Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics

Size: px
Start display at page:

Download "Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics"

Transcription

1 Probing collinear and TMD fragmentation functions through hadron distribution inside the jet Zhongbo Kang UCLA The 7 th Workshop of the APS Topical Group on Hadronic Physics February 1-3, 2017

2 Jets are abundantly produced at the LHC They are most common at the LHC 2

3 Jets and its internal substructure as new tools Jesse Thaler,

4 Hadron distribution inside the jet Study a hadron distribution inside a fully reconstructed jet F (z h ; p T )= F (z h,j T ; p T )= z h = p h T /p jet T d h. dp T d dz h p + p! jet (h)+x d dp T d d h. dp T d dz h d 2 j T d dp T d j T : hadron transverse momentum with respect to the jet direction R! αi = { Ti, ηi, φi} The 1 st observable is like collinear fragmentation function, while the 2 nd observable is more like a TMD fragmentation function LHC did a great deal of all kinds of measurements, and compared with Pythia simulation h jet 4

5 Collinear z-dependence: light hadron ATLAS measurements at 7 TeV and 2.76 TeV , ATLAS-CONF Light hadron 5

6 Collinear z-dependence: heavy meson D meson production inside a jet ATLAS, arxiv:

7 Relative momentum j T dependence j T shape does not change much: how to link to TMD evolution

8 Relative momentum j T dependence j T shape does not change much: how to link to TMD evolution

9 RHIC measurements Hadron azimuthal distribution inside the jet in transversely polarized p+p collisions: spin dynamics h i p " S? ( S ) + p! [jet h( H )] + X STAR, in arxiv: ) - φ H S sin(φ A UT 0.06 ± STAR, P P (jet π ) X s = 500 (GeV), P = 31 (GeV) T s = 200 (GeV), P = 12.9 (GeV) + T π, s = 500 (GeV) - π, s = 500 (GeV) + π, s = 200 (GeV) - π, s = 200 (GeV) z See Prokudin s talk on Wednesday Kang, Prokudin, Ringer, Yuan, to appear 9

10 Questions How does the factorization formalism look like? How is the collinear z-distribution of hadrons in the jet related to the standard collinear fragmentation function? How is the transverse momentum dependent j T -distribution of hadrons in the jet related to the usual TMD fragmentation function as measured in SIDIS and e+e-? Lots of work have been performed along these directions recently, and very active developments e.g., Kaufmann, Mukherjee, Vogelsang; Bain, Makris, Mehen, Leibovich; Kang, Ringer, Vitev; Neill, Scimenmi, Waalewijn;

11 A further re-factorization for jet and jet substructure For cross section or substructure of single inclusive jet production h p a c p a c p b p b d pp!hx dp T d = X a,b,c f a f b H ab!c D h c d pp!jet(v)x dp T d dv = X a,b,c f a f b H ab!c G c (µ p T R, v) Fragmentation function Semi-inclusive jet function D h c ) G c (µ p T R, v) Kang, Ringer, Vitev, arxiv: , , JHEP 11

12 Recall single hadron production Illustration of single hadron production: h p + p! h + X p a c p b d pp!hx dp T d = X a,b,c f a f b H ab!c D h c QCD factorization can be reviewed from the spirit of the effective field theory: physics at very different scales do not affect each other Hard collision happens at scale ~ pt Hadronization/fragmentation happens at a much lower scale ~ mh The interference between these two scales should be suppressed by mh/pt 12

13 QCD factorization makes things simple Think of QCD factorization using the spirit of effective field theory What are the relevant scales for single jet production? Two momenta: (1) hard collision: pt (2) jet radius can build one: pt*r In the small-r limit, one can actually factorizes the jet cross section into two steps, just like single hadron production jet jet R! αi = { Ti, ηi, φi} e e + (a) (b) d pp!jetx dp T d = X a,b,c f a f b H ab!c J c (µ p T R) Good thing: semi-inclusive jet function J q,g (z, R, w) are purely perturbative Kang, Ringer, Vitev, arxiv: , Dai, Kim, Leibovich, , see also, Kaufmann, Mukherjee, Vogelsang,

14 Semi-inclusive jet function Describe how a parton (q or g) is transformed into a jet (with a jet radius R) and energy fraction z J q (z,! J,µ)= z 2N c Tr apple n/ 2 h0 (! n P) n(0) JXihJX n(0) 0i z =! J /! Semi-inclusive quark/gluon jets follow DGLAP evolution equation, just like hadron fragmentation functions Z 1 µ d dµ J i(z,! J,µ)= s(µ) X j z dz 0 z 0 P ji z z 0,µ J j (z 0,! J,µ) Kang, Ringer, Vitev, arxiv: , JHEP 14

15 Collinear hadron distribution inside the jet First produce a jet, and then further look for a hadron inside the jet h R! αi = { Ti, ηi, φi} F (z h,p T )= z h = p h T /p T Kang, Ringer, Vitev, arxiv: , JHEP d h. dp T d dz h d dp T d c Just like the single inclusive jet production, we have Semi-inclusive fragmenting jet function d dp T d dz h / X a,b,c z = p T /p c T f a f b H ab!c G h c (z,z h,µ) 15

