Ab initio proučavanje neadijabatskih efekata kod malih molekula

Size: px
Start display at page:

Download "Ab initio proučavanje neadijabatskih efekata kod malih molekula"

Transcription

1 Ab initio proučavanje neadijabatskih efekata kod malih molekula Marko Mitić Fakultet za fizičku hemiju, Univerzitet u Beogradu Seminar iz fizike/astrofizike Departman za fiziku, PMF, Novi Sad 15. april Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 1 / 44

2 Uvod "Fizički zakoni na kojima počiva veliki deo fizike i cela hemija su, dakle, potpuno poznati i problem je samo u tome što egzaktna primena tih zakona vodi do jednačina koje su isuviše komplikovane da bi se mogle rešiti." P. A. M. Dirak, Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 2 / 44

3 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 3 / 44

4 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 4 / 44

5 Šredingerova jednačina Molekul = S jezgara (A, B,..., S) N elektrona (α, β,..., N) Talasna funkcija Ψ = Ψ(r A, s A,..., r S, s S, r α, s α,..., r N, s N ) Šredingerova jednačina ĤΨ = EΨ Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 5 / 44

6 Born-Openhajmerova aproksimacija Šredingerova jednačina ĤΨ( r, R) = EΨ( r, R) Nerelativistički hamiltonijan molekula Ĥ = ˆT n + ˆT e + ˆV en + ˆV ee + ˆV nn = 1 2 N S µ=α K=A Z N K r µk + N µ=α ν>µ 1 r µν + S K=A S 1 m K K 1 2 S K=A L>K Z K Z L R KL N µ=α µ Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 6 / 44

7 Born-Openhajmerova aproksimacija Šredingerova jednačina ĤΨ( r, R) = EΨ( r, R) Nerelativistički hamiltonijan molekula Ĥ = ˆTn + ˆT e + ˆV en + ˆV ee + ˆV nn = 1 S 1 K 1 N µ 2 m K 2 K=A µ=α N S Z N K r µk + N 1 S r µν + S µ=α K=A Elektronski hamiltonijan µ=α ν>µ K=A L>K Ĥ e = ˆT e + ˆV en + ˆV ee + ˆV nn Z K Z L R KL Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 6 / 44

8 Born-Openhajmerova aproksimacija Rešavamo elektronsku Šredingerovu jednačinu Ĥ e ψ( r; R) = E el ( R)ψ( r; R) Rešavamo jezgarnu Šredingerovu jednačinu Ψ( r, R) = j Φ j ( R)ψ j ( r; R) [ ˆT n + E el ( R) E]Φ j ( R) + j Λ ij Φ j ( R) = 0 gde je Λ ij = 1 2 S 1 K=A m K [ 2 ψ i ( r; R) K ψ j ( r; R) K + ψ i ( r; R) ψ j ( r; R) ] Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 7 / 44

9 Born-Openhajmerova aproksimacija Zanemarivanje Λ ij nedijagonalni članovi (i j) adijabatska aproksimacija (i j) (i = j) B-O aproksimacija Dobijamo sistem jednačina [ ˆT n + E el ( R)]Φ j ( R) = EΦ j ( R), j = 1, 2,... Narušavanje B-O aproksimacije = neadijabatski efekti i) izbegnuta presecanja potencijalnih površi ii) Jan-Telerov efekat iii) Rener-Telerov efekat Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 8 / 44

10 Metode kvantne hemije "Brute force" metode Semiempirijske metode Ab initio metode Približne metode Perturbacioni račun Varijacioni račun Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 9 / 44

11 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

12 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

13 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

14 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

15 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

16 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

17 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 10 / 44

18 Ab initio metode za rešavanje elektronskog problema Hartree-Fock method (HF) Density functional theory (DFT) (ab initio?) Post-Hartree-Fock methods Møller Plesset perturbation theory (MPn) Configuration interaction (CI) Coupled cluster (CC) Multi-reference methods Multi-configurational self-consistent field (MCSCF, CASSCF) Multi-reference configuration interaction (MRCI) Complete active space perturbation theory (CASPTn) Multi-reference coupled-cluster (MRCC) Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 11 / 44

19 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 12 / 44

20 Mali molekuli The Cologne Database for Molecular Spectroscopy Universität zu Köln, Physikalisches Institut Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 13 / 44

