A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

Size: px
Start display at page:

Download "A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem"

Transcription

1 A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem Andreas Görling, Patrick Bleiziffer, Daniel Schmidtel, and Andreas Heßelmann Lehrstuhl für Theoretische Chemie Universität Erlangen Nürnberg J. Gebhardt, G. Gebhardt, T. Gimon, W. Hieringer, C. Neiß, I. Nikiforidis, H. Schulz, E. Trushin, K.-G. Warnick, T. Wölfle A. Görling (University Erlangen Nürnberg) Seattle / 36

2 Overview 1 Introduction Orbital-dependent functionals 2 Exact-exchange (EXX) Kohn-Sham methods 3 Direct RPA and EXXRPA correlation energy Adiabatic-connection fluctuation-dissipation theorem for KS correlation energy EXXRPA methods Direct RPA methods Selfconsistent direct RPA Correlation potentials Total energies, reaction energies Bond dissociation, static correlation Weak interactions, Van-der-Waals bonds 4 Concluding Remarks 5 Literature A. Görling (University Erlangen Nürnberg) Seattle / 36

3 Motivation Orbital-dependent functionals Orbital- and eigenvalue-dependent exchange-correlation functionals in Kohn-Sham methods in order to improve accuracy get rid of Coulomb self-interactions and self-interactions in general (qualitatively correct KS spectra, improved input data for TDDFT) enable description of static correlation (bond formation and breaking), i.e., multiconfiguration cases enable description of Van der Waals interactions and noncovalent, mean interactions A. Görling (University Erlangen Nürnberg) Seattle / 36

4 Kohn-Sham formalism Electronic Schrödinger equation [ ˆT + ˆV ee + v]ψ = E Ψ Kohn-Sham equation [ ˆT + ˆv s ]Φ = E,s Φ [ v s (r)] φ i (r) = ɛ i φ i (r) v s = v + v H + v xc Relation Kohn-Sham to real electronic system HK ˆT + v s Φ ρ Ψ ˆT + ˆVee + ˆv E = T s + U[ρ ] + E xc [ρ ] + dr v(r) ρ(r) HK v xc (r) = δe xc δρ(r) A. Görling (University Erlangen Nürnberg) Seattle / 36

5 Orbital-dependent functionals I Historic development of DFT Ground state energy of an electronic system E = T s + U + E x + E c + dr v nuc (r)ρ(r) Thomas-Fermi-Dirac E = T s [ρ]+ U[ρ] +E x [ρ] + E c [ρ]+ dr v nuc (r)ρ(r) δe/δρ(r) = µ Conventional Kohn-Sham E = T s [{φ i }]+ U[ρ] +E x [ρ] + E c [ρ]+ dr v nuc (r)ρ(r) [ ˆT + ˆv nuc + ˆv H + ˆv x + ˆv c ]φ i = ε i φ i Kohn-Sham with orbital dependent functionals E = T s [{φ i }]+ U[ρ]+E x [{φ i }] +E c [{φ i }]+ dr v nuc (r)ρ(r) [ ˆT + ˆv nuc + ˆv H + ˆv x + ˆv c ]φ i = ε i φ i A. Görling (University Erlangen Nürnberg) Seattle / 36

6 Orbital-dependent functionals II Conventional Kohn-Sham methods E = T s [{φ i }] + U[ρ ] + E x [ρ ] + E c [ρ ] + dr v nuc (r) ρ (r) [ ˆT + ˆvnuc + ˆv H [ρ ] + ˆv x [ρ ] + ˆv c [ρ ]] φ i = ε i φ i KS methods with orbital- and eigenvalue-dependent xc-functionals E = T s [{φ i }] + U[ρ ] + E x [{φ i }] + E c [{ε s }, {φ s }] + dr v nuc (r) ρ(r) [ ˆT + ˆvnuc + ˆv H [ρ ] + ˆv x [{φ i }] + ˆv c [{ε s }, {φ s }]] φ i = ε i φ i A. Görling (University Erlangen Nürnberg) Seattle / 36

