Extending Kohn-Sham density-functional theory

Size: px
Start display at page:

Download "Extending Kohn-Sham density-functional theory"

Transcription

1 Extending Kohn-Sham density-functional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Web page: January 2011

2 Introduction: Density-functional theory (DFT) Kohn-Sham (KS) scheme } E exact = min Φ ˆT + ˆV ne Φ +E Hxc [n Φ ] Φ Φ : single-determinant wave function

3 Introduction: Density-functional theory (DFT) Kohn-Sham (KS) scheme } E exact = min Φ ˆT + ˆV ne Φ +E Hxc [n Φ ] Φ Φ : single-determinant wave function Some problems (among others) of the usual approximations for exchange-correlation functional E xc [n] (LDA, GGA,...): they do not describe well (long-range) van der Waals dispersion forces they do not describe well static correlation (e.g., bond dissociation)

4 1 Short-range DFT + long-range RPA 2 Short-range DFT + long-range DMFT 3 Double-hybrid DFT

5 1 Short-range DFT + long-range RPA with J. Ángyán, I. Gerber, G. Jansen, A. Savin, W. Zhu 2 Short-range DFT + long-range DMFT 3 Double-hybrid DFT

6 Random phase approximation (RPA) in DFT An orbital-dependent approximation: E xc = E HF x [φ i }]+E RPA c [φ i,ǫ i }] usually with non-self-consistent orbitals (post-kohn-sham).

7 Random phase approximation (RPA) in DFT An orbital-dependent approximation: E xc = E HF x [φ i }]+E RPA c [φ i,ǫ i }] usually with non-self-consistent orbitals (post-kohn-sham). = increasing interest in the DFT community

8 Random phase approximation (RPA) in DFT An orbital-dependent approximation: E xc = E HF x [φ i }]+E RPA c [φ i,ǫ i }] usually with non-self-consistent orbitals (post-kohn-sham). = increasing interest in the DFT community Encouraging results: consistent with the use of exact (HF) exchange qualitatively correct dispersion forces at (very) large separation good cohesive energies and lattice constants of solids

9 Random phase approximation (RPA) in DFT An orbital-dependent approximation: E xc = E HF x [φ i }]+E RPA c [φ i,ǫ i }] usually with non-self-consistent orbitals (post-kohn-sham). = increasing interest in the DFT community Encouraging results: consistent with the use of exact (HF) exchange qualitatively correct dispersion forces at (very) large separation good cohesive energies and lattice constants of solids But several unsatisfactory aspects: short-range correlation energies far too negative strong dependence on basis size not good for simple van der Waals dimers

10 Example: interaction energy curve of Ne 2 RPA (with PBE orbitals), aug-cc-pv5z basis: Interaction energy (mhartree) Ne 2 Accurate RPA Internuclear distance (Bohr)

11 Example: interaction energy curve of Be 2 RPA (with PBE orbitals), cc-pv5z basis: Interaction energy (mhartree) Be 2 Accurate RPA Internuclear distance (Bohr)

12 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ

13 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction

14 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction EHxc sr [n] : short-range Hxc density functional

15 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction EHxc sr [n] : short-range Hxc density functional minimizing wave function Ψ lr = i c iφ i is multi-determinant

16 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction EHxc sr [n] : short-range Hxc density functional minimizing wave function Ψ lr = i c iφ i is multi-determinant parameter µ controls the range of separation.

17 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction EHxc sr [n] : short-range Hxc density functional minimizing wave function Ψ lr = i c iφ i is multi-determinant parameter µ controls the range of separation. In principle: exact

18 Range-separated DFT Multideterminant extension of KS scheme with range separation } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Ŵ lr ee = i<j erf(µr ij ) r ij : long-range electron-electron interaction EHxc sr [n] : short-range Hxc density functional minimizing wave function Ψ lr = i c iφ i is multi-determinant parameter µ controls the range of separation. In principle: exact In practice: approximations are necessary for Ψ lr and E sr xc[n]

19 Range-separated DFT: approximations Approximations for E sr xc[n] short-range LDA short-range PBE...

20 Range-separated DFT: approximations Approximations for E sr xc[n] short-range LDA short-range PBE... Approximations for Ψ lr single-determinant = RSH method MP2 = RSH+lrMP2 method RPA = RSH+lrRPA method...

