 Craig) 2. Soil Texture (section 1.1 Craig) 3. Grain Size and Grain Size Distribution (section 1.2 Craig) 4. Particle

More information

Jihoon Kim, George J. Moridis, John Edmiston, Evan S. Um, Ernest Majer. Earth Sciences Division, Lawrence Berkeley National Laboratory 24 Mar.

Jihoon Kim, George J. Moridis, John Edmiston, Evan S. Um, Ernest Majer. Earth Sciences Division, Lawrence Berkeley National Laboratory 24 Mar. TOUGH+ROCMECH for the Analysis of coupled Flow, Thermal, Geomechanical and Geophysical Processes Code Description and Applications to Tight/Shale Gas Problems Jihoon Kim, George J. Moridis, John Edmiston,

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 17, 2017, Lesson 5 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 17, 2017, Lesson 5 1 Politecnico di Milano, February 17, 2017, Lesson 5 2 Outline

More information

EAS MIDTERM EXAM

EAS MIDTERM EXAM Ave = 98/150, s.d. = 21 EAS 326-03 MIDTERM EXAM This exam is closed book and closed notes. It is worth 150 points; the value of each question is shown at the end of each question. At the end of the exam,

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

Geotechnical Engineering I CE 341

Geotechnical Engineering I CE 341 Geotechnical Engineering I CE 341 What do we learn in this course? Introduction to Geotechnical Engineering (1) Formation, Soil Composition, Type and Identification of Soils (2) Soil Structure and Fabric

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS ABSTRACT : P Mata1, AH Barbat1, S Oller1, R Boroschek2 1 Technical University of Catalonia, Civil Engineering

More information

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation Nachiket Patil, Deepankar Pal and Brent E. Stucker Industrial Engineering, University

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

Micromechanics of granular materials: slow flows

Micromechanics of granular materials: slow flows Micromechanics of granular materials: slow flows Niels P. Kruyt Department of Mechanical Engineering, University of Twente, n.p.kruyt@utwente.nl www.ts.ctw.utwente.nl/kruyt/ 1 Applications of granular

More information

06 - kinematic equations kinematic equations

06 - kinematic equations kinematic equations 06 - - 06-1 continuum mechancis continuum mechanics is a branch of physics (specifically mechanics) that deals with continuous matter. the fact that matter is made of atoms and that it commonly has some

More information

1.033/1.57 Q#1: Stress & Strength Conical Indentation Tests

1.033/1.57 Q#1: Stress & Strength Conical Indentation Tests 1.033/1.57 Q#1: Stress & Strength Conical Indentation Tests October 8, 003 MIT 1.033/1.57 Fall 003 Instructor: Franz-Josef ULM Instrumented nano-indentation is a new technique in materials science and

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting 5 Sep. 2017 www.geosc.psu.edu/courses/geosc508 Work of deformation, shear and volume strain Importance of volume change and diltancy rate (rate of volume strain with

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Constitutive modelling of the thermo-mechanical behaviour of soils

Constitutive modelling of the thermo-mechanical behaviour of soils First Training Course: THM behaviour of clays in deep excavation with application to underground radioactive waste disposal Constitutive modelling of the thermo-mechanical behaviour of soils Lyesse LALOUI

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1 Wikipedia.org BUILDING STONES Chapter 4 Materials of Construction-Building Stones 1 What is Stone? Stone is a concretion of mineral matter. Used either as a; Construction material, Manufacture of other

More information

Configurational Forces as Basic Concepts of Continuum Physics

Configurational Forces as Basic Concepts of Continuum Physics Morton E. Gurtin Configurational Forces as Basic Concepts of Continuum Physics Springer Contents 1. Introduction 1 a. Background 1 b. Variational definition of configurational forces 2 с Interfacial energy.

