1 Rayleigh-Schrödinger Perturbation Theory

Size: px
Start display at page:

Download "1 Rayleigh-Schrödinger Perturbation Theory"

Transcription

1 1 Rayleigh-Schrödinger Perturbation Theory All perturbative techniques depend upon a few simple assumptions. The first of these is that we have a mathematical expression for a physical quantity for which we are unable to obtain an exact solution. The next assumption is that this physical quantity may be broken down into a part which can be solved exactly and a troublesome part which has no analytic solution. This perturbation is assumed to be relatively small in comparison to the soluble portion of our problem. In our analysis, we will also assume that the eigenvalues of our exactly soluble part of the problem are non-degenerate. In RSPT the equation we wish to solve is given by ĤΨ n = E n Ψ n, (1) where Ĥ represents the Hamiltonian for our system of interest and Ψ n is an exact eigenfunction of the Hamiltonian. In order to be able to apply RSPT to this problem, we must be able to break down our Hamiltonian into two Hermitian parts, one which is soluble and the other which is not: Ĥ = Ĥo + λ ˆV. (2) Ĥ 0 is known as the unperturbed Hamiltonian or the zeroth order Hamiltonian, while ˆV is termed the perturbation. Here we have introduced the parameter λ, which is assumed only to be a real term with a value between 0 and 1. The utility of this parameter requires some motivation. If λ is taken to be zero, equation (??) reduces to the zeroth order equation, Ĥ o Ψ (0) n = E (0) n Ψ (0) n. (3) As λ is allowed to increase in value, a perturbation is introduced to both the energy and wavefunction of equation (??): E n = E n (0) + E n (4) Ψ n = Ψ (0) n + Ψ n (5) Clearly, these expressions for E and Ψ are dependent upon the parameter λ. With this in mind, we can write an expansion for each in terms of an expansion in powers of λ. E n = E n (0) + λe n (1) + λ 2 E n (2) + λ 3 E n (3) + (6) Ψ n = Ψ (0) n + λψ (1) n + λ 2 Ψ (2) n + λ 3 Ψ (3) n + (7) 2

2 These two equations are merely power series expansions which have employed the following simplifications. E n (k) = 1 d k E n k! dλ k (8) Ψ (k) n = 1 k Ψ n k! λ k (9) We are free to constrain the higher order corrections to Ψ (0) n condition that Ψ (0) n Ψ (m) n = δ m0 (10) is normalized, we have what is known as intermediate nor- As long as Ψ (0) n malization: with the Ψ (0) n Ψ n = 1 (11) If the expressions for E n and Ψ n in equations (6) and (7) are introduced to (??) and coefficients of like powers of λ on each side of the equation are set equal to each other, we get an infinite number of equations of the form Ĥ 0 Ψ (0) n = E n (0) Ψ (0) n (12) Ĥ 0 Ψ (1) n + ˆV Ψ (0) n = E n (0) Ψ (1) n + E n (1) Ψ (0) n (13) Ĥ 0 Ψ (2) n + ˆV Ψ (1) n = E n (0) Ψ (2) n + E n (1) Ψ (1) n + E n (m) Ψ (0) n (14) Ĥ 0 Ψ (3) n + ˆV Ψ (2) n = E n (0) Ψ (3) n + E n (1) Ψ (2) n + E n (2) Ψ (1) n + E n (3) Ψ (0) n (15) Taking advantage of the orthogonality relation (??) we obtain the interesting series of equations E n (0) = Ψ (0) n Ĥ0 Ψ (0) n (16) E n (1) = Ψ (0) n ˆV Ψ (0) n (17) E n (2) = Ψ (0) n ˆV Ψ (1) n (18) E n (3) = Ψ (0) n ˆV Ψ (2) n (19) E (m). n = Ψ (0) n ˆV Ψ (m 1) n (20) Clearly, if we wish to solve for the m th order perturbation to the energy, we must find a way to solve for Ψ (m 1) n. However, under certain conditions E n (2m) and E (2m+1) n can be determined from Ψ (m) n. 2 2 P. O. Lödin, J. Math Phys., 6, 1341, (1965). 3