7 Exact treatment of KS exchange Exchange energy occ. E x = dr dr φ i(r )φ j (r )φ j (r)φ i (r) r r i,j Exchange potential v x ( r) = δe x[{φ i }] δρ( r) dr χ (r, r ) v x (r ) = t x (r) occ. KS response function χ (r, r ) = 4 occ. t x (r) = 4 i unocc. a i unocc. a φ i (r)φ a (r) a ˆv NL x i ɛ i ɛ a φ i (r)φ a (r)φ a (r )φ i (r ) ε i ε a Plane wave methods for solid numerically stable Gaussian basis set methods for molecules numerically demanding A. Görling (University Erlangen Nürnberg) Seattle / 36

8 Exact-exchange Gaussian basis set KS method Auxiliary basis set: Electrostatic potential of Gaussian functions v x (r) = v x,k f k (r) with f k (r) = dr g k (r )/ r r k Incorporation of exact conditions to treat asymptotic of v x (r) dr ρ x (r) = 1 with ρ x (r) = v x,k g k (r) k φ HOMO v x φ HOMO = φ HOMO ˆv NL x φ HOMO Balancing of auxiliary and orbital basis sets (uncontracted orbital basis sets required) JCP 127, 5412 (27) By preprocessing of auxiliary basis set and regularization techniques, EXX calculations with standard contracted orbital basis sets possible (aug-cc-pcvxz, x = 3, 4, 5) A. Görling (University Erlangen Nürnberg) Seattle / 36

9 EXX vs. GGA (PBE) orbitals of methane 2 t2u ev 2 t2u ev 3 a1g.396 ev 1 t2u ev 2 a1g ev -5 3 a1g ev t2u ev -2 2 a1g ev contour value.32 A. Go rling (University Erlangen Nu rnberg) Seattle / 36

10 EXX vs. GGA (PBE) orbitals of methane 2 t2u ev 2 t2u ev 3 a1g.396 ev 1 t2u ev 2 a1g ev -5 3 a1g ev t2u ev -2 2 a1g ev contour value.13 A. Go rling (University Erlangen Nu rnberg) Seattle / 36

11 Band gaps of semiconductors FLAPW vs. PP EXX band gaps EXX+VWNc Exp. FLAPW a PP b Si Γ Γ Γ L Γ X SiC Γ Γ Γ L Γ X Ge Γ Γ Γ L Γ X GeAs Γ Γ Γ L Γ X C Γ Γ Γ L Γ X a PRB 83, 4515 (211) b PRB 59, 131 (1997) A. Görling (University Erlangen Nürnberg) Seattle / 36

12 Summary exact-exchange Kohn-Sham methods Problem of Coulomb self-interaction is solved Physically meaningful orbital and eigenvalue spectra (Improved input data for time-dependent DFT) Similar total energies of exact-exchange-only Kohn-Sham and HF methods but completely different orbital and eigenvalue spectra A. Görling (University Erlangen Nürnberg) Seattle / 36

13 Adiabatic-connection fluctuation-dissipation theorem for DFT correlation energy I E c = 1 2π 1 dα drdr 1 r r dω [ ] χ α (r, r, iω) χ (r, r, iω) Integration of response functions along complex frequencies 1 2π dω dr dr g(r, r ) χ α (r, r, iω) = [ = dr dr g(r, r ) ρ α 2 (r, r ) 1 ] 2 ρ(r)ρ(r ) + ρ(r)δ(r r ) dω a a 2 + ω 2 = π 2 later on g(r, r ) = 1 r r χ α (r, r, iω) = 2 n E n E (E n E ) 2 + ω 2 Ψα ˆρ(r) Ψ α n Ψ α n ˆρ(r ) Ψ α V c (α) = Ψ (α) ˆV ee Ψ (α) Φ ˆV ee Φ A. Görling (University Erlangen Nürnberg) Seattle / 36

