Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions)

Size: px
Start display at page:

Download "Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions)"

Transcription

1 Preliminary plan 1.Introduction 2.Inclusive and semi-inclusive DIS (structure functions) Basics of collinear PDFs at tree level (definition, gauge link) 3.Basics of collinear PDFs (interpretation) Basics of TMDs at tree level (definition, gauge link, interpretation) 4.Basics of factorization Basics of TMD evolution Phenomenology of unpolarized SIDIS Phenomenology of polarized SIDIS

2 Next lecture May 27, 12:00 PM in F113

3 Quick review of last lecture

4 TMD factorization h Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05) q P F UU,T (x, z, Ph,Q 2 2 )=C [ ] f 1 D 1 = H(Q 2,µ 2, ζ, ζ h ) d 2 p T d 2 k T d 2 l T δ (2)( p T k T + l T P h /z ) Hard part x a e 2 a f a 1 (x, p 2 T,µ 2, ζ) D a 1(z, k 2 T,µ 2, ζ h ) U(l 2 T,µ 2, ζζ h ) TMD PDF TMD FF Soft factor

5 High and low transverse momentum

6 SIDIS once again l l S T! S P h! h hadron plane P h lepton plane y x Q = photon virtuality M = hadron mass z P h = hadron transverse momentum q 2 T P 2 h /z 2

7 Low and high transverse momentum AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08) Low q 2 T Q 2 M 2 Q 2 q 2 T

8 TMD factorization h Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05) q P F UU,T (x, z, Ph,Q 2 2 )=C [ ] f 1 D 1 = H(Q 2,µ 2, ζ, ζ h ) d 2 p T d 2 k T d 2 l T δ (2)( p T k T + l T P h /z ) x a e 2 a f a 1 (x, p 2 T,µ 2, ζ) D a 1(z, k 2 T,µ 2, ζ h ) U(l 2 T,µ 2, ζζ h )

9 Low and high transverse momentum High M 2 q 2 T M 2 Q 2 q 2 T

10 Collinear factorization F (x, z, Q 2 )= 1 Q 2 z 2 x a,b f a( x ˆx,µ2 F 1 ) x dˆx ˆx 1 z D b( z ẑ,µ2 F dẑ ( P 2 ẑ δ h (1 ˆx)(1 ẑ) ) Q 2 z2 ˆxẑ ) H ab ( ˆx, ẑ,ln µ2 F Q 2 ) h q P

11 Low and high transverse momentum Low q 2 T Q 2 Intermediate M 2 q 2 T Q 2 High M 2 q 2 T M 2 Q 2 q 2 T

12 Matching F UU,T A q 2 T Must match! M 2 Q 2 q 2 T The leading high-q T part is just the tail of the leading low-q T part Collins, Soper, Sterman, NPB250 (85)

13 Low and high transverse momentum nonperturbative part of TMDs tail of TMDs, calculable with pqcd Low q 2 T Q 2 Intermediate M 2 q 2 T Q 2 High M 2 q 2 T M 2 Q 2 q 2 T

14 Perturbative corrections to TMDs p p l l P Φ q Φ g µν P (a) (b) f q 1 (x, p2 T )= α s 2π 2 1 p 2 T [ L(η 1 ) 2 f q 1 (x) C F f q 1 (x)+( P qq f q 1 + P qg f g 1 ) (x) ], F UU,T = 1 q 2 T α s 2π 2 z 2 Large log, needs resummation a xe 2 a [ ( ) Q f1 a (x) D1(z) a 2 L qt 2 + f1 a (x) ( D1 a P qq + D g 1 P gq) (z) ] + ( P qq f a 1 + P qg f g 1 ) (x) D a 1 (z) where ( ) Q 2 L qt 2 =2C F ln Q2 qt 2 3C F DGLAP splitting functions

15 TMD factorization: b space F UU,T (x, z, b, Q 2 )=x a e 2 a Sudakov form factor [ ] (f1 i C ia )(C aj D j 1 ) e S e S NP collinear PDF and FF calculable with pqcd nonperturbative part of TMDs Intermediate (resummation) Low (nonpert.) High (fixed-order pqcd) F UU,T (x, z, q 2 T,Q 2 )=x a e 2 a d dq 2 T [(f i1 C ia )(C aj D j1 ) e S( 1 e S NP )]