21 Mali molekuli Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 14 / 44

22 Mali molekuli - atmosfera Titana N C C C C N Dicijanoacetilen (C4 N2 ) H C C C C H Diacetilen (C4 H2 ) Cijanoacetilen i cijanodiacetilen opaženi u interstelarnom prostoru, dicijanoacetilen? Atmosfera Titana (N2, CH4,... ) C4 N2 (s) detektovan C4 N2 značajan za meteorologiju Titana X 2 Πu elektronsko stanje katjona C4 N+ 2, ispoljava Rener-Telerov efekat Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 15 / 44

23 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 16 / 44

24 Rener-Telerov efekat - opšta razmatranja Linearni molekuli (elektronska stanja Π,, Φ,... ) C v, D h C S, C 2v, C 2h,... Vibraciono-elektronska (vibronska) sprega (a) V + (b) V + (c) V + V V V ρ ρ ρ Troatomski molekuli Četvoroatomski molekuli Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 17 / 44

25 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 18 / 44

26 Modelni hamiltonijan a) Razmatrano elektronsko stanje je dovoljno odvojeno od drugih elektronskih stanja b) Ravnotežna geometrija molekula je linearna c) Harmonijska aproksimacija d) Sprega između savijajućih i istežućih vibracija je zanemarena e) Rotacija molekula u celini zanemarena f) Korišćene krivolinijske unutrašnje koordinate g) Primenjen operator kinetičke energije jezgara za infinitezimalne savijajuće vibracije h) Primenjen fenomenološki spin-orbitni operator i) Asimptotske (linearne) elektronske talasne funkcije su korišćene za matričnu reprezentaciju operatora kinetičke energije jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 19 / 44

27 Modelni hamiltonijan Molekulski hamiltonijan Elektronski spin-orbitni operator Ĥ = Ĥe + ˆT n + ĤSO Ĥ SO = A SO ˆLz Ŝ z Operator kinetičke energije za savijajuća kretanja jezgara i) krivolinijske unutrašnje koordinate (ρ 1, φ 1, ρ 2, φ 2 ) ii) krivolinijske simetrijske koordinate (ρ C, φ C, ρ T, φ T ) iii) pravolinijske unutrašnje/simetrijske koordinate iv) normalne koordinate Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 20 / 44

28 Modelni hamiltonijan [Perić et al. 2006] Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 21 / 44

29 Modelni hamiltonijan ˆT n u krivolinijskim unutrašnjim koordinatama za dve (dvostruko degenerisane) infinitezimalne savijajuće vibracije ( ˆT n = µ 1 ρ 2 1 ρ 1 ρ 1 ρ 2 1 [ ( + 1 cos(φ 2 φ 1) µ 12 ( + sin(φ 2 φ 1) 2 φ 2 1 ) ( 1 2 2µ 2 2 ρ 1 ρ ρ 1ρ ρ 1 ρ 2 φ 1 ρ 2 ρ 1 φ 2 ρ 2 2 φ 1 φ 2 )] ρ 2 ρ 2 ρ 2 2 ) 2 φ 2 2 ) V = 1 2 k1ρ k2ρ2 2 + k 12ρ 1ρ 2 cos(φ 2 φ 1) Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 22 / 44

30 Elektronske bazne funkcije Vibronska talasna funkcija u obliku Ψ = f 1 ψ 1 + f 2 ψ 2 Izbor elektronskih talasnih funkcija adijabatske talasne funkcije Ĥ e ψ + = V + ψ +, Ĥ e ψ = V ψ Matrični elementi od Ĥel dijagonalni Matrični elementi od ˆT n sadrže članove: ψ + ψ + = ψ ψ = q i q i q i ψ + ψ = ψ + ψ = ψ ψ + q i q i q i B-O aproksimacija? Izbegnuta presecanja; članovi ρ 1 i i ρ 1 i ρ 1 j Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 23 / 44

31 Elektronske bazne funkcije - dijabatizacija Dijabatske elektronske talasne funkcije η 1 = ψ + cos(λτ) ψ sin(λτ) η 2 = ψ + sin(λτ) + ψ cos(λτ) Matrični elementi elektronskog operatora u ovoj bazi E 11 = η 1 Ĥe η 1 = V + cos 2 (Λτ) + V sin 2 (Λτ) E 22 = η 2 Ĥe η 2 = V + sin 2 (Λτ) + V cos 2 (Λτ) E 12 = η 1 Ĥe η 2 = V + V sin(2λτ) = η 2 Ĥe η 1 2 Ugao τ određujemo kao η 2 η 1 = 0, q i τ q i = 1 Λ ψ + ψ q i = 1 Λ ψ ψ + q i Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 24 / 44