3 If we return to our original assumptions about the form of the RSPT Hamiltonian, we see that H 0 is an hermitian operator, and has a set of nondegenerate solutions which are orthogonal and form a complete space. Since Ψ (0) n is one of these solutions, any vector orthogonal to it may be expressed as a linear combination of all the other solutions to the eigenvalue equation, { Ψ (0) n }: Ψ (m) n = C (m) n,l Ψ (0) l (21) l where C (m) n,l = Ψ (0) l Ψ (m) n (22) For m = 1 the C n,l s may be obtained with only the zeroth order solutions. Left multiplication of equation (13) by Ψ (0) l yields and so (E (0) n E (0) l ) Ψ (0) l Ψ (1) n = Ψ (0) l ˆV Ψ (0) n (23) C (1) n,l = Ψ(0) (E (0) n l ˆV Ψ (0) n E (0) l ) (24) Expansions for the higher order corrections to Ψ n may be obtained in a similar manner with increasingly complicated expressions for the expansion coefficients. These expressions for the perturbed wavefunction lead directly to the perturbed energies via equation (20). At this point it is interesting to note that we have obtained expressions for E n through infinite levels of perturbation without saying anything about the nature of Ĥ 0 or ˆV. One can envision a great number of ways in which the Hamiltonian for a system of particles could be partitioned. Obviously, for a given physical situation, certain partitionings will yield more accurate predictions than others, and certain partitionings will lend a more logical and intuitive structure to the RSPT equations. For quantum chemists, the first guess at the exact wavefunction for a molecular system is the Hartree-Fock wavefunction. From this first guess, getting the exact answer involves including all the electron correlation via a full CI. Within this logical framework, treating electron correlation as a perturbation on the HF solution has an intuitive appeal. This appealing partitioning of the Hamiltonian forms the basis for Møller-Plesset perturbation theory. 4

4 2 Møller-Plesset Perturbation Theory Møller-Plesset perturbation theory (MPPT) 3, which is a particular formulation of many body perturbation theory (MBPT), takes Ĥ0 to be the sum of the one-electron Fock operators, and treats electron correlation as the perturbation to the zeroth-order Hamiltonian. This formulation of PT is the one most commonly used by quantum chemists. One of MPPT s distinguishing features is size extensivity: the predicted energy for every order of perturbation in MPPT scales with the number of non-interacting particles in the system. This aspect of MPPT contrasts it to configuration interaction methods which are not size extensive. Size extensivity is an important issue when comparing systems with differing numbers of electrons and when treating infinite systems such as crystal lattices. Also in contrast to CI methods, however, perturbative treatment of the electron correlation energy does not give a total electronic energy which is variational. The formal expansion of the MPPT partitioned Hamiltonian 4 may be written as Ĥ = Ĥ0 + ˆV (25) where Ĥ 0 = i f(i) = i h(i) + V HF (i) (26) and ˆV = i<j(r 1 ij V HF ) (27) by Recall that a matrix element of the Hartree-Fock potential term is given V HF pq = b pb qb (28) where the sum over b includes all occupied spin orbitals, and the p and q indecies correspond to the pth and qth HF spin-orbital. Our zeroth order wavefunction, then, is simply the HF wavefunction, and the zeroth-order energy is the sum of the orbital energies of the occupied orbitals {ɛ a }. Equation 3 C. Møller and M. S. Plesset, Phys. Rev., 46, 618, (1934). 4 A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, 1st Ed., revised (McGraw- Hill, New York, 1989). 5