16 Leading-log formula Ellis, Veseli, NPB 511 (98) F UU,T (x, z, q 2 T,Q 2 )=x a e 2 a d dq 2 T [f a1 (x;[q 2T ]) D a1(z;[q 2T ]) e S( 1 e S NP )] S(q 2 T,Q 2 )= Q 2 q 2 T dµ 2 α S (µ 2 ) µ 2 2π 2C F log Q2 µ 2 α s (µ 2 )= 4π β 0 log(µ 2 /Λ 2 )

17 Part 5: Unpolarized Phenomenolgy

18 Experimental access Drell Yan dσ dq 2 T q e 2 q f q 1 (x, p2 T ) f q 1 ( x, p2 T ) Semi inclusive DIS dσ dq 2 T q e 2 q f q 1 (x, p2 T ) D q 1 (z, k2 T ) electron positron annihila5on dσ dq 2 T q e 2 q D q 1 (z, k2 T ) D q 1 ( z, k 2 T )

19 Some studies in Drell-Yan

20 Available studies PARTON INTRINSIC MOTION IN INCLUSIVE M=7-8 GeV M=8-9 GeV M=10-11 GeV M=4-5 GeV M=5-6 GeV M=6-7 GeV M=7-8 GeV Gaussians Ed 3 σ/d 3 q [cm 2 /GeV 2 ] Ed 3 σ/d 3 q [cm 2 /GeV 2 ] D Alesio, Murgia, PRD70 (04) K = 1.6 1/β = 0.95 GeV/c q T [GeV/c] K = 1.8 1/β = 0.8 GeV/c q T [GeV/c] Gaussians + kt resumma5on Landry, Brock, Nadolsky, Yuan, PRD67 (03)

21 Example of resummation effects dσ dq 2 T Q = 5 GeV s = 50 GeV Q = 10 GeV Gaussian + resumma5on Gaussian only q T

22 Nonperturbative part In b space S NP = b2 b 2 1 b 2 = log ( ) Q log (100x A x B ) b max =0.5 GeV data points (Drell-Yan) Brock, Landry, Nadolsky, Yuan, PRD67 (03)

23 Nonperturbative part In b space Kulesza, Stirling, JHEP 12 (03) S NP = b2 b 2 1 b 2 = log ( ) Q log ( ) s / b s = Note: there should be a factor 4 between 1/b and kt Q

24 Nonperturbative part In k T space Kulesza, Stirling, JHEP 12 (03) S NP = q2 T q 2 T q 2 T = log ( ) Q log ( ) s 19.4 q 2 T s = Q

25 Unpolarized SIDIS

26 Unpolarized SIDIS dσ dx dy dφ S dz dφ h dph 2 { = α2 y 2 x y Q 2 F UU,T + ε F UU,L + 2 ε(1 + ε) cos φ h F cos φ h UU 2 (1 ε) + ε cos(2φ h ) F cos 2φ h UU }

27 Azimuth-independent pieces

28 Convolution F UU,T = a e 2 af a 1 D a 1, ( M 2 F UU,L = O Q 2, P h 2 ) Q 2 f D = x B d 2 p T d 2 k T δ (2)( p T k T P h /z ) f a (x B,p 2 T ) D a (z, k 2 T ) f D = x B d 2 p T d 2 k T δ (2)( p T k T P h /z + l T ) f a (x B,p 2 T ) D a (z, k 2 T ) U(l 2 T ) Does not make a big difference if Gaussians are used

29 Fragmentation functions For the favored functions for the unfavored functions D u π+ 1 = D d π + 1 = D d π 1 = Dū π 1, D f 1 D1 u K+ = Dū K 1, D1 fd D s K+ 1 = D1 s K D1 f Dū π+ 1 = D1 d π+ = D d π 1 = D1 u π D1, d D s π+ 1 = D s π+ 1 = D s π 1 = D s π 1 D df 1, Dū K+ 1 = D d K + 1 = D1 d K+ = D d K 1 = D1 d K = D1 u K D1 dd, D s K+ 1 = D s K 1 D d 1.