More information

ELASTOPLASTICITY THEORY by V. A. Lubarda

ELASTOPLASTICITY THEORY by V. A. Lubarda ELASTOPLASTICITY THEORY by V. A. Lubarda Contents Preface xiii Part 1. ELEMENTS OF CONTINUUM MECHANICS 1 Chapter 1. TENSOR PRELIMINARIES 3 1.1. Vectors 3 1.2. Second-Order Tensors 4 1.3. Eigenvalues and

More information

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign Microstructural Randomness and Scaling in Mechanics of Materials Martin Ostoja-Starzewski University of Illinois at Urbana-Champaign Contents Preface ix 1. Randomness versus determinism ix 2. Randomness

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework University of Liège Aerospace & Mechanical Engineering MS3: Abstract 131573 - CFRAC2017 Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition

More information

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering

Soil Properties - I. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering Soil Properties - I Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Regional Soil Deposits of India Alluvial deposits

More information

Constitutive modelling of fabric anisotropy in sand

Constitutive modelling of fabric anisotropy in sand Geomechanics from Micro to Macro Soga et al. (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02707-7 Constitutive modelling of fabric anisotropy in sand Z.W. Gao School of Engineering, University

More information

Anthony R. Ingraffea Symposium September 27, State- Based Peridynamic Lattice Modeling of Reinforced Concrete Structures ! 1

Anthony R. Ingraffea Symposium September 27, State- Based Peridynamic Lattice Modeling of Reinforced Concrete Structures ! 1 Anthony R. Ingraffea Symposium September 27, 2014 State- Based Peridynamic Lattice Modeling of Reinforced Concrete Structures Walter Gerstle Department of Civil Engineering University of New Mexico, U.S.A.

More information

SOIL MECHANICS SAB1713 DR. HETTY

SOIL MECHANICS SAB1713 DR. HETTY SOIL MECHANICS SAB1713 DR. HETTY INTRODUCTION SOIL MECHANICS -Concerned solely with soils -Concerned with the deformation and strength of bodies of soils -Concerned with the interaction of structures with

More information

Rock Material. Chapter 3 ROCK MATERIAL HOMOGENEITY AND INHOMOGENEITY CLASSIFICATION OF ROCK MATERIAL

Rock Material. Chapter 3 ROCK MATERIAL HOMOGENEITY AND INHOMOGENEITY CLASSIFICATION OF ROCK MATERIAL Chapter 3 Rock Material In all things of nature there is something of the marvelous. Aristotle ROCK MATERIAL The term rock material refers to the intact rock within the framework of discontinuities. In

More information

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS Paper N 1458 Registration Code: S-H1463506048 INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS N. Takahashi (1) (1) Associate Professor, Tohoku University, ntaka@archi.tohoku.ac.jp

More information

Bifurcation Analysis in Geomechanics

Bifurcation Analysis in Geomechanics Bifurcation Analysis in Geomechanics I. VARDOULAKIS Department of Engineering Science National Technical University of Athens Greece and J. SULEM Centre d'enseignement et de Recherche en Mecanique des

More information

Enabling Technologies

Enabling Technologies Enabling Technologies Mechanical Modelling 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity

More information

FRACTURE ENERGY-BASED THERMODYNAMICALLY CONSISTENT GRADIENT MODEL FOR CONCRETE UNDER HIGH TEMPERATURE

FRACTURE ENERGY-BASED THERMODYNAMICALLY CONSISTENT GRADIENT MODEL FOR CONCRETE UNDER HIGH TEMPERATURE VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) FRACTURE ENERGY-BASED THERMODYNAMICALLY

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February. Engineering Sciences 241 Advanced Elasticity, Spring 2001 J. R. Rice Homework Problems / Class Notes Mechanics of finite deformation (list of references at end) Distributed Thursday 8 February. Problems

More information

Archetype-Blending Multiscale Continuum Method

Archetype-Blending Multiscale Continuum Method Archetype-Blending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation Archetype-Blending Continuum

More information

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework University of Liège Aerospace & Mechanical Engineering Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

Integrated Ground Behavior

Integrated Ground Behavior Integrated Ground Behavior Part A: Particle-level Phenomena & Macroscale Behavior (J. Carlos Santamarina) Georgia Institute of Technology fluid particles microorganisms mineral size shape surface charge