32 Elektronske bazne funkcije - dijabatizacija Sledeća transformacija - linearne bazne funkcije ψ 1 = 1 2 (η 1 + iη 2 ) = 1 2 e iλτ (ψ + + iψ ) ψ 2 = 1 2 (η 1 iη 2 ) = 1 2 e iλτ (ψ + iψ ) U linearnoj bazi matrični elementi elektronskog operatora oblika E11 lin = ψ 1 Ĥe ψ 1 = V + + V 2 12 = ψ 1 Ĥe ψ 2 = V + V E lim 2 21 = ψ 2 Ĥe ψ 1 = V + V E lim 2 = ψ 2 Ĥe ψ 2 = E lin 22 e 2iτ Kompleksni matrični elementi "linearnih" el. funkcija po koordinatama jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 25 / 44 e 2iτ

33 Mala odstupanja od linearnosti Asimptotske forme adijabatskih el. talasnih funkcija ψ 0 + = lim ρ 1 0, ρ 2 0 ψ+ = ξ 1 cos[λ(θ τ)] π ψ0 = lim ρ 1 0, ρ 2 0 ψ = ξ 1 sin[λ(θ τ)] π Dijabatske elektronske funkcije η 1 0 = η 2 0 = "Linearne" elektronske funkcije ψ 1 0 = ψ 2 0 = lim η 1 = ξ 1 cos(λθ) ρ 1 0, ρ 2 0 π lim η 2 = ξ 1 sin(λθ) ρ 1 0, ρ 2 0 π lim ψ 1 = ξ 1 e iλθ ρ 1 0, ρ 2 0 2π lim ψ 2 = ξ 1 e iλθ ρ 1 0, ρ 2 0 2π Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 26 / 44

34 Ugao τ U okviru harm. aproksimacije i za Π elektronsko stanje, sledi { } τ = 1 2 arctan ɛ 1ρ 2 1 sin(2φ 1) + ɛ 1ρ 2 2 sin(2φ 2) + 2ɛ 12ρ 1ρ 2 sin(φ 1 + φ 2) ɛ 1ρ 2 1 cos(2φ1) + ɛ1ρ2 2 cos(2φ2) + 2ɛ12ρ1ρ2 cos(φ1 + φ2) Izvodi τ = ρ [ 1 sin(φ 2 φ 1 ) ɛ1 ɛ 12 ρ ɛ 2ɛ 12 ρ ɛ 1ɛ 2 ρ 1 ρ 2 cos(φ 2 φ 1 ) ] ρ 2 (V + V ) 2 τ = ɛ2 2 ρ ɛ2 12 ρ2 1 ρ2 2 + ɛ 12ρ 1 ρ 2 (ɛ 1 ρ ɛ 2ρ 2 2 ) cos(φ 2 φ 1 ) + ɛ 1 ɛ 2 ρ 2 1 ρ2 2 cos 2(φ 2 φ 1 ) φ 2 (V + V ) 2 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 27 / 44

35 S-O matrični elementi Matrični elementi operatora S-O sprege u "linearnoj" asimptotskoj bazi ψ0 1 ĤSO ψ0 1 = ΛΣA SO ψ0 2 ĤSO ψ0 2 = ΛΣA SO = = 0 ψ0 1 ĤSO ψ0 2 ψ0 2 ĤSO ψ0 1 Elektronski matrični elementi su operatori koji treba da deluju na vibracione bazne funkcije Svojstvene funkcije 2D harmonijskog oscilatora Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 28 / 44

36 Kvantni brojevi ˆN z = ˆR z + ˆL z K = l ± Λ Ĵ z = ˆN z + Ŝz P = K + Σ l = υ, υ 2,..., 1 ili 0 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 29 / 44

37 Kompjutacioni detalji Adijabatske energije FV-SA-CASSCF(9,10)/cc-pVQZ Dužine veza konstantne C H r = 2,04 bohr = 1,0795 Å C C R = 2,37 bohr = 1,2542 Å MOLPRO [Werner et al. 2012] Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 30 / 44