5 (11) tells us that the first-order energy correction is given by making the total first order energy E (1) 0 = Ψ (0) 0 ( 1 r 12 ˆV HF ) Ψ (0) 0 (29) E n = E n (0) + E n (1) = a ɛ a 1 ab ab (30) 2 ab which is just the HF energy. The first correction to the HF energy does not come until after first-order. Second-order MPPT, or MP2, is the method which is most widely used by quantum chemists. Higher order perturbation expansions become significantly more computationally intensive, but do not perform as well as other methods of similar or lesser computational expense. The only new information required to obtain the MP2 energy is the first order wave function. In our investigation of RSPT we declared the higher order contributions to our total electronic wavefunction to be orthogonal to Ψ (0) n. One convenient set of wavefunctions which fits this constraint is the set of determinants which represent excitations from the occupied χ i s in Ψ (0) n to spin orbitals which are unoccupied in the reference wavefunction. Inclusion of all the HF solutions in the first order wavefunction, however, turns out to be unnecessary. Slater s rules, when applied to the second order energy expression, dictate that only doubly excited determinants will have non-zero contributions to the MP2 energy. The first order wavefunction may be expanded as Ψ (1) n = C (1) n,abrs Ψrs ab (31) where Ψ rs ab represents a wavefunction which has electrons excited from spin orbitals a and b (occupied in Ψ (0) n ) into spin orbitals r and s (unoccupied in Ψ (0) 0 ), respectively. The coefficients C abrs are determined by the equation C (1) n,abrs = Ψrs ab Ψ (1) n = Ψ rs ab Ψ (0) (32) This wave-function may then be placed in the second order energy expression to give E (2) 0 = n Ψ (0) 0 1 r 12 Ψ rs ab 2 (33) 6

6 = = 1 4 abrs ab rs 2 (34) ab rs 2 (35) So far our treatment has been solely in terms of spin orbitals, but, if we are utilizing a restricted Hartree-Fock reference wavefunction, and we are only considering closed shell systems, then our energy expression becomes a great deal simpler. If we now consider the second order energy correction in terms of spatial orbitals for an N electron system E (2) 0 = 2 N 2 abrs ab rs rs ab N 2 abrs ab rs rs ba (36) where a, b, r and s each now signify spatial orbitals. Expressions for the higher-order energies may derived in a similar fashion. The actual derivation, however, involves copious amounts of tedious algebra. Alternate methods of deriving the expressions for MBPT energies have been suggested, including a diagrammatic technique first proposed by J. Goldstone. Such techniques often achieve simple expressions for algebraicly complicated terms, and, for those well acquainted with them, can serve as an interpretive tool which allows for extension to higher orders of approximation with greater facility than more obvious methods. The third and fourth order Møller-Plesset perturbation theory (MP3, MP4) are also commonly employed by quantum chemists. The third-order energy is given by D ˆV E n (3) 0s ( = ˆV st ˆV 00 δ st ) ˆV t0 (37) (E 0 E s )(E 0 E t ) st where the summation is held over the set of all doubly excited determinants, D, and the 0 index indicates Ψ (0) n, the zeroth-order wavefunciton. It is interesting to note that the third order energy still only involves double excitations from the reference wavefunction. The fourth order energy is given by the expression E (4) n = D ˆV 0s ˆVs0 ˆV0t ˆVt0 st (E 0 E s )(E 0 E t ) 2 7

7 + D su SDT Q t ˆV 0s ( ˆV st ˆV 00 δ st )( ˆV tu ˆV 00 δ tu ) ˆV t0 (E 0 E s )(E 0 E t )(E 0 E u ) (38) where the second sum over t is over the set of singly, doubly, triply and quadruplely excited determinants. The step from third-order to fourth order is a very expensive one, but may be made less so by omitting the triple excitations. Such an approximation does not destroy the size extensivity, but the results are no longer exact through fourth order, except for a collection of systems with two or fewer electrons. 3 References C. Møller and M. S. Plesset, Phys. Rev., 46, 618, (1934). R. Krishnan and J. A. Pople, Int. Journ. Quantum Chem., 14, 91 (1978). A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, 1st Ed., revised (McGraw-Hill, New York, 1989). Eugen Merzbacher, Quantum Mechanics, 2nd Ed., (John Wiley and Sons, New York, 1970). David Park, Introduction to the Quantum Theory, 3rd Ed., (McGraw-Hill, Inc., New York, 1992). D. A. McQuarrie, Quantum Chemistry (University Science Books, Mill Valley, CA, 1983). W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, (John Wiley and Sons, New York, 1986). 8