30 Various combinations F p/π+ UU,T (x, z, P 2 h ) = F p/π UU,T (x, z, P 2 h ) = F n/π+ UU,T (x, z, P 2 h ) = F n/π UU,T (x, z, P 2 h ) = F p/k+ UU,T (x, z, P 2 h ) =4f u 1 D fd 1 + F p/k UU,T (x, z, P 2 h ) =4f ū1 D fd 1 + F n/k+ UU,T (x, z, P 2 h ) =4f d 1 D fd 1 + F n/k UU,T (x, z, P h ) 2 =4f d 1 D1 fd + ) ( ) ( ) (4 f1 u + f d 1 D1 f + 4 f ū1 + f1 d D1 d + f1 s + f1 s ( ) ) ( ) 4 f ū1 + f1 d D1 f + (4 f1 u + f d 1 D1 d + f1 s + f1 s ( ) ( ) ( ) 4 f1 d + f ū1 D1 f + 4 f d 1 + f1 u D1 d + f1 s + f1 s ( ) ( ) ( ) 4 f d 1 + f1 u D1 f + 4 f1 d + f ū1 D1 d + f1 s + f1 s ) (4 f ū1 + f1 d + f d 1 (4 f u 1 + f d 1 + f d 1 ) ( ) 4 f d 1 + f1 u + f ū1 ( ) 4 f1 d + f1 u + f ū1 D df 1, D df 1, D df 1 D df 1, D dd 1 + f s 1 D f 1 + f s 1 D d 1, D dd 1 + f s 1 D f 1 + f s 1 D d 1, D dd 1 + f s 1 D f 1 + f s 1 D d 1, D1 dd + f1 s D1 f + f1 s D1 d

31 Valence and pions only F p/π+ UU,T (x, z, P 2 h ) =4f u 1 D f 1 + f d 1 D d 1, F p/π UU,T (x, z, P 2 h ) =f d 1 D f 1 +4f u 1 D d 1, F n/π+ UU,T (x, z, P 2 h ) =4f d 1 D f 1 + f u 1 D d 1, F n/π UU,T (x, z, P 2 h ) =f u 1 D f 1 +4f d 1 D d 1

32 Gaussian ansatz f a 1 (x, p 2 T )= f a 1 (x) πρ 2 a e p2 T /ρ2 a, D a 1 (z, k 2 T )= Da 1(z) πσ 2 a e z2 k 2 T /σ2 a f a 1 D a 1 = 1 2 π(z 2 ρ 2 a + σa) 2 e P h /(z2 ρ 2 a +σ2 a ) With Gaussian soft factor f a 1 D a 1 = 1 2 π(z 2 ρ 2 a + σa 2 + τ 2 ) e P h /(z2 ρ 2 a +σ2 a +τ 2 )

33 Interesting ratio 5 p Π n Π σ 2 f = σ 2 d =0.3 GeV 2 f u 1 /f d D d 1/D f Ρ u 2 0.3, Ρ d Ρ u 2 0.1, Ρ d P ht

34 Hall-C results JLab Hall C, Mkrtchyan et al., PLB665 (08)

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

A first determination of the unpolarized quark TMDs from a global analysis

A first determination of the unpolarized quark TMDs from a global analysis A first determination of the unpolarized quark TMDs from a global analysis Cristian Pisano QCD Evolution 2017 Thomas Jefferson National Accelerator Facility Newport News, VA (USA) May 22-26, 2017 In collaboration

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes Filippo Delcarro What is the structure of the nucleons?! Is this structure explained by QCD?!!"#$%&' () *+,-. /0 Where does the spin of

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Studies of TMD resummation and evolution

Studies of TMD resummation and evolution Studies of TMD resummation and evolution Werner Vogelsang Univ. Tübingen INT, 0/7/014 Outline: Resummation for color-singlet processes Contact with TMD evolution Phenomenology Conclusions Earlier work

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

arxiv: v1 [hep-ph] 5 Apr 2012

arxiv: v1 [hep-ph] 5 Apr 2012 A strategy towards the extraction of the Sivers function with TMD evolution arxiv:14.139v1 [hep-ph] 5 Apr 1 M. Anselmino, 1, M. Boglione, 1, and S. Melis 3 1 Dipartimento di Fisica Teorica, Università