14 Adiabatic-connection fluctuation-dissipation theorem for DFT correlation energy II E c = 1 2π 1 dα drdr 1 r r dω Integration along adiabatic connection E c = 1 [ ] χ α (r, r, iω) χ (r, r, iω) = 1 dα V c (α) with V c (α) = Ψ (α) ˆV ee Ψ (α) Φ ˆV ee Φ E c = Ψ (α) ˆT + α ˆV ee Ψ (α) Φ ˆT + α ˆV ee Φ dα V c (α) Ψ (α) = min Ψ ρ Ψ ˆT + α ˆV ee Ψ From Hellmann-Feynman theorem follows de c (α) dα = V c (α) A. Görling (University Erlangen Nürnberg) Seattle / 36

15 Response functions occ χ (r, r, iω) = 4 KS response function χ (r, r, iω) i unocc a ɛ ai ɛ 2 ai + ω2 ϕ i(r)ϕ a (r)ϕ a (r )ϕ i (r ) Basics time-dependent DFT ρ (1) = X α=1 v (1) = X v (1) s = X [v (1) + F Hxc X α=1 v (1) ] v s = v + v H + v xc v s (1) = v (1) pert + v (1) H + v(1) xc v (1) Hxc = δv Hxc δρ ρ(1) = F Hxc ρ (1) = F Hxc X α=1 v (1) Response functions χ α (r, r, iω) from EXX-TDDFT X α = X + α X F Hx X α X α = [1 αx F Hx ] 1 X X α = X [X αh Hx ] 1 X with X F Hx X = H Hx A. Görling (University Erlangen Nürnberg) Seattle / 36

16 Exact frequency-dependent exchange kernel OEP-like equation for sum f Hx (ω, r, r ) of Coulomb and EXX kernel dr dr X (r, r, ω) f Hx (ω, r, r ) X (r, r, ω) = h Hx (ω, r, r ) with h Hx (ω, r, r ) = 1 4 Y (r)λ(ω) [A + B + ] λ(ω)y(r ) + ω Y (r)λ(ω)ɛ 1 [A + B + ] ɛ 1 λ(ω)y(r) + a ˆv NL x ˆv x j Y ia(r)λ ia(ω) φ i(r)φ j(r) + ɛ a ɛ j i j a + b ˆv NL x ˆv x i Y ia(r)λ ia(ω) φ a(r)φ b (r) + ɛ b ɛ i a b i A ia,jb = 2(ai jb) (ab ji) ia,jb = δ ij ϕ a ˆv NL x B ia,jb = 2(ai bj) (aj bi) ˆv x ϕ b δ ab ϕ i ˆv NL x ˆv x ϕ j λ ia,jb = δ ia,jb 4ɛ ia ɛ 2 ia +ω2 ɛ ia,jb = δ ia,jb ɛ ia = δ ia,jb (ɛ a ɛ i) Y ia(r) = φ i(r)φ a(a) RPA: h H (r, r, ω) = Y (r)λ(ω) C λ(ω)y(r) with C ia,jb = (ia jb) A. Görling (University Erlangen Nürnberg) Seattle / 36

17 E c = 1 2π dω 1 dα RI-EXXRPA method I drdr 1 [ ] χ α(r, r, iω) χ (r, r, iω) r r Representation of χ α(iω), h x(iω) in RI basis set with respect to Coulomb norm with X α = [1 αx F Hx ] 1 X X α = X [X αh Hx ] 1 X E c = 1 2π dω 1 (using F Hx = X 1 H Hx X 1 ) ] dα T r [S 1 X [X α H Hx ] 1 X S 1 X X (iω) = D λ(iω)d with D ia,h = (ϕ iϕ a f h ) Coul and λ ia,jb = δ ia,jb 4ɛ ia ɛ 2 ia + ω2 and H(iω) = 1 4 DT λ(iω) [A+B+ ] λ(iω)d + (iω) DT λ(iω) ɛ 1 [A+B+ ] ɛ 1 λ(iω)d + W 1(iω) + W T 1 (iω) + W 2(iω) + W T 2 (iω) A. Görling (University Erlangen Nürnberg) Seattle / 36