21 Range-separated hybrid (RSH) scheme Restriction to single-determinant wave functions Φ: } E RSH = min Φ ˆT + ˆV ne +Ŵee Φ +E lr Hxc[n sr Φ ] Φ

22 Range-separated hybrid (RSH) scheme Restriction to single-determinant wave functions Φ: } E RSH = min Φ ˆT + ˆV ne +Ŵee Φ +E lr Hxc[n sr Φ ] Φ So the RSH energy is E RSH = Φ RSH ˆT + ˆV ne Φ RSH +E H +E lr x,hf +E sr xc This is a hybrid DFT with exact (HF) exchange at long range.

23 Long-range correlation energy E lr c What is missing in RSH is the long-range correlation energy: E exact = E RSH +E lr c

24 Long-range correlation energy E lr c What is missing in RSH is the long-range correlation energy: E exact = E RSH +E lr c Adiabatic connection from RSH reference to exact system: E lr c = 1 0 dλ } Ψ lr λ Ŵlr Ψλ lr Φ RSH Ŵ lr Φ RSH with the long-range perturbation operator Ŵ lr = Ŵ lr ee ˆV lr Hx,HF

25 Long-range correlation energy E lr c What is missing in RSH is the long-range correlation energy: E exact = E RSH +E lr c Adiabatic connection from RSH reference to exact system: E lr c = 1 0 dλ } Ψ lr λ Ŵlr Ψλ lr Φ RSH Ŵ lr Φ RSH with the long-range perturbation operator Ŵ lr = Ŵ lr ee ˆV lr Hx,HF In an orbital basis, E lr c = dλ ps w lr qr ( P lr ) c,λ pqrs pqrs

26 Long-range correlation energy E lr c Pc,λ lr from a fluctuation-dissipation theorem P lr c,λ = dω 2π [ χ lr λ (iω) χ RSH (iω) ] + lr λ where λ lr comes from the variation of the density.

27 Long-range correlation energy E lr c Pc,λ lr from a fluctuation-dissipation theorem P lr c,λ = dω 2π [ χ lr λ (iω) χ RSH (iω) ] + lr λ where λ lr comes from the variation of the density. The long-range response function χλ lr (iω) is given by χ lr λ (iω) 1 = χ lr IP,λ (iω) 1 f lr Hxc,λ (iω)

28 Long-range correlation energy E lr c Pc,λ lr from a fluctuation-dissipation theorem P lr c,λ = dω 2π [ χ lr λ (iω) χ RSH (iω) ] + lr λ where λ lr comes from the variation of the density. The long-range response function χλ lr (iω) is given by χ lr λ (iω) 1 = χ lr IP,λ (iω) 1 f lr Hxc,λ (iω) Possible approximations: RPA approximation: fxc,λ lr = 0 = RSH+lrRPA method RPAx approximation: fc,λ lr = 0 = RSH+lrRPAx method

29 Dependence on basis size: Ar 2 Binding energy (aug-cc-pvnz basis, µ = 0.5, sr-pbe functional): Percentage of CBS binding energy Ar 2 RPA RPAx RSH+lrRPA RSH+lrRPAx avtz avqz av5z CBS One-particle basis = RSH+lrRPA(x) has a small basis dependence

30 Interaction energy curve of Ne 2 Interaction energy (aug-cc-pv5z basis, µ = 0.5, sr-pbe functional): Interaction energy (mhartree) Ne 2 Accurate RPA RPAx RSH+lrRPAx Internuclear distance (bohr) = Range separation improves RPA(x)

31 Interaction energy curve of Be 2 Interaction energy (cc-pv5z basis, µ = 0.5, sr-pbe functional): Interaction energy (mhartree) Be 2 Accurate RPA RPAx RSH+lrRPAx Internuclear distance (bohr) = Range separation improves RPA(x)

32 Equilibrium interaction energies of a set of 22 weakly-interacting molecular systems from water dimer to DNA base pairs (S22 set of Hobza and coworkers) 50 mean absolute relative error (%) RPA RPAx RSH+lrRPA RSH+lrRPAx

33 Several RPAx variants RPAx: based on ACFDT RPAx-MB (McLachlan-Ball, 1964): based on plasmon formula RPAx-SO1 (Szabo-Ostlund, 1977): based on approx. CCD RPAx-SO2 (Szabo-Ostlund, 1977): based on approx. CCD