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

The transverse momentum distribution of hadrons inside jets

The transverse momentum distribution of hadrons inside jets The transverse momentum distribution of hadrons inside jets Felix Ringer Lawrence Berkeley National Laboratory INT, Seattle 09/13/17 Outline Introduction In-jet TMDs Collins asymmetries Conclusions Kang,

More information

arxiv: v1 [hep-ph] 9 Jul 2014

arxiv: v1 [hep-ph] 9 Jul 2014 Phenomenology of unpolarized TMDs from Semi-Inclusive DIS data a,b, Alessandro Bacchetta, c,d and Marco Radici d arxiv:407.445v [hep-ph] 9 Jul 04 a Department of Physics and Astronomy, VU University Amsterdam

More information

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics Probing collinear and TMD fragmentation functions through hadron distribution inside the jet Zhongbo Kang UCLA The 7 th Workshop of the APS Topical Group on Hadronic Physics February 1-3, 2017 Jets are

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

TMD phenomenology: from JLab to the LHC

TMD phenomenology: from JLab to the LHC TMD phenomenology: from JLab to the LHC Andrea Signori Spatial and momentum tomography of hadrons and nuclei INT 17-3 Sept 25 2017 1 TMD phenomenology at low and high energy Andrea Signori Spatial and

More information

Mul$plici$es and phenomenology

Mul$plici$es and phenomenology Mul$plici$es and phenomenology Transversity 014, Chia (Cagliari) Andrea Signori In collabora

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Daniël Boer Free University, Amsterdam Outline Anomalously large cos(2φ) asymmetry in Drell-Yan A QCD vacuum effect? A hadronic effect?

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Gluon TMDs and Opportunities at EIC

Gluon TMDs and Opportunities at EIC Gluon TMDs and Opportunities at EIC Cristian Pisano INT-18-3 Workshop Transverse Spin and TMDs October 8-12 2018 Seattle (USA) 2/35 TMD factorization and color gauge invariance TMD factorization Two scale

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS Journal of Physics: Conference Series PAPER OPEN ACCESS Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS To cite this article: Ekaterina Christova and Elliot

More information

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory TMDs: Mechanism/universality with ep and pp collisions Zhongbo Kang Theoretical Division Los Alamos National Laboratory QCD Frontier 213 Thomas Jefferson National Accelerator Facility Newport News, VA,

More information

arxiv: v1 [hep-ph] 28 Mar 2012

arxiv: v1 [hep-ph] 28 Mar 2012 arxiv:103.618v1 [hep-ph] 8 Mar 01 Phenomenology of SIDIS unpolarized cross sections and azimuthal asymmetries 1 Vincenzo Barone Di.S.I.., Università del Piemonte Orientale A. Avogadro ; INFN, Gruppo Collegato

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

arxiv:hep-ph/ v1 20 Dec 2000

arxiv:hep-ph/ v1 20 Dec 2000 MSUHEP-01213 CTEQ-016 hep-ph/0012261 Phenomenology of multiple parton radiation in semi-inclusive deep-inelastic scattering arxiv:hep-ph/0012261v1 20 Dec 2000 P.M. Nadolsky, D. R. Stump and C.-P. Yuan

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

TMD Fragmentation Function at NNLO

TMD Fragmentation Function at NNLO TMD Fragmentation Function at NNLO Institut für Theoretische Physik, Universität Regensburg, D-9040 Regensburg, Germany E-mail: vladimirov.aleksey@gmail.com The calculation of the unpolarized non-singlet

More information

Polarised Drell-Yan Process in the COMPASS Experiment

Polarised Drell-Yan Process in the COMPASS Experiment Polarised Drell-Yan Process in the COMPASS Experiment Ma rcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration 1th April 16, DIS 16 Hamburg COMPASS Ma rcia Quaresma (LIP) CERN/FIS-NUC/17/15

More information

Phenomenology of Gluon TMDs

Phenomenology of Gluon TMDs Phenomenology of Gluon TMDs Cristian Pisano Outline Definition of the gluon TMDs of the proton Unpolarized TMD distribution f g linear polarization of gluons inside an unpolarized proton h g Gluon Sivers

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

Meson Structure with Dilepton Production

Meson Structure with Dilepton Production Meson Structure with Dilepton Production Jen-Chieh Peng University of Illinois at Urbana-Champaign 9 th Workshop on Hadron Physics in China and Opportunities Worldwide Nanjing University, July 24-28, 2017