0 belonging to the unperturbed Hamiltonian H 0 are known

0 belonging to the unperturbed Hamiltonian H 0 are known Time Independent Perturbation Theory D Perturbation theory is used in two qualitatively different contexts in quantum chemistry. It allows one to estimate (because perturbation theory is usually employed

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

Methods for Treating Electron Correlation CHEM 430

Methods for Treating Electron Correlation CHEM 430 Methods for Treating Electron Correlation CHEM 430 Electron Correlation Energy in the Hartree-Fock approximation, each electron sees the average density of all of the other electrons two electrons cannot

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Non-degenerate Perturbation Theory. and where one knows the eigenfunctions and eigenvalues of

Non-degenerate Perturbation Theory. and where one knows the eigenfunctions and eigenvalues of on-degenerate Perturbation Theory Suppose one wants to solve the eigenvalue problem ĤΦ = Φ where µ =,1,2,, E µ µ µ and where Ĥ can be written as the sum of two terms, ˆ ˆ ˆ ˆ ˆ ˆ H = H + ( H H ) = H +

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Consequently, the exact eigenfunctions of the Hamiltonian are also eigenfunctions of the two spin operators

Consequently, the exact eigenfunctions of the Hamiltonian are also eigenfunctions of the two spin operators VI. SPIN-ADAPTED CONFIGURATIONS A. Preliminary Considerations We have described the spin of a single electron by the two spin functions α(ω) α and β(ω) β. In this Sect. we will discuss spin in more detail

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Péter G. Szalay Eötvös Loránd University Institute of Chemistry H-1518 Budapest, P.O.Box 32, Hungary szalay@chem.elte.hu

More information

Wave function methods for the electronic Schrödinger equation

Wave function methods for the electronic Schrödinger equation Wave function methods for the electronic Schrödinger equation Zürich 2008 DFG Reseach Center Matheon: Mathematics in Key Technologies A7: Numerical Discretization Methods in Quantum Chemistry DFG Priority

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Computational Chemistry. Ab initio methods seek to solve the Schrödinger equation.

Computational Chemistry. Ab initio methods seek to solve the Schrödinger equation. Theory Computational Chemistry Ab initio methods seek to solve the Schrödinger equation. Molecular orbital theory expresses the solution as a linear combination of atomic orbitals. Density functional theory

More information

The Hartree-Fock approximation

The Hartree-Fock approximation Contents The Born-Oppenheimer approximation Literature Quantum mechanics 2 - Lecture 7 November 21, 2012 Contents The Born-Oppenheimer approximation Literature 1 The Born-Oppenheimer approximation 2 3

More information

We also deduced that transformations between Slater determinants are always of the form

We also deduced that transformations between Slater determinants are always of the form .3 Hartree-Fock The Hartree-Fock method assumes that the true N-body ground state wave function can be approximated by a single Slater determinant and minimizes the energy among all possible choices of

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

A Whirlwind Introduction to Coupled Cluster Response Theory. 1 Time-Independent Coupled Cluster Theory

A Whirlwind Introduction to Coupled Cluster Response Theory. 1 Time-Independent Coupled Cluster Theory A Whirlwind Introduction to Coupled Cluster Response Theory T. Daniel Crawford, Virginia Tech, Blacksburg, Virginia, U.S.A. 1 Time-Independent Coupled Cluster Theory If the Hamiltonian is independent of

More information

Lecture 4: methods and terminology, part II

Lecture 4: methods and terminology, part II So theory guys have got it made in rooms free of pollution. Instead of problems with the reflux, they have only solutions... In other words, experimentalists will likely die of cancer From working hard,

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found.