18 RI-EXXRPA method II E c = 1 2π dω 1 ] dα T r [S 1 X [X α H Hx ] 1 X S 1 X Orthonormalize RI basis set, i.e. make S = E, and use X = ( X ) 2 1 ( X) 1 2 carry out analytic integration over coupling constant and E c = 1 2π ( ) ] dω T r [( X (iω)) 1 2 U(iω) τ 1 (iω) ln[ 1 + τ (iω) ]+1 U(iω) T ( X (iω)) 1 2 with ( X (iω)) 1 2 H(iω)( X(iω)) 1 2 = U(iω) τ (iω) U (iω) Complete exchange kernel can be treated (RI-EXXRPA+) N 5 scaling A. Görling (University Erlangen Nürnberg) Seattle / 36

19 E c = 1 2π dω 1 RI2-dRPA method RI2-dRPA ] dα T r [S 1 X [X α H H ] 1 X S 1 X For drpa, with second RI approximation and S = E, H H simplifies to H H = X X With spectral representation X (iω) = V(iω) σ(iω) V (iω) E c = 1 2π dω Tr [ln[1 + σ(iω)] σ(iω)] Only KS response function X (iω) required N 4 scaling A. Görling (University Erlangen Nürnberg) Seattle / 36

20 Self-consistent direct RPA Optimized-effective-potential equation for vc drpa dr χ (r, r ) vc drpa (r ) = t drpa c (r) with t drpa c (r) = s dr δedrpa c δφ s (r ) δφ s (r ) δv s (r) + s δe drpa c δɛ s δɛ s δv s (r) v drpa c is represented in auxiliary basis set X v drpa c = t drpa c A. Görling (University Erlangen Nürnberg) Seattle / 36

21 drpa correlation potentials I.2 v drpa c for neon atoms.15.1 v c drpa (a.u.) Exact -.15 SC-dRPA PW92 LDA -.2 PBE r(a.u.) drpa correlation potential qualitatively correct in contrast to LDA and GGA correlation potential A. Görling (University Erlangen Nürnberg) Seattle / 36

22 drpa correlation potentials II v drpa c for C 2 H 2 v[a.u.] drpa v c v x r[a.u.] A. Görling (University Erlangen Nürnberg) Seattle / 36

23 Results EXXRPA correlation methods I Deviations of total energies from CCSD(T) energies, E = E Method E CCSD(T) Orbital basis: aug-cc-pcvtz RI basis (for E c and v xc): aug-cc-pvtz/mp2-fit Energy difference to CCSD(T) [Hartree] CCSD MP2 EXXRPA@EXX EXXRPA@dRPA NH 2 CONH 2 HCOOCH 3 HCONH 2 H 2 CCO CH 3 CHO C 2 H 4 O HCOOH HNCO HCHO C 2 H 5 OH CH 3 OH C 2 H 6 C 2 H 4 C 2 H 2 CH 4 NH 3 CO 2 CO H 2 O 2 H 2 O H 2 RMS [Hartree] CCSD MP2 B3LYP EXXRPA+@dRPA EXXRPA+@EXX drpa@drpa drpa@exx A. Görling (University Erlangen Nürnberg) Seattle / 36

24 Results EXXRPA correlation methods II Deviations of total energies from CCSD(T) energies, E = E Method E CCSD(T) Orbital basis: aug-cc-pcvqz RI basis (for E c and v xc): aug-cc-pvqz/mp2-fit Energy difference to CCSD(T) [Hartree] CCSD MP2 EXXRPA@EXX EXXRPA@dRPA NH 2 CONH 2 HCOOCH 3 HCONH 2 H 2 CCO CH 3 CHO C 2 H 4 O HCOOH HNCO HCHO C 2 H 5 OH CH 3 OH C 2 H 6 C 2 H 4 C 2 H 2 CH 4 NH 3 CO 2 CO H 2 O 2 H 2 O H RMS [Hartree] CCSD MP2 B3LYP EXXRPA+@SC-RPA EXXRPA+@EXX drpa@drpa drpa@exx A. Görling (University Erlangen Nürnberg) Seattle / 36