34 Several RPAx variants RPAx: based on ACFDT RPAx-MB (McLachlan-Ball, 1964): based on plasmon formula RPAx-SO1 (Szabo-Ostlund, 1977): based on approx. CCD RPAx-SO2 (Szabo-Ostlund, 1977): based on approx. CCD Mean absolute relative errors on S22 set with aug-cc-pvdz basis: mean absolute relative error (%) RSH+ lrrpax lrrpax-mb lrrpax-so1 lrrpax-so2 = Best variants of RSH+lrRPAx gives an error 5 %

35 1 Short-range DFT + long-range RPA 2 Short-range DFT + long-range DMFT with D. Rohr and K. Pernal 3 Double-hybrid DFT

36 Density-matrix-functional theory (DMFT) Minimization of a functional of the one-particle density matrix Γ } E exact = min T[Γ]+V ne [n Γ ]+E Hxc [Γ] Γ

37 Density-matrix-functional theory (DMFT) Minimization of a functional of the one-particle density matrix Γ } E exact = min T[Γ]+V ne [n Γ ]+E Hxc [Γ] Γ e.g., Buijse-Baerends (or Müller) approximation (in a basis): E BB xc [Γ] = abcd(γ 1/2 ) ab (Γ 1/2 ) cd ac db

38 Density-matrix-functional theory (DMFT) Minimization of a functional of the one-particle density matrix Γ } E exact = min T[Γ]+V ne [n Γ ]+E Hxc [Γ] Γ e.g., Buijse-Baerends (or Müller) approximation (in a basis): E BB xc [Γ] = abcd(γ 1/2 ) ab (Γ 1/2 ) cd ac db Some advantages of DMFT over DFT: no approximation on the form of the kinetic energy more flexibility beyond single-determinant DFT since Γ(r,r ) = i n i φ i (r)φ i (r ) can have fractional orbital occupation numbers = static correlation

39 Density-matrix-functional theory (DMFT) Minimization of a functional of the one-particle density matrix Γ } E exact = min T[Γ]+V ne [n Γ ]+E Hxc [Γ] Γ e.g., Buijse-Baerends (or Müller) approximation (in a basis): E BB xc [Γ] = abcd(γ 1/2 ) ab (Γ 1/2 ) cd ac db Some advantages of DMFT over DFT: no approximation on the form of the kinetic energy more flexibility beyond single-determinant DFT since Γ(r,r ) = i n i φ i (r)φ i (r ) can have fractional orbital occupation numbers = static correlation but dynamic correlation is often better described by DFT approximations.

40 Short-range DFT + long-range DMFT Start from multideterminant range-separated DFT: } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ

41 Short-range DFT + long-range DMFT Start from multideterminant range-separated DFT: } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Reformulation with a constrained search } E exact = min min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Γ Ψ Γ

42 Short-range DFT + long-range DMFT Start from multideterminant range-separated DFT: } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Reformulation with a constrained search E exact = min Γ min Ψ Γ = min Γ with E lr Hxc[Γ] = min Ψ Γ Ψ Ŵlr ee Ψ Ψ ˆT + ˆV ne +Ŵ lr ee Ψ +E sr Hxc[n Ψ ] T[Γ]+Vne [n Γ ]+E lr Hxc[Γ]+E sr Hxc[n Γ ] } }

43 Short-range DFT + long-range DMFT Start from multideterminant range-separated DFT: } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Reformulation with a constrained search E exact = min Γ min Ψ Γ = min Γ with E lr Hxc[Γ] = min Ψ Γ Ψ Ŵlr ee Ψ So, the final equation that we use is E exact = min Γ Ψ ˆT + ˆV ne +Ŵ lr ee Ψ +E sr Hxc[n Ψ ] T[Γ]+Vne [n Γ ]+E lr Hxc[Γ]+E sr Hxc[n Γ ] } T[Γ]+Vne [n Γ ]+E H [n Γ ]+E lr xc[γ]+e sr xc[n Γ ] } }

44 Short-range DFT + long-range DMFT Start from multideterminant range-separated DFT: } E exact = min Ψ ˆT + ˆV ne +Ŵee Ψ +E lr Hxc[n sr Ψ ] Ψ Reformulation with a constrained search E exact = min Γ min Ψ Γ = min Γ with E lr Hxc[Γ] = min Ψ Γ Ψ Ŵlr ee Ψ So, the final equation that we use is E exact = min Γ Ψ ˆT + ˆV ne +Ŵ lr ee Ψ +E sr Hxc[n Ψ ] T[Γ]+Vne [n Γ ]+E lr Hxc[Γ]+E sr Hxc[n Γ ] } T[Γ]+Vne [n Γ ]+E H [n Γ ]+E lr xc[γ]+e sr xc[n Γ ] } } approximations: lrbb srpbe