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. In applying quantum mechanics to 'real' chemical problems, one is usually faced with a Schrödinger

More information

Variational Methods for Electronic Structure

Variational Methods for Electronic Structure Variational Methods for Electronic Structure The hydrogen atom is a two-body system consisting of a proton and an electron. If spin and relativistic effects are ignored, then the Schrödinger equation for

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Beyond the Hartree-Fock Approximation: Configuration Interaction

Beyond the Hartree-Fock Approximation: Configuration Interaction Beyond the Hartree-Fock Approximation: Configuration Interaction The Hartree-Fock (HF) method uses a single determinant (single electronic configuration) description of the electronic wavefunction. For

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. 1 Computational Chemistry (Quantum Chemistry) Primer This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. TABLE OF CONTENTS Methods...1 Basis

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 17, March 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 17, March 1, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 17, March 1, 2006 (Some material in this lecture has been adapted from Cramer, C. J.

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules CHEM3006P or similar background knowledge is required for this course. This course has two parts: Part 1: Quantum Chemistry techniques for simulations of molecular

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006 Chem 350/450 Physical Chemistry II Quantum Mechanics 3 Credits Spring Semester 006 Christopher J. Cramer Lecture, March 0, 006 Some material in this lecture has been adapted from Cramer, C. J. Essentials

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

(Again, this quantity is the correlation function of the two spins.) With z chosen along ˆn 1, this quantity is easily computed (exercise):

(Again, this quantity is the correlation function of the two spins.) With z chosen along ˆn 1, this quantity is easily computed (exercise): Lecture 30 Relevant sections in text: 3.9, 5.1 Bell s theorem (cont.) Assuming suitable hidden variables coupled with an assumption of locality to determine the spin observables with certainty we found

More information

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08)

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08) PERTURBATION THEORY AND SUBGROUPS REVISED 11/15/08) The use of groups and their subgroups is of much importance when perturbation theory is employed in understanding molecular orbital theory and spectroscopy

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

I. Perturbation Theory and the Problem of Degeneracy[?,?,?]

I. Perturbation Theory and the Problem of Degeneracy[?,?,?] MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 19 THE VAN VLECK TRANSFORMATION IN PERTURBATION THEORY 1 Although frequently it is desirable to carry a perturbation treatment to second or third

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Angular Momentum in Quantum Mechanics

Angular Momentum in Quantum Mechanics Angular Momentum in Quantum Mechanics In classical mechanics the angular momentum L = r p of any particle moving in a central field of force is conserved. For the reduced two-body problem this is the content

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 21, November 12, 2014

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 21, November 12, 2014 Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 204 Laura Gagliardi Lecture 2, November 2, 204 (Some material in this lecture has been adapted from Cramer, C. J. Essentials

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Introduction and theoretical background

Introduction and theoretical background 1 Introduction and theoretical background 1.1 The Schrödinger equation and models of chemistry The Schrödinger equation and its elements As early as 1929, the noted physicist P. A. M. Dirac wrote 1 The

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6. .~, ~ I, sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.)1e'" 21t-ol Je C'...-------- lj-vi, J? Jr Jr \Ji 2~:J~ -ryej- r- 2 Jr A - f3 c _,~,= ~,.,w._..._.