38 Parametri koji ulaze u model Presecanja pri planarnim geometrijama [Perić 2006] ρ 2 = uρ 1, Ukupno 5 ab initio računa! u = ɛ12 ± ɛ 2 12 ɛ1ɛ2 ɛ 2 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 31 / 44

39 Model Ab initio φ2 / deg B1/A A1/A B Model Ab initio ρ1/ρ2 10/ /7.5 10/5 10/2.5 10/0.001 E / Eh E / Eh A A /Bu A /Au ρ 2 / deg φ 2 / deg. Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 32 / 44

40 τ / rad 1 ρ τ φ Model Ab initio φ2 / deg ρ 2 / deg Model Ab initio φ2 / deg ρ 2 / deg. Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 33 / 44

41 τ / deg τ / deg Model Ab initio φ2 / deg ρ 2 / deg. φ 2 / deg. Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 34 / 44 0 Model ρ1/ρ2 10/ /7.5 10/5 10/2.5 10/0.001

42 Adibatic Adibatic Diabatic φ2 = 1 deg. (a) V Adibatic Adibatic Diabatic φ2 = 30 deg. (b) V + E / Eh E1 E2 V E / Eh E1 E2 V E E12 E / Eh ρ2 / deg. 5 Adibatic Adibatic Diabatic φ2 = 60 deg. 10 (c) V + E1 E2 V E / Eh ρ2 / deg. E1 5 Adibatic Adibatic Diabatic φ2 = 90 deg. (d) V + 10 V E E12 E ρ2 / deg ρ2 / deg Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 35 / 44

43 Vibronski spektar C 2 H + 2 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 36 / 44

44 Sadržaj izlaganja 1 Kvantno-hemijski problem Šredingerova jednačina Born-Openhajmerova aproksimacija Ab initio metode 2 Mali molekuli 3 Rener-Telerov efekat - opšta razmatranja 4 Model za tretiranje R-T efekta kod četvoroatomskih molekula Modelni hamiltonijan Elektronske bazne funkcije Elektronske bazne funkcije - dijabatizacija Mala odstupanaj od linearnosti Ugao τ S-O matrični elementi Vibronska baza Rezultati 5 Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 37 / 44

45 Model za molekule sa proizvoljnim brojem jezgara Ĥ = Ĥe + ˆT n + ĤSO ( = Ĥe 1 S 2 2 i=1 2 q 2 i + 1 q i q i + 1 q 2 i 2 φ 2 i ) ω i + A SO ˆLz Ŝ z S 2 S 2 τ = 1 ε ij ωi ω j q i q j sin ( ) φ i + φ j 2 arctan i=1 j=1 S 2 S 2 ε ij ωi ω j q i q j sin ( ) φ i + φ j i=1 j=1 Izbegnuta presecanja i pri planarnim i pri neplanarnim geometrijama Model testiran na primeru X 2 Π u stanja molekula C 5 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 38 / 44

46 Vibronski spektar C 5 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 39 / 44

47 Vibronski spektar C 5 (a) [Perić et al. 2008] (b) [Mitić et al. 2016] Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 40 / 44

48 Vibronski spektar C 5 (v1v2v3) (v1v2v3) (v1v2v3) (v1v2v3) 1500 (101) (101) (100) (100) 2100 E/ cm (001) (001) E/ cm (111) (111) K = (000) (000) 1800 ε = 0 A SO = 0 ε = 0 A SO 0 ε 0 A SO 0 ε 0 A SO = 0 ε = 0 A SO = 0 ε = 0 A SO = 0 ε = 0 A SO 0 ε 0 A SO 0 ε 0 A SO = 0 ε = 0 A SO = 0 Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 41 / 44

49 Zaključak Born-Openhajmerova aproksimacija Ab initio metode Mali molekuli Rener-Telerov efekat Model za tretiranje vibronske sprege kod četvoroatomskih molekula Ključan korak - dijabatizacija Kombinacija neke vrste J-T efekta i R-T efekta Model za molekule sa proizvoljnim brojem jezgara Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 42 / 44

50 Radovi M. Perić, S. Jerosimić, M. Mitić, M. Milovanović, R. Ranković, "Underlying theory of a model for the Renner Teller effect in tetra-atomic molecules: X 2 Π u electronic state of C 2 H + 2 ", The Journal of Chemical Physics, 142, (2015), doi: / M. Mitić, R. Ranković, M. Milovanović, S. Jerosimić, M. Perić, "Underlying theory of a model for the Renner-Teller effect in any-atomic linear molecules on example of the X 2 Π u electronic state of C 5 ", Chemical Physics, 464, 55 (2016), doi: /j.chemphys Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 43 / 44