45 Dependence on basis size: H 2 Total energy (cc-pvnz basis sets, µ = 0.4) exact PBE BB srpbe+lrbb total energy in hartree cc-pvdz cc-pvtz cc-pvqz cc-pv5z = srpbe+lrbb has a small basis dependence

46 Dissociation curve of H 2 Relative energy wrt equilibrium (cc-pvtz basis, µ = 0.4) relative energy in hartree Lie&Clementi PBE srpbe+lrbb BB distance in bohr = srpbe+lrbb dissociates better than PBE but still large error due to srpbe

47 Dissociation curve of LiH Relative energy wrt equilibrium (cc-pvtz basis, µ = 0.4) relative energy in hartree Lie&Clementi PBE srpbe+lrbb BB distance in bohr = srpbe+lrbb is better than both PBE and BB

48 Dissociation curve of BH Relative energy wrt equilibrium (cc-pvtz basis, µ = 0.4) relative energy in hartree Lie&Clementi PBE srpbe+lrbb BB distance in bohr = srpbe+lrbb is better than both PBE and BB

49 Dissociation curve of FH Relative energy wrt equilibrium (cc-pvtz basis, µ = 0.4) relative energy in hartree distance in bohr Lie&Clementi PBE srpbe+lrbb BB = srpbe+lrbb is better than both PBE and BB

50 1 Short-range DFT + long-range RPA 2 Short-range DFT + long-range DMFT 3 Double-hybrid DFT with K. Sharkas and A. Savin

51 Double-hybrid approximations (Grimme, 2006) Combination of HF exchange with an exchange functional and MP2 correlation with a correlation functional: Exc DH = a x Ex HF +(1 a x )E x [n]+(1 a c )E c [n]+a c Ec MP2

52 Double-hybrid approximations (Grimme, 2006) Combination of HF exchange with an exchange functional and MP2 correlation with a correlation functional: Exc DH = a x Ex HF +(1 a x )E x [n]+(1 a c )E c [n]+a c Ec MP2 Example: B2-PLYP: a x = 0.53 and a c = 0.27, optimized for heats of formation

53 Double-hybrid approximations (Grimme, 2006) Combination of HF exchange with an exchange functional and MP2 correlation with a correlation functional: Exc DH = a x Ex HF +(1 a x )E x [n]+(1 a c )E c [n]+a c Ec MP2 Example: B2-PLYP: a x = 0.53 and a c = 0.27, optimized for heats of formation = reach near-chemical accuracy but empirical

54 A rigorous derivation of double hybrids Multideterminant extension of Kohn-Sham scheme based on linear scaling of electron-electron interaction: } E exact = min Ψ ˆT + ˆV ne +λŵ ee Ψ +ĒHxc[n λ Ψ ] Ψ where ĒHxc λ [n] is the λ-complement functional.

55 A rigorous derivation of double hybrids Multideterminant extension of Kohn-Sham scheme based on linear scaling of electron-electron interaction: } E exact = min Ψ ˆT + ˆV ne +λŵ ee Ψ +ĒHxc[n λ Ψ ] Ψ where ĒHxc λ [n] is the λ-complement functional. exchange obtained by linear scaling: Ē λ x [n] = (1 λ)e x [n]

56 A rigorous derivation of double hybrids Multideterminant extension of Kohn-Sham scheme based on linear scaling of electron-electron interaction: } E exact = min Ψ ˆT + ˆV ne +λŵ ee Ψ +ĒHxc[n λ Ψ ] Ψ where ĒHxc λ [n] is the λ-complement functional. exchange obtained by linear scaling: Ē λ x [n] = (1 λ)e x [n] correlation obtained by scaling of the density: with n 1/λ (r) = (1/λ) 3 n(r/λ) Ē λ c [n] = E c [n] λ 2 E c [n 1/λ ]

57 A rigorous derivation of double hybrids First, single-determinant approximation: E DS1H = Φ ˆT + ˆV ne Φ +E H +λe HF x +(1 λ)e x [n]+e c [n] λ 2 E c [n 1/λ ] we get a density-scaled one-parameter hybrid (DS1H).