More information

Fundamental Open Questions in Spin Physics

Fundamental Open Questions in Spin Physics Fundamental Open Questions in Spin Physics p. 1/55 Fundamental Open Questions in Spin Physics Jacques Soffer Physics Department, Temple University, Philadelphia,PA, USA Fundamental Open Questions in Spin

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS Trieste University and INFN on behalf of the COMPASS Collaboration Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Transverse Momentum Distributions: Matches and Mismatches

Transverse Momentum Distributions: Matches and Mismatches Transverse Momentum Distributions: Matches and Mismatches Ahmad Idilbi ECT* M.G. Echevarría, Ahmad Idilbi, Ignazio Scimemi. [arxiv:.947] MGE, AI, Andreas Schäfer, IS. [arxiv: 08.8] MGE, AI, IS. JHEP 07

More information

Flavor Decomposition

Flavor Decomposition SIDIS Workshop for PAC30 April 14, 2006 Flavor Decomposition in Semi-Inclusive DIS Wally Melnitchouk Jefferson Lab Outline Valence quarks unpolarized d/u ratio polarized d/d ratio Sea quarks flavor asymmetry

More information

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory SCET approach to energy loss Zhongbo Kang Los Alamos National Laboratory Symposium on Jet and Electromagnetic Tomography of Dense Matter June 26-27, 2015 Outline Introduction SCET G = SCET with Glauber

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015 Studying Evolution with Jets at STAR Renee Fatemi University of Kentucky May 28 th, 2015 Relativistic Heavy Ion Collider Absolute Polarimeter (H jet) RHIC pc Polarimeters Siberian Snakes PHOBOS PHENIX

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Renormalization of Subleading Dijet Operators in Soft-Collinear Effective Theory

Renormalization of Subleading Dijet Operators in Soft-Collinear Effective Theory Renormalization of Subleading Dijet Operators in Soft-Collinear Effective Theory Raymond Goerke Work completed with Simon Freedman: arxiv:1408.6240 THEP Seminar Feb 2015 Outline Punchline: We calculated

More information

Collinear Distributions from Monte Carlo Global QCD Analyses

Collinear Distributions from Monte Carlo Global QCD Analyses Collinear Distributions from Monte Carlo Global QCD Analyses Jacob Ethier On behalf of the JAM Collaboration Light Cone Conference May th, 8 Motivation Want to obtain reliable information of nonperturbative

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Study of the hadron structure using the polarised Drell-Yan process at COMPASS

Study of the hadron structure using the polarised Drell-Yan process at COMPASS Study of the hadron structure using the polarised Drell-Yan process at COMPASS Márcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration 7 th July 6, MENU 6 Kyoto COMPASS CERN/FIS-NUC/7/5 Márcia

More information

Lepton Angular Distributions in Drell-Yan Process

Lepton Angular Distributions in Drell-Yan Process Lepton ngular Distributions in Drell-Yan Process Jen-Chieh Peng University of Illinois at Urbana-Champaign QCD Evolution 08 Santa Fe May 0-4, 08 Based on the paper of JCP, Wen-Chen Chang, Evan McClellan,

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

Quantum Chromodynamics and the parton model. Module 5: Vector boson production

Quantum Chromodynamics and the parton model. Module 5: Vector boson production Quantum Chromodynamics and the parton model Module 5: Vector boson production Pavel Nadolsky Department of Physics Southern Methodist University (Dallas, TX) June 23, 2017 Pavel Nadolsky (SMU) TMD Collaboration

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

arxiv: v2 [hep-ph] 28 Aug 2014

arxiv: v2 [hep-ph] 28 Aug 2014 Breakdown of QCD Factorization for P-Wave Quarkonium Production at Low Transverse Momentum arxiv:1405.3373v2 [hep-ph] 28 Aug 2014 J.P. Ma 1,2, J.X. Wang 3 and S. Zhao 1 1 State Key Laboratory of Theoretical

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge

More information

Transversity: present and future. Alessandro Bacchetta

Transversity: present and future. Alessandro Bacchetta Transversity: present and future Alessandro Bacchetta Outline Trento, 11.06.07 Alessandro Bacchetta Transversity: present and future 2 Outline Overview of experimental possibilities Trento, 11.06.07 Alessandro