51 Hvala na pažnji! Marko Mitić Ab initio proučavanje neadijabatskih efekata kod malih molekula 44 / 44

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Quantum Chemistry Methods

Quantum Chemistry Methods 1 Quantum Chemistry Methods T. Helgaker, Department of Chemistry, University of Oslo, Norway The electronic Schrödinger equation Hartree Fock theory self-consistent field theory basis functions and basis

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

Wave function methods for the electronic Schrödinger equation

Wave function methods for the electronic Schrödinger equation Wave function methods for the electronic Schrödinger equation Zürich 2008 DFG Reseach Center Matheon: Mathematics in Key Technologies A7: Numerical Discretization Methods in Quantum Chemistry DFG Priority

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

Uvod u relacione baze podataka

Uvod u relacione baze podataka Uvod u relacione baze podataka Ana Spasić 2. čas 1 Mala studentska baza dosije (indeks, ime, prezime, datum rodjenja, mesto rodjenja, datum upisa) predmet (id predmeta, sifra, naziv, bodovi) ispitni rok

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Coupled-Cluster Theory. Nuclear Structure

Coupled-Cluster Theory. Nuclear Structure Coupled-Cluster Theory! for Nuclear Structure!!!! Sven Binder INSTITUT FÜR KERNPHYSIK! 1 Nuclear Interactions from Chiral EFT NN 3N 4N NLO LO N 2 LO +... N 3 LO +... +... +... 2 Nuclear Interactions from

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

VALENCE Hilary Term 2018

VALENCE Hilary Term 2018 VALENCE Hilary Term 2018 8 Lectures Prof M. Brouard Valence is the theory of the chemical bond Outline plan 1. The Born-Oppenheimer approximation 2. Bonding in H + 2 the LCAO approximation 3. Many electron

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations

Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations Potential Energy Surfaces for Quantum Dynamics Simulations: From ab initio Computations to Vibrational State Determinations by Ekadashi Pradhan A thesis submitted in partial fulfillment of the requirements

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

1 Rayleigh-Schrödinger Perturbation Theory

1 Rayleigh-Schrödinger Perturbation Theory 1 Rayleigh-Schrödinger Perturbation Theory All perturbative techniques depend upon a few simple assumptions. The first of these is that we have a mathematical expression for a physical quantity for which

More information

Molecular properties in quantum chemistry

Molecular properties in quantum chemistry Molecular properties in quantum chemistry Monika Musiał Department of Theoretical Chemistry Outline 1 Main computational schemes for correlated calculations 2 Developmentoftheabinitiomethodsforthe calculation

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Dynamics Simulation of Excited State Intramolecular Proton Transfer. Felix Plasser Institut für Theoretische Chemie Universität Wien

Dynamics Simulation of Excited State Intramolecular Proton Transfer. Felix Plasser Institut für Theoretische Chemie Universität Wien Dynamics Simulation of Excited State Intramolecular Proton Transfer Felix Plasser Institut für Theoretische Chemie Universität Wien Wien, am 26. 3. 2009 Contents 1 Introduction 1 2 Theory 5 2.1 The Schrödinger

More information

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci)

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci) Reactivity and Organocatalysis (Adalgisa Sinicropi and Massimo Olivucci) The Aldol Reaction - O R 1 O R 1 + - O O OH * * H R 2 R 1 R 2 The (1957) Zimmerman-Traxler Transition State Counterion (e.g. Li

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Pure and zero-point vibrational corrections to molecular properties

Pure and zero-point vibrational corrections to molecular properties Pure and zero-point vibrational corrections to molecular properties Kenneth Ruud UiT The Arctic University of Norway I UNIVERSITETET TROMSØ June 30 2015 Outline Why consider vibrational effects? General

More information

Simulation Methods II

Simulation Methods II Simulation Methods II Maria Fyta Institute for Computational Physics Universität Stuttgart Summer Term 2018 SM II - contents First principles methods Hartree-Fock and beyond Density-funtional-theory Ab

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Symposium, Bordeaux Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Alexander Schubert Institute of Physical and Theoretical Chemistry, University of Würzburg November