58 A rigorous derivation of double hybrids First, single-determinant approximation: E DS1H = Φ ˆT + ˆV ne Φ +E H +λe HF x +(1 λ)e x [n]+e c [n] λ 2 E c [n 1/λ ] we get a density-scaled one-parameter hybrid (DS1H). Then, nonlinear perturbation theory starting for DS1H } E α = min Ψ ˆT + ˆV ne +λˆv Hx HF +αλŵ Ψ +ĒHxc[n λ Ψ ] Ψ ) where λŵ = λ(ŵee ˆV Hx HF is the perturbation.

59 A rigorous derivation of double hybrids First, single-determinant approximation: E DS1H = Φ ˆT + ˆV ne Φ +E H +λe HF x +(1 λ)e x [n]+e c [n] λ 2 E c [n 1/λ ] we get a density-scaled one-parameter hybrid (DS1H). Then, nonlinear perturbation theory starting for DS1H } E α = min Ψ ˆT + ˆV ne +λˆv Hx HF +αλŵ Ψ +ĒHxc[n λ Ψ ] Ψ ) where λŵ = λ(ŵee ˆV Hx HF is the perturbation. zeroth + first orders gives DS1H: E (0) +E (1) = E DS1H second order: E (2) = Φ λŵ Ψ (1) = λ 2 E MP2 c

60 In summary We have derived a density-scaled one-parameter double hybrid (DS1DH): E DS1DH xc = λex HF +(1 λ)e x [n]+e c [n] λ 2 E c [n 1/λ ]+λ 2 Ec MP2

61 In summary We have derived a density-scaled one-parameter double hybrid (DS1DH): E DS1DH xc = λex HF +(1 λ)e x [n]+e c [n] λ 2 E c [n 1/λ ]+λ 2 Ec MP2 If we neglect density scaling E c [n 1/λ ] E c [n], then we get an one-parameter double hybrid (1DH): E 1DH xc = λex HF +(1 λ)e x [n]+(1 λ 2 )E c [n]+λ 2 Ec MP2 This corresponds to Grimme s double hybrids with a x = λ and a c = λ 2.

62 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) DS1DH-PBE

63 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) 9 1DH-PBE DS1DH-PBE

64 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) 9 1DH-PBE DS1DH-BLYP 4 DS1DH-PBE

65 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) 9 1DH-PBE DS1DH-BLYP 4 DS1DH-PBE 3 2 1DH-BLYP 1 0 = neglecting density scaling may or may not be good

66 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) 9 1DH-PBE DS1DH-BLYP 4 DS1DH-PBE 3 2 1DH-BLYP B2-PLYP 1 0 = neglecting density scaling may or may not be good

67 Tests on atomization energies parameter λ optimized on AE6 benchmark set: mean absolute error (kcal/mol) DS1DH-PBE 1DH-PBE DS1DH-BLYP 1DH-BLYP B2-PLYP a x = λ = 0.55 a c = λ = neglecting density scaling may or may not be good = one parameter λ is enough a x = 0.53 a c = 0.27

68 Summary and perspectives Short-range DFT + long-range RPA it seems well suited for van der Waals systems we are studying more variants of RPAx we are working on an open-shell version Short-range DFT + long-range DMFT it is promising for bond dissociation we still need to improve the short-range functional Double-hybrid DFT we provided a rigorous derivation of double hybrids they can reach near-chemical accuracy for thermochemistry we could combine them with range separation For references: Web page:

Range-separated density-functional theory with long-range random phase approximation

Range-separated density-functional theory with long-range random phase approximation Range-separated density-functional theory with long-range random phase approximation Julien Toulouse 1 Wuming Zhu 1, Andreas Savin 1, János Ángyán2 1 Laboratoire de Chimie Théorique, UPMC Univ Paris 6

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1

More information

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals Julien Toulouse 1 Iann Gerber 2, Georg Jansen 3, Andreas Savin 1, János Ángyán 4 1 Laboratoire de Chimie

More information

Dispersion energies from the random-phase approximation with range separation

Dispersion energies from the random-phase approximation with range separation 1/34 Dispersion energies from the random-phase approximation with range separation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Multideterminant density-functional theory for static correlation. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Multideterminant density-functional theory for static correlation Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Basel, Switzerland September 2015 Kohn-Sham DFT and static correlation

More information

Long-range/short-range energy decomposition in density functional theory

Long-range/short-range energy decomposition in density functional theory p. 1/2 Long-range/short-range energy decomposition in density functional theory Julien Toulouse François Colonna, Andreas Savin Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Paris

More information

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France

Combining many-body methods and density-functional theory. Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Combining many-body methods and density-funtional theory Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, Frane September 2014 2/1 Hybrids ombining many-body methods and DFT Goal: improve

More information

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation.

Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Fractional-charge and Fractional-spin errors in Range-Separated Density-Functional Theory with Random Phase Approximation. Bastien Mussard, Julien Toulouse Laboratoire de Chimie Théorique Institut du Calcul

More information

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy

RPA step by step. Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM 2, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy RPA step by step Bastien Mussard, János G. Ángyán, Sébastien Lebègue CRM, FacultÃl des Sciences UniversitÃl Henry PoincarÃl, Nancy Eötvös University Faculty of Science Budapest, Hungaria 0 mars 01 bastien.mussard@uhp-nancy.fr

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem Andreas Görling, Patrick Bleiziffer, Daniel Schmidtel, and Andreas Heßelmann Lehrstuhl für

More information

Developments in Electronic Structure Theory.

Developments in Electronic Structure Theory. Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie bastien.mussard@upmc.fr

More information

Developments in Electronic Structure Theory.

Developments in Electronic Structure Theory. Developments in Electronic Structure Theory. Bastien Mussard Laboratoire de Chimie Théorique Institut du Calcul et de la Simulation Sorbonne Universités, Université Pierre et Marie Curie bastien.mussard@upmc.fr

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

A multiconfigurational hybrid density-functional theory

A multiconfigurational hybrid density-functional theory THE JOURNAL OF CHEMICAL PHYSICS 137, 044104 (01) A multiconfigurational hybrid density-functional theory Kamal Sharkas, 1,,a) Andreas Savin, 1 Hans Jørgen Aa. Jensen, 3 and Julien Toulouse 1,b) 1 Laboratoire

More information

XYZ of ground-state DFT

XYZ of ground-state DFT XYZ of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) XYZ of ground-state

More information

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Intermediate DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA October 10-19th, 2012 Kieron (UC Irvine) Intermediate DFT Lausanne12

More information

The adiabatic connection

The adiabatic connection The adiabatic connection Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Dipartimento di Scienze

More information

Density-functional theory at noninteger electron numbers

Density-functional theory at noninteger electron numbers Density-functional theory at noninteger electron numbers Tim Gould 1, Julien Toulouse 2 1 Griffith University, Brisbane, Australia 2 Université Pierre & Marie Curie and CRS, Paris, France July 215 Introduction

More information

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework

Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Analytical Gradients for the Range-Separated Random Phase Approximation Correlation Energies Using a Lagrangian Framework Bastien Mussard a, János G. Ángyán a, Péter G. Szalay b a CRM 2, Université de

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

Adiabatic connections in DFT

Adiabatic connections in DFT Adiabatic connections in DFT Andreas Savin Torino, LCC2004, September 9, 2004 Multi reference DFT Kohn Sham: single reference Variable reference space capability to approach the exact result Overview The

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections János G. Ángyán and Iann C. Gerber Laboratoire de Cristallographie et de Modélisation des Matériaux

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

Model Hamiltonians in Density Functional Theory

Model Hamiltonians in Density Functional Theory Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Volume 41, 2006 Model Hamiltonians in Density Functional Theory Paola Gori-Giorgi, Julien Toulouse, and Andreas Savin Abstract. The

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

arxiv: v2 [physics.chem-ph] 14 Jan 2013

arxiv: v2 [physics.chem-ph] 14 Jan 2013 Multi-configuration time-dependent density-functional theory based on range separation Emmanuel Fromager a, Stefan Knecht b and Hans Jørgen Aa. Jensen b a Laboratoire de Chimie Quantique, arxiv:1211.4829v2

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Introduction and Overview of the Reduced Density Matrix Functional Theory

Introduction and Overview of the Reduced Density Matrix Functional Theory Introduction and Overview of the Reduced Density Matrix Functional Theory N. N. Lathiotakis Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens April 13, 2016 Outline

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN

JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN Scaling Relations, Virial Theorem, and Energy Densities for Long-Range and Short-Range Density Functionals JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN Laboratoire de Chimie Théorique, CNRS et Université

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals

Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals Samuel B. Trickey Sept. 2008 Quantum Theory Project Dept. of Physics and Dept. of Chemistry