25 Results EXXRPA correlation methods III Deviations of reaction energies from CCSD(T) reaction energies Orbital basis: aug-cc-pcvtz RI basis (for E x and v xc): aug-cc-pvtz/mp2-fit RMS [kcal/mol] drpa@drpa drpa@exx B3LYP MP2 CCSD 1 kcal/mol =.43 ev EXXRPA+@dRPA EXXRPA+@EXX A. Görling (University Erlangen Nürnberg) Seattle / 36

26 Results EXXRPA correlation methods IV Deviations of reaction energies from CCSD(T) reaction energies Orbital basis: aug-cc-pcvqz RI basis (for E x and v xc): aug-cc-pvqz/mp2-fit RMS [kcal/mol] drpa@drpa drpa@exx B3LYP MP2 CCSD 1 kcal/mol =.43 ev EXXRPA+@dRPA EXXRPA+@EXX A. Görling (University Erlangen Nürnberg) Seattle / 36

27 Dissociation of H 2 Orbital basis: aug-cc-pcvqz RI basis (for E c and v xc ): aug-cc-pvqz/mp2-fit EXXRPA SC-EXXRPA FCI HF E [a.u.] r [a.u.] Dissociation limit of other molecules (CO, N 2, etc.) is also treated correctly A. Görling (University Erlangen Nürnberg) Seattle / 36

28 Coupling constant integrand -.5 HF-RPA 1 E c = dα V c (α) -.5 HF-RPA V c (α) [a.u.] r=1.4 a r=6. a r=1. a r=2. a r=3. a EXX-RPA V c HL (α) [a.u.] r=1.4 a r=6. a r=1. a r=2. a r=3. a EXX-RPA V c (α) [a.u.] V c HL (α) [a.u.] (ia ia) coupling strength V c (α) coupling strength Vc HL (α) A. Görling (University Erlangen Nürnberg) Seattle / 36

29 Dissociation of N HF EXX CCSD RI-EXX-RPA Orbital basis: avtz RI basis: avtz Energy [hartree] r [bohr] Special treatment of singularity in ω-integrand ( τ 1 ln [ 1 + τ (iω) ] + 1 ) A. Görling (University Erlangen Nürnberg) Seattle / 36

30 Twisting of ethene Orbital basis: avqz RI basis: avqz Energy [Hartree] Torsion angle [degree] HF EXX CCSD B3LYP RI-EXXRPA+ MCSCF A. Görling (University Erlangen Nürnberg) Seattle / 36

31 RI-EXXRPA for noncovalent bonds Interaction energies in kcal/mol Complex BasisCCSD(T) drpa drpa EXXRPA+ EXXRPA+ MP2 (NH 3 ) CBS (H 2 O) CBS (HCONH 2 ) CBS (HCOOH) CBS (C 2 H 4 ) CBS C 2 H 4 C 2 H CBS (CH 4 ) CBS RMS RMS CBS a CBS obtained via F12-CCSD 1 kcal/mol =.43 ev A. Görling (University Erlangen Nürnberg) Seattle / 36

32 S22 test set of dimer binding energies E [kcal/mol] Hydrogen Standard benchmark for non-covalent interactions E = E Binding Method EBinding CCSD(T) Mixed -12 drpa@drpa EXXRPA+@dRPA Dispersion -14 MP2 PBE B3LYP NH 3 (C 2h ) 2 (H 2 O) 2 (C s) 3 (HCOOH) 2 (C 2h ) 4 (CHONH 2 ) 2 5 Uracil-Uracil (C 2h ) 6 2-Pyridoxine-2-Aminopyridine 7 AT (WC) 8 (CH 4 ) 2 (D 3d ) 9 (C 2 H 4 ) 2 (D 2d ) 1 Bz CH 4 (C 3) 11 Bz-Bz (C 2h ) 12 Pyrazine-Pyrazine (C s) 13 Uracil-Uracil (C 2) 14 Indole-Bz (stacked) 15 AT (stacked) 16 C 2 H 4 C 2 H 2 (C 2v) 17 Bz H 2 O (C s) 18 Bz NH 3 (C s) 19 Bz HCN (C s) 2 Bz-Bz (C 2v) 21 Indole-Bz (T-shaped) 22 Phenole-Phenole A. Görling (University Erlangen Nürnberg) Seattle / 36