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states DFT with orbital-dependent functionals A. Görling Universität Erlangen-Nürnberg

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Exercises for Quantum Mechanics (TFFY54)

Exercises for Quantum Mechanics (TFFY54) Exercises for Quantum Mechanics (TFFY54) Johan Henriksson and Patrick Norman Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden Spring Term 007 1 For a Hermitian

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

H 2 in the minimal basis

H 2 in the minimal basis H 2 in the minimal basis Alston J. Misquitta Centre for Condensed Matter and Materials Physics Queen Mary, University of London January 27, 2016 Overview H 2 : The 1-electron basis. The two-electron basis

More information

TDDFT as a tool in biophysics

TDDFT as a tool in biophysics TDDFT as a tool in biophysics The primary event in vision Robert Send Universität Karlsruhe 09.09.08 Robert Send TDDFT as a tool in biophysics 09.09.08 1 / 28 Outline 1 Human vision 2 The methods 3 The

More information

Renner-Teller Effect in Tetra-Atomic Molecules

Renner-Teller Effect in Tetra-Atomic Molecules Groupe de Chimie Théorique du MSME Renner-Teller Effect in Tetra-Atomic Molecules Laurent Jutier, G. Dhont, H. Khalil and C. Léonard jutier@univ-mlv.fr (non linear) Outline General Presentation Structure

More information

Topological defects in graphene nanostructures

Topological defects in graphene nanostructures J. Smotlacha International Conference and Exhibition on Mesoscopic & Condensed Matter Physics June 22-24, 2015, Boston, USA Jan Smotlacha (BLTP JINR, Dubna, Russia) Topological defects in graphene nanostructures

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

A FIELD METHOD FOR SOLVING THE EQUATIONS OF MOTION OF EXCITED SYSTEMS UDC : (045) Ivana Kovačić

A FIELD METHOD FOR SOLVING THE EQUATIONS OF MOTION OF EXCITED SYSTEMS UDC : (045) Ivana Kovačić FACTA UNIVERSITATIS Series: Mechanics, Automatic Control and Robotics Vol.3, N o,, pp. 53-58 A FIELD METHOD FOR SOLVING THE EQUATIONS OF MOTION OF EXCITED SYSTEMS UDC 534.:57.98(45) Ivana Kovačić Faculty

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING

ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING Slota Ján, Jurčišin Miroslav Department of Technologies and Materials, Faculty of Mechanical Engineering, Technical University of

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere

More information

The potential of Potential Functional Theory

The potential of Potential Functional Theory The potential of Potential Functional Theory IPAM DFT School 2016 Attila Cangi August, 22 2016 Max Planck Institute of Microstructure Physics, Germany P. Elliott, AC, S. Pittalis, E.K.U. Gross, K. Burke,

More information

arxiv: v1 [quant-ph] 12 Sep 2007

arxiv: v1 [quant-ph] 12 Sep 2007 Bloch-Siegert shift for multiphoton resonances arxiv:0709.1958v1 [quant-ph] 12 Sep 2007 Peter Hagelstein and Irfan Chaudhary Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge,

More information

Translation Symmetry, Space Groups, Bloch functions, Fermi energy

Translation Symmetry, Space Groups, Bloch functions, Fermi energy Translation Symmetry, Space Groups, Bloch functions, Fermi energy Roberto Orlando and Silvia Casassa Università degli Studi di Torino July 20, 2015 School Ab initio Modelling of Solids (UniTo) Symmetry

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Vrije Universiteit Amsterdam, Netherlands November 2017 Outline 2/23 1

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Pod kompjutacionim ili računarskim ovde ne podrazumevamo samo upotrebu računara, već i druge aspekte izračunavanja ili izvođenja.

Pod kompjutacionim ili računarskim ovde ne podrazumevamo samo upotrebu računara, već i druge aspekte izračunavanja ili izvođenja. St. Jerosimić 03.11.2016. Dvočas. Metode i metodologija fizičkohemijskih istraživanja Napomene: Osnovni pregled KH metoda bez formula. Studenti MAS, posebno oni bez znanja kvantne hemije, slobodni su da

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

Chemistry, Physics and the Born- Oppenheimer Approximation

Chemistry, Physics and the Born- Oppenheimer Approximation Chemistry, Physics and the Born- Oppenheimer Approximation Hendrik J. Monkhorst Quantum Theory Project University of Florida Gainesville, FL 32611-8435 Outline 1. Structure of Matter 2. Shell Models 3.