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

Introduction to density-functional theory

Introduction to density-functional theory Introduction to density-functional theory Julien Toulouse Laboratoire de Chimie Théorique Université Pierre et Marie Curie et CNRS, 75005 Paris, France julien.toulouse@upmc.fr June 21, 2017 http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Comparison of exchange-correlation functionals: from LDA to GGA and beyond

Comparison of exchange-correlation functionals: from LDA to GGA and beyond Comparison of ehange-correlation functionals: from LDA to GGA and beyond Martin Fuchs Fritz-Haber-Institut der MPG, Berlin, Germany Density-Functional Theory Calculations for Modeling Materials and Bio-Molecular

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Multi-configuration time-dependent density-functional theory based on range separation

Multi-configuration time-dependent density-functional theory based on range separation Multi-configuration time-dependent density-functional theory based on range separation Emmanuel Fromager, Stefan Knecht, and Hans Jørgen Aa. Jensen Citation: J. Chem. Phys. 138, 8411 213); doi: 1.163/1.4792199

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Density matrix functional theory. Rob Klooster

Density matrix functional theory. Rob Klooster Density matrix functional theory Rob Klooster March 26, 2007 Summary In this report, we will give an overview of Density Matrix Functional Theory (DMFT). In the first part we will discuss the extended

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren Random-phase approximation and beyond for materials: concepts, practice, and future perspectives Xinguo Ren University of Science and Technology of China, Hefei USTC-FHI workshop on frontiers of Advanced

More information

1 Back to the ground-state: electron gas

1 Back to the ground-state: electron gas 1 Back to the ground-state: electron gas Manfred Lein and Eberhard K. U. Gross 1.1 Introduction In this chapter, we explore how concepts of time-dependent density functional theory can be useful in the

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

RPA, TDDFT AND RELATED RESPONSE FUNCTIONS : APPLICATION TO CORRELATION ENERGIES

RPA, TDDFT AND RELATED RESPONSE FUNCTIONS : APPLICATION TO CORRELATION ENERGIES RPA, TDDFT AND RELATED RESPONSE FUNCTIONS : APPLICATION TO CORRELATION ENERGIES John Dobson, Qld Micro & Nano Tech. Centre, Griffith University, Qld, Australia FAST collaboration: Janos Angyan, Sebastien

More information

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation

Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation Patrick Bleiziffer, Andreas Heßelmann, and Andreas Görling Citation: J. Chem. Phys.

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Post Hartree-Fock: MP2 and RPA in CP2K

Post Hartree-Fock: MP2 and RPA in CP2K Post Hartree-Fock: MP2 and RPA in CP2K A tutorial Jan Wilhelm jan.wilhelm@chem.uzh.ch 4 September 2015 Further reading MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele Del Ben, M; Hutter,

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB

FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB FONCTIONNELLES DE DENSITÉ AVEC SÉPARATION DE PORTÉE: AU CIEL DFT SANS ÉCHELLE DE JACOB, Iann Gerber, Paola Gori-Giorgi, Julien Toulouse, Andreas Savin Équipe de Modélisation Quantique et Cristallographique

More information

Time-dependent linear response theory: exact and approximate formulations. Emmanuel Fromager

Time-dependent linear response theory: exact and approximate formulations. Emmanuel Fromager June 215 ISTPC 215 summer school, Aussois, France Page 1 Time-dependent linear response theory: exact and approximate formulations Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

5/27/2012. Role of van der Waals Interactions in Physics, Chemistry, and Biology

5/27/2012. Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology 1 Role of van der Waals Interactions in Physics, Chemistry, and Biology Karin Jacobs: Take van der Waals forces into account in theory,

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Methods for van der Waals Interactions

Methods for van der Waals Interactions Methods for van der Waals Interactions Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute FHI DFT and Beyond Workshop, Jul.

More information

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA Basics of DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA August 2nd, 2012 Kieron (UC Irvine) Basics of DFT Exciting!12 1 / 66

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory

Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory Version Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory K.J.H. Giesbertz, E. J. Baerends, and... Afdeling Theoretische Chemie, Vrije Universiteit,

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

ABC of ground-state DFT

ABC of ground-state DFT ABC of ground-state DFT Kieron Burke and Lucas Wagner Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA January 5-9th, 2014 Kieron (UC Irvine) ABC of ground-state

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information