33 Directional non-covalent interactions in Ar Br2 I CCSD(T) EXXRPA 1 kcal/mol =.43 ev A. Go rling (University Erlangen Nu rnberg) Seattle / 36

34 Directional non-covalent interactions in Ar Br2 II CCSD(T) B3LYP 1 kcal/mol =.43 ev A. Go rling (University Erlangen Nu rnberg) Seattle / 36

35 Summary EXXRPA correlation functional combines accuracy at equilibrium geometries with a correct description of dissociation (static correlation) and a highly accurate treatment of VdW interactions EXXRPA correlation functional is self-interaction free Self-consistent drpa yields qualitatively reasonable correlation potentials in contrast to conventional KS methods Promising starting point for further developments, e.g., completely self-consistent EXXRPA method or inclusion of correlation in kernel Orbital-dependent functionals open up fascinating new possibilities in DFT A. Görling (University Erlangen Nürnberg) Seattle / 36

36 Literature Phys. Rev. Lett. 79, 289 (1997) Phys. Rev. B 81, (21) EXX for solids Phys. Rev. B 83, 4515 (211) EXX for molecules Phys. Rev. Lett. 83, 5459 (1999) J. Chem. Phys. 128, 1414 (28) Phys. Rev. A 8, 1257 (29) Phys. Rev. Lett. 12, 2333 (29) Mol. Phys. 18, 359 (21) Mol. Phys. 19, 2473 (211) Review TDEXX Int. J. Quantum. Chem. 11, 222 (21) J. Chem. Phys. 134, 3412 (211) EXX-RPA Phys. Rev. Lett. 16, 931 (211) J. Chem. Phys. 136, (212) A. Görling (University Erlangen Nürnberg) Seattle / 36

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Patrick Bleiziffer, Andreas Heßelmann, and Andreas Görling Citation: J. Chem. Phys.

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states DFT with orbital-dependent functionals A. Görling Universität Erlangen-Nürnberg

More information

Extending Kohn-Sham density-functional theory

Extending Kohn-Sham density-functional theory Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Email: julien.toulouse@upmc.fr Web page: www.lct.jussieu.fr/pagesperso/toulouse/ January

More information

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1 Laboratoire de Chimie

More information

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Dispersion energies from the random-phase approximation with range separation

Dispersion energies from the random-phase approximation with range separation 1/34 Dispersion energies from the random-phase approximation with range separation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Random-phase approximation correlation methods for molecules and solids

Random-phase approximation correlation methods for molecules and solids Random-phase approximation correlation methods for molecules and solids Andreas Goerling, Andreas Hesselmann To cite this version: Andreas Goerling, Andreas Hesselmann. Random-phase approximation correlation

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation.

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Bastien Mussard, Julien Toulouse Laboratoire de Chimie Théorique Institut du Calcul

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Convergence behavior of RPA renormalized many-body perturbation theory

Convergence behavior of RPA renormalized many-body perturbation theory Convergence behavior of RPA renormalized many-body perturbation theory Understanding why low-order, non-perturbative expansions work Jefferson E. Bates, Jonathon Sensenig, Niladri Sengupta, & Adrienn Ruzsinszky

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren Random-phase approximation and beyond for materials: concepts, practice, and future perspectives Xinguo Ren University of Science and Technology of China, Hefei USTC-FHI workshop on frontiers of Advanced

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Kiril Tsemekhman (a), Eric Bylaska (b), Hannes Jonsson (a,c) (a) Department of Chemistry,