More information

Flavor decomposition of collinear PDFs and FFs

Flavor decomposition of collinear PDFs and FFs EIC User Group Meeting CUA, Washington DC, August 1, 218 Flavor decomposition of collinear PDFs and FFs Wally Melnitchouk JLab Angular Momentum collaboration Outline Unravel flavor (and spin) structure

More information

Impact of SoLID Experiment on TMDs

Impact of SoLID Experiment on TMDs Impact of SoLID Experiment on TMDs QCD Evolution 2017 @ Jefferson Lab, Newport News May 22-26 th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin,

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

The future COMPASS-II Drell-Yan program

The future COMPASS-II Drell-Yan program The future COMPASS-II Drell-Yan program M. Alexeev INFN sez. di Trieste. On behalf of the COMPASS collaboration. Drell-Yan Process and its Kinematics P ab ( ) 2 ( ( a) ( b) ), 2 a( b) / (2 a( b) ),, F

More information

Andrea Signori. Andrea Signori VU / Nikhef

Andrea Signori. Andrea Signori VU / Nikhef Andrea Signori 12/20/13 Andrea Signori VU / Nikhef 1 Outline 1. Introduc?on 2. TMDs theory 3. TMDs phenomenology 12/20/13 Andrea Signori VU / Nikhef 2 Partons and hadrons 12/20/13 Andrea Signori VU / Nikhef

More information

Kinematical correlations: from RHIC to LHC

Kinematical correlations: from RHIC to LHC : from RHIC to LHC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and Univeristy of Rzeszów, PL-35-959 Cracow, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Kinematical correlations between outgoing

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

Spin and Azimuthal Asymmetries at JLAB

Spin and Azimuthal Asymmetries at JLAB Spin and Azimuthal Asymmetries at JLAB H. Avakian *) Jefferson Lab Single-Spin Asymmetries Workshop, BNL June 1-3, 2005 *) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri Outline Introduction

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

arxiv: v1 [hep-ph] 14 Jul 2014

arxiv: v1 [hep-ph] 14 Jul 2014 arxiv:147.382v1 [hep-ph] 14 Jul 214 M. Anselmino, M. Boglione Dipartimento di Fisica Teorica, Università di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, I-1125 Torino, Italy E-mail: anselmino@to.infn.it,

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng Measuring gluon sivers function at a future Electron-Ion Collider Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS

Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS Anna Martin Trieste University and INFN on behalf of the COMPASS Collaboration SPIN-Praha Praha-009 ADVANCED STUDIES INSTITUTE

More information

and Transversity Collins Effect in SIDIS and in e + e Annihilation

and Transversity Collins Effect in SIDIS and in e + e Annihilation 7th International Spin Physics Symposium (SPIN26), Kyoto, October 2 7, 26 Collins Effect in SIDIS and in e + e Annihilation and Transversity A. Efremov, JINR, Dubna, Russia In collaboration with K.Goeke

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

Polarized Drell-Yan Experiment at J-PARC. J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC)

Polarized Drell-Yan Experiment at J-PARC. J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC) Polarized Drell-Yan Experiment at J-PARC J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC) J-PARC proposals P04: measurement of high-mass dimuon production

More information

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab)

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab) Present and Future of Polarized Target Experiment at CLAS12 Harut Avakian (JLab) CLAS Collaboration Meeting February 20th 1 QCD: from testing to understanding 0h DIS Testing stage: pqcd predictions observables

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Monte-Carlo simulations for Drell-Yan in COMPASS

Monte-Carlo simulations for Drell-Yan in COMPASS Monte-Carlo simulations for Drell-Yan in COMPASS C. Quintans, LIP-Lisbon on behalf of the COMPASS Collaboration 26 th February 214 COMPASS Co-financed by: Monte-Carlo simulations for Drell-Yan in COMPASS

More information

Does the transverse mo-on of quarks depend on their flavor?

Does the transverse mo-on of quarks depend on their flavor? Does the transverse mo-on of quarks depend on their flavor? Andrea Signori NNV mee&ng 013, Lunteren In collabora*on with the Hadronic structure and QCD group, University of Pavia - Italy 11/1/13 Andrea

More information