More information

Thermo hydro mechanical coupling for underground waste storage simulations

Thermo hydro mechanical coupling for underground waste storage simulations Thermo hydro mechanical coupling for underground waste storage simulations Clément Chavant - Sylvie Granet Roméo Frenandes EDF R&D 1 Outline Underground waste storage concepts Main phenomena and modelisation

More information

Copyright SOIL STRUCTURE and CLAY MINERALS

Copyright SOIL STRUCTURE and CLAY MINERALS SOIL STRUCTURE and CLAY MINERALS Soil Structure Structure of a soil may be defined as the mode of arrangement of soil grains relative to each other and the forces acting between them to hold them in their

More information

TRUST. Figure 1: Location of the shallow seismic wells, the injection well (H18A) and the monitoring well (H18B).

TRUST. Figure 1: Location of the shallow seismic wells, the injection well (H18A) and the monitoring well (H18B). TRUST Figure 1: Location of the shallow seismic wells, the injection well (H18A) and the monitoring well (H18B). Figure 2: Drilling of a shallow seismic well. TRUST Figure 3: the heat exchanger Figure

More information

School of Materials Science and Engineering, UNSW Sydney, Australia 2. School of Mechanical and Manufacturing Engineering, UNSW Sydney, Australia

School of Materials Science and Engineering, UNSW Sydney, Australia 2. School of Mechanical and Manufacturing Engineering, UNSW Sydney, Australia 2 st International Conference on Composite Materials Xi an, 20-25 th August 207 PREDICTING THE EFFECT OF TEMPERATURE ON MATRIX CRACKING IN THERMOSET COMPOSITES USING A STRAIN INVARIANT APPROACH Akhila

More information

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski GEO E050 Finite Element Method Mohr-Coulomb and other constitutive models Wojciech Sołowski To learn today. Reminder elasticity 2. Elastic perfectly plastic theory: concept 3. Specific elastic-perfectly

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

Earthquake and Volcano Deformation

Earthquake and Volcano Deformation Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c

More information

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3 Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3 In the previous lecture we have studied about definitions of volumetric ratios and

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

MODELING GEOMATERIALS ACROSS SCALES

MODELING GEOMATERIALS ACROSS SCALES MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AFOSR WORKSHOP ON PARTICULATE MECHANICS JANUARY 2008 COLLABORATORS: DR XUXIN TU AND MR KIRK ELLISON

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Flexible Pavement Stress Analysis

Flexible Pavement Stress Analysis Flexible Pavement Stress Analysis Dr. Antonis Michael Frederick University Notes Courtesy of Dr. Christos Drakos, University of Florida Need to predict & understand stress/strain distribution within the

More information

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project Rock Physics of Shales and Source Rocks Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project 1 First Question: What is Shale? Shale -- a rock composed of mud-sized particles, such

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity by Borja Erice and Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling

More information

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Ratchetting Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Still an open problem Ratchetting effects Primary

More information

Quiz Seven (2:00 to 2:02 PM)

Quiz Seven (2:00 to 2:02 PM) Quiz Seven (2:00 to 2:02 PM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 22: Agents of Metamorphism Instructor: Dr. Douglas W. Haywick Last Time Rock Deformation A) Confining pressure

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Professor George C. Johnson. ME185 - Introduction to Continuum Mechanics. Midterm Exam II. ) (1) x

Professor George C. Johnson. ME185 - Introduction to Continuum Mechanics. Midterm Exam II. ) (1) x Spring, 997 ME85 - Introduction to Continuum Mechanics Midterm Exam II roblem. (+ points) (a) Let ρ be the mass density, v be the velocity vector, be the Cauchy stress tensor, and b be the body force per

More information

2005 OpenSees Symposium OpenSees

2005 OpenSees Symposium OpenSees P E E R 25 OpenSees Symposium OpenSees Geotechnical Capabilities and Applications Dr. Liangcai He Prof. Ahmed Elgamal Dr. Zhaohui Yang Mr. James L. Yan Mr. Jinchi Lu (U.C. San Diego) Soil Materials and

More information

How are calculus, alchemy and forging coins related?