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Orbital functionals derived from variational functionals of the Green function

Orbital functionals derived from variational functionals of the Green function Orbital functionals derived from variational functionals of the Green function Nils Erik Dahlen Robert van Leeuwen Rijksuniversiteit Groningen Ulf von Barth Lund University Outline 1. Deriving orbital

More information

Non-covalent force fields computed ab initio

Non-covalent force fields computed ab initio Non-covalent force fields computed ab initio Supermolecule calculations Symmetry-adapted perturbation theory (SAPT) Supermolecule calculations Requirements: E = E AB E A E B. Include electron correlation,

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

The adiabatic connection

The adiabatic connection The adiabatic connection Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Dipartimento di Scienze

More information

Ab-initio studies of the adiabatic connection in density-functional theory

Ab-initio studies of the adiabatic connection in density-functional theory Ab-initio studies of the adiabatic connection in density-functional theory Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Linear-response excitations. Silvana Botti

Linear-response excitations. Silvana Botti from finite to extended systems 1 LSI, CNRS-CEA-École Polytechnique, Palaiseau, France 2 LPMCN, CNRS-Université Lyon 1, France 3 European Theoretical Spectroscopy Facility September 3, 2008 Benasque, TDDFT

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy RPA step by step Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy Eötvös University Faculty of Science Budapest, Hungaria 0 mars 01 bastien.mussard@uhp-nancy.fr

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo,

More information

Spring College on Computational Nanoscience

Spring College on Computational Nanoscience 2145-29 Spring College on Computational Nanoscience 17-28 May 2010 At the Fifth Rung of Jacob's Ladder: A Discussion of Exact Exchange plus Local- and Nonlocal-density Approximations to the Correlation

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

The Self Interaction Correction revisited

The Self Interaction Correction revisited The Self Interaction Correction revisited Explicit dynamics of clusters and molecules under irradiation Spectroscopic accuracy at low energy SIC problem : one electron interacts with its own mean-field!

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW.

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118 Received 11 March 1999;

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Comparison of exchange-correlation functionals: from LDA to GGA and beyond

Comparison of exchange-correlation functionals: from LDA to GGA and beyond Comparison of ehange-correlation functionals: from LDA to GGA and beyond Martin Fuchs Fritz-Haber-Institut der MPG, Berlin, Germany Density-Functional Theory Calculations for Modeling Materials and Bio-Molecular

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Orbitals and orbital energies in DFT and TDDFT. E. J. Baerends Vrije Universiteit, Amsterdam

Orbitals and orbital energies in DFT and TDDFT. E. J. Baerends Vrije Universiteit, Amsterdam Orbitals and orbital energies in DFT and TDDFT E. J. Baerends Vrije Universiteit, Amsterdam Common misunderstandings 1) The best orbitals are the HF orbitals or HF is the best one-electron model (because

More information

Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals

Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals Samuel B. Trickey Sept. 2008 Quantum Theory Project Dept. of Physics and Dept. of Chemistry

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model

Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Rabi oscillations within TDDFT: the example of the 2 site Hubbard model Johanna I. Fuks, H. Appel, Mehdi,I.V. Tokatly, A. Rubio Donostia- San Sebastian University of Basque Country (UPV) Outline Rabi oscillations

More information

Periodic Trends in Properties of Homonuclear

Periodic Trends in Properties of Homonuclear Chapter 8 Periodic Trends in Properties of Homonuclear Diatomic Molecules Up to now, we have discussed various physical properties of nanostructures, namely, two-dimensional - graphene-like structures:

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) ABC of ground-state

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB, Iann Gerber, Paola Gori-Giorgi, Julien Toulouse, Andreas Savin Équipe de Modélisation Quantique et Cristallographique

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Exchange-Correlation Local functionals, exact exchange and other post-dft methods Paul Tulip Centre for Materials Physics Department of Physics University of Durham Outline Introduction What is exchange

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Basics of DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Basics of DFT Lausanne12 1

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information