More information

Lecture 3: Quantum Satis*

Lecture 3: Quantum Satis* Lecture 3: Quantum Satis* Last remarks about many-electron quantum mechanics. Everything re-quantized! * As much as needed, enough. Electron correlation Pauli principle Fermi correlation Correlation energy

More information

Quantum Chemistry Methods

Quantum Chemistry Methods 1 Quantum Chemistry Methods T. Helgaker, Department of Chemistry, University of Oslo, Norway The electronic Schrödinger equation Hartree Fock theory self-consistent field theory basis functions and basis

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Highly accurate quantum-chemical calculations

Highly accurate quantum-chemical calculations 1 Highly accurate quantum-chemical calculations T. Helgaker Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield Handbook of Computational Quantum Chemistry DAVID B. COOK The Department of Chemistry, University of Sheffield Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1998 CONTENTS 1 Mechanics and molecules 1 1.1

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Extended Møller-Plesset perturbation theory for dynamical and static correlations

Extended Møller-Plesset perturbation theory for dynamical and static correlations Extended Møller-Plesset perturbation theory for dynamical and static correlations The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ Course overview This is a course about density functional theory (DFT)

More information

6.1 Nondegenerate Perturbation Theory

6.1 Nondegenerate Perturbation Theory 6.1 Nondegenerate Perturbation Theory Analytic solutions to the Schrödinger equation have not been found for many interesting systems. Fortunately, it is often possible to find expressions which are analytic

More information

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory 1/11 Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory Julien Toulouse Université Pierre & Marie Curie and CNRS, 4 place Jussieu, Paris, France Web page: www.lct.jussieu.fr/pagesperso/toulouse/

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

one-dimensional box with harmonic interaction

one-dimensional box with harmonic interaction On the symmetry of four particles in a arxiv:1607.00977v [quant-ph] 8 Jul 016 one-dimensional box with harmonic interaction Francisco M. Fernández INIFTA (CONICET, UNLP), División Química Teórica Blvd.

More information

Simulation Methods II

Simulation Methods II Simulation Methods II Maria Fyta Institute for Computational Physics Universität Stuttgart Summer Term 2018 SM II - contents First principles methods Hartree-Fock and beyond Density-funtional-theory Ab

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Computational Chemistry

Computational Chemistry Computational Chemistry Physical Chemistry Course Autumn 2015 Lecturers: Dos. Vesa Hänninen and Dr Garold Murdachaew vesa.hanninen@helsinki.fi Room B407 http://www.helsinki.fi/kemia/fysikaalinen/opetus/

More information

Lecture 4: Hartree-Fock Theory

Lecture 4: Hartree-Fock Theory Lecture 4: Hartree-Fock Theory One determinant to rule them all, One determinant to find them, One determinant to bring them all and in the darkness bind them Second quantization rehearsal The formalism

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Energy levels of group 10 transition metal atoms and ions

Energy levels of group 10 transition metal atoms and ions 189 Appendix B Energy levels of group 10 transition metal atoms and ions B.1 Abstract The energies of the group 10 transition metals (Ni, Pd, and Pt) in different configurations (d 8 s, d 9 s 1, and d

More information

Hartree-Fock-Roothan Self-Consistent Field Method

Hartree-Fock-Roothan Self-Consistent Field Method Hartree-Fock-Roothan Self-Consistent Field Method 1. Helium Here is a summary of the derivation of the Hartree-Fock equations presented in class. First consider the ground state of He and start with with

More information

Local correlation in the virtual space in multireference singles and doubles configuration interaction

Local correlation in the virtual space in multireference singles and doubles configuration interaction JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 18 8 MAY 2003 ARTICLES Local correlation in the virtual space in multireference singles and doubles configuration interaction Derek Walter, Arun Venkatnathan,

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Quantum Mechanics without Complex Numbers: A Simple Model for the Electron Wavefunction Including Spin. Alan M. Kadin* Princeton Junction, NJ

Quantum Mechanics without Complex Numbers: A Simple Model for the Electron Wavefunction Including Spin. Alan M. Kadin* Princeton Junction, NJ Quantum Mechanics without Complex Numbers: A Simple Model for the Electron Wavefunction Including Spin Alan M. Kadin* Princeton Junction, NJ February 22, 2005 Abstract: A simple real-space model for the

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information