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Péter G. Szalay Eötvös Loránd University Institute of Chemistry H-1518 Budapest, P.O.Box 32, Hungary szalay@chem.elte.hu

More information

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden Multiconfigurational Quantum Chemistry Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden April 20, 2009 1 The Slater determinant Using the spin-orbitals,

More information

Hartree-Fock Theory. ˆf(r)χ i (x) = ɛ i χ i (x) (1) Z A K=1 I. DERIVATION OF THE HARTREE-FOCK EQUATIONS. A. The energy of a Slater determinant

Hartree-Fock Theory. ˆf(r)χ i (x) = ɛ i χ i (x) (1) Z A K=1 I. DERIVATION OF THE HARTREE-FOCK EQUATIONS. A. The energy of a Slater determinant Hartree-Fock Theory The HF approximation plays a crucial role in chemistry and constitutes the starting point for more elaborate treatments of electron correlation. Furthermore, many semi-empirical methods

More information

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Péter G. Szalay Laboratory of Theoretical Chemistry Institute of Chemistry Eötvös Loránd University,

More information

( ). Expanding the square and keeping in mind that

( ). Expanding the square and keeping in mind that One-electron atom in a Magnetic Field When the atom is in a magnetic field the magnetic moment of the electron due to its orbital motion and its spin interacts with the field and the Schrodinger Hamiltonian

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Combining density-functional theory and many-body methods

Combining density-functional theory and many-body methods Combining density-functional theory and many-body methods Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France Albuquerque New Mexico, USA June 2016 Outline 2/23 1 A brief overview of

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ Course overview This is a course about density functional theory (DFT)

More information

Many-Body Approaches to Quantum Dots

Many-Body Approaches to Quantum Dots Many-Body Approaches to Patrick Merlot Department of Computational Physics November 4, 2009 Many-Body Approaches to Table of contents 1 2 3 Many-Body Approaches to What is a quantum dot? Physics of QDs

More information

Coupled cluster theory: Analytic derivatives, molecular properties, and response theory

Coupled cluster theory: Analytic derivatives, molecular properties, and response theory Coupled cluster theory: Analytic derivatives, molecular properties, and response theory Wim Klopper and David P. Tew Lehrstuhl für Theoretische Chemie Institut für Physikalische Chemie Universität Karlsruhe

More information

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6. .~, ~ I, sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.)1e'" 21t-ol Je C'...-------- lj-vi, J? Jr Jr \Ji 2~:J~ -ryej- r- 2 Jr A - f3 c _,~,= ~,.,w._..._.

More information

Solution of Second Midterm Examination Thursday November 09, 2017

Solution of Second Midterm Examination Thursday November 09, 2017 Department of Physics Quantum Mechanics II, Physics 570 Temple University Instructor: Z.-E. Meziani Solution of Second Midterm Examination Thursday November 09, 017 Problem 1. (10pts Consider a system

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Quantum Mechanics (Draft 2010 Nov.)

Quantum Mechanics (Draft 2010 Nov.) Quantum Mechanics (Draft 00 Nov) For a -dimensional simple harmonic quantum oscillator, V (x) = mω x, it is more convenient to describe the dynamics by dimensionless position parameter ρ = x/a (a = h )

More information

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhman, David Baker

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

Projektovanje paralelnih algoritama II

Projektovanje paralelnih algoritama II Projektovanje paralelnih algoritama II Primeri paralelnih algoritama, I deo Paralelni algoritmi za množenje matrica 1 Algoritmi za množenje matrica Ovde su data tri paralelna algoritma: Direktan algoritam

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

Computational Chemistry

Computational Chemistry Computational Chemistry Physical Chemistry Course Autumn 2015 Lecturers: Dos. Vesa Hänninen and Dr Garold Murdachaew vesa.hanninen@helsinki.fi Room B407 http://www.helsinki.fi/kemia/fysikaalinen/opetus/

More information

Dependence of the total -electron energy on a large number of non-bonding molecular orbitals

Dependence of the total -electron energy on a large number of non-bonding molecular orbitals J. Serb. Chem. Soc. 69 (10) 777 782 (2004) UDC 54 724+537.872:519.17:54 12 JSCS 3204 Original scientific paper Dependence of the total -electron energy on a large number of non-bonding molecular orbitals

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information