How are calculus, alchemy and forging coins related? BMOLE 452-689 Transport Chapter 8. Transport in Porous Media Text Book: Transport Phenomena in Biological Systems Authors: Truskey, Yuan, Katz Focus on what is presented in class and problems Dr. Corey

More information

Code_Aster. HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking

Code_Aster. HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking Titre : HSNV129 - Essai de compression-dilatation pour étu[...] Date : 28/2/218 Page : 1/8 HSNV129 - Test of compression-dilation for study of the coupling thermics-cracking Summary: One applies to an

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

MIT/UMI CIMENTAGE ET LES FUITES DE GAZ: «BOTTOM-UP» CONCEPTS SCIENTIFIQUES / VERROUS ENVIRONNEMENTAUX. Franz-Josef Ulm and Roland Pellenq

MIT/UMI CIMENTAGE ET LES FUITES DE GAZ: «BOTTOM-UP» CONCEPTS SCIENTIFIQUES / VERROUS ENVIRONNEMENTAUX. Franz-Josef Ulm and Roland Pellenq 1 Gaz et Huiles de Schistes et leur Exploitation: Concepts Fondamentaux et Verrous Technologiques February 14, 2014 CIMENTAGE ET LES FUITES DE GAZ: «BOTTOM-UP» CONCEPTS SCIENTIFIQUES / VERROUS ENVIRONNEMENTAUX

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach

Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach Modelling Localisation and Spatial Scaling of Constitutive Behaviour: a Kinematically Enriched Continuum Approach Giang Dinh Nguyen, Chi Thanh Nguyen, Vinh Phu Nguyen School of Civil, Environmental and

More information

1. Background. is usually significantly lower than it is in uniaxial tension

1. Background. is usually significantly lower than it is in uniaxial tension NOTES ON QUANTIFYING MODES OF A SECOND- ORDER TENSOR. The mechanical behavior of rocks and rock-like materials (concrete, ceramics, etc.) strongly depends on the loading mode, defined by the values and

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case Gianni Dal Maso, Gianluca Orlando (SISSA) Rodica Toader (Univ. Udine) R. Toader

More information

Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation

Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation Modelling the excavation damaged zone in Callovo-Oxfordian claystone with strain localisation B. Pardoen - F. Collin - S. Levasseur - R. Charlier Université de Liège ArGEnCo ALERT Workshop 2012 Aussois,

More information

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strains in Soil and Rock Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strain ε 1 1 2 ε 2 ε Dimension 1 2 0 ε ε ε 0 1 2 ε 1 1 2 ε 2 ε Plane Strain = 0 1 2

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals

Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals H.A.F. Argente dos Santos (Postdoc Fellow) Dipartimento di Meccanica Strutturale Università degli Studi di Pavia Pavia, December

More information

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN

GG303 Lecture 15 10/6/09 1 FINITE STRAIN AND INFINITESIMAL STRAIN GG303 Lecture 5 0609 FINITE STRAIN AND INFINITESIMAL STRAIN I Main Topics on infinitesimal strain A The finite strain tensor [E] B Deformation paths for finite strain C Infinitesimal strain and the infinitesimal

More information

EVALUATION OF NONLOCAL APPROACHES FOR MODELLING FRACTURE IN NOTCHED CONCRETE SPECIMENS

EVALUATION OF NONLOCAL APPROACHES FOR MODELLING FRACTURE IN NOTCHED CONCRETE SPECIMENS VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) EVALUATION OF NONLOCAL APPROACHES FOR

More information

Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model

Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model Frédéric Collin * and Benoît Pardoen ** Argenco Department University of Liège 1, Chemin des Chevreuils B-4000 Liège, Belgium

More information

GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION

GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION UNIVERSITY OF MARIBOR FACULTY OF MECHANICAL ENGINEERING NAFEMS/FENET GENERALISED COMPUTATIONAL ANALYSIS OF CONTACT FATIGUE INITIATION M. Šraml, Z. Ren,, J. Flašker ker,, I. Potrč, M.Ulbin Zurich, June

More information