16 Two DGLAPs Parton-to-jet part: evolution is for variable z µ d dµ Gh i (z,z h,µ)= s(µ) X j Z 1 z dz 0 z z 0 P ji z 0 Gj h (z 0,z h,µ) Substructure of the jet: collinear hadron distribution in the jet, relevant to variable z h G h i (z,z h,µ)= X j Z 1 z h dz 0 h z 0 h J ij (z,z 0 h,µ) D h j zh z 0 h,µ µ p T Resum ln(r) µ J p T R µ D 1 GeV Evolve standard FFs from 1 GeV to pt*r 16

17 Great probe for collinear FFs Works pretty well in comparison with experimental data ), p F(z T h [400,500] [3,400] [260,3] [2,260] [160,2] [1,160] [80,1] [60,80] 4 [40,60] 2 [25,40] p+p s = 7 TeV anti-k T R=0.6 η < 1.2 ), p F(z T h ± h p+p s = 2.76 TeV anti-kt ATLAS R=0.4 η < 1.6 CMS R= < η < 2 [2,260] [160,2] [1,160] [80,1] [60,80] [45,60] [0,300] z h z h Could be used for better constraining gluon-to-hadron FFs, large-z region and etc Kang, Ringer, Vitev, arxiv:

18 What about TMD FFs? TMD hadron distribution inside the jet d h. d F (z h,j T ; p T )= dp T d dz h d 2 j T dp T d h jet R! αi = { Ti, ηi, φi} z h = p h T /p jet T j T : hadron transverse momentum with respect to the jet direction Factorization formalism Kang, Liu, Ringer, Xing, in preparation d dp T d dz h d 2 / X f a f b H ab!c Gc h (z,z h,j T,µ) j T a,b,c Re-factorization of semi-inclusive fragmenting jet function Z Gc h (z,z h,j T,µ) = C c!d (z,r) d 2 T d 2 k T 2 (j T T k T )S( T,R)D h d (z h,k T ) 18

19 A couple of main points One soft function + one TMD FFs How do the rapidity divergences cancel between them? Recall: standard TMD factorization for SIDIS, DY, e+e-, which always involve one soft function + TWO TMDs What sets the scale for the TMD evolution of TMD FFs? 19

20 TMD factorization for DY: p + p! [! `+` ]+X Factorized form and mimic parton model d dq 2 dyd 2 q? / = = Z Z Z d 2 k 1? d 2 k 2? d 2? H(Q)f(x 1,k 1? )f(x 2,k 2? )S(? ) 2 (k 1? + k 2? +? q? ) d 2 b (2 ) 2 eiq? b H(Q)f(x 1,b)f(x 2,b)S(b) F (x, b) =f(x, b) p S(b) d 2 b (2 ) 2 eiq? b H(Q)F (x 1,b)F (x 2,b) Rapidity divergences cancel between f(x 1,k 1? ) F (x, b) =f(x, b) p S(b) H(Q) S(? ) f(x 2,k 2? ) 20

21 Quark TMD at one loop ( apple f q/q (x, b) = s C F +lnµ2 µ 2 b 1 + ln µ2 µ 2 P qq (x) b + apple2ln µ2 µ 2 ln b p µ2 ln 2 µ 2 b Soft factor S(b) = s 2 C F apple + ( 4 1 2ln µ2 µ 2 ln 2 b µ 2 b Interesting features Rapidity divergence cancels in TMDs in b-space at NLO + 2 ln p ln µ2 µ b ln µ2 µ 2 b ) +ln 2 µ 2 µ 2 b (1 x)+(1 x) ln 2 µ 2 b (1 x) ) F sub q/q (x, b) =f q/q(x, b) p S(b) µ b =2e E /b f q/q (x, b) and S(b) lives in the same μ ~ μ b, but different rapidity scale ν ~ p +, μ b Kang, Spin 2016 conference 21

22 Quark TMD at one loop ( apple f q/q (x, b) = s C F +lnµ2 µ 2 b 1 + ln µ2 µ 2 P qq (x) b + apple2ln µ2 µ 2 ln b p µ2 ln 2 µ 2 b Soft factor S(b) = s 2 C F apple + ( 4 1 2ln µ2 µ 2 ln 2 b µ 2 b Interesting features Rapidity divergence cancels in TMDs in b-space at NLO + 2 ln p ln µ2 µ b ln µ2 µ 2 b ) +ln 2 µ 2 µ 2 b (1 x)+(1 x) ln 2 µ 2 b (1 x) ) F sub q/q (x, b) =f q/q(x, b) p S(b) µ b =2e E /b f q/q (x, b) and S(b) lives in the same μ ~ μ b, but different rapidity scale ν ~ p +, μ b Kang, Spin 2016 conference 22

23 What s different for hadron in the jet? Soft radiation has to happen inside the jet For single inclusive jet production, first we produce a high-pt jet This process only involves hard-collinear factorization, and such a process is not sensitive to any soft radiation This is the usual standard collinear factorization Z 1 0 `+ y ` dy y ) Z tan 2 R 2 0 dy y Once such a high-pt jet is produced, we further observe a hadron inside the jet At this step, we measure the relative transverse momentum of hadron w.r.t the jet. For such a step, soft radiation matters However, only those soft radiation that happens inside the jet matters Restricts soft radiation to be within the jet: cuts half of the rapidity divergence Rapidity divergence cancel between restricted soft factor and TMD FFs At least up to this order, the combined evolution is the same as the usual TMD evolution in SIDIS, DY, e+e-; justify the use of same TMD evolution here p p a b c p S(b)D h c (z h,b) e+ e )S(b, R)D h c (z h,b) pp 23

24 Collins function: universal Collins function: unpolarized hadron from a transversely polarized quark D h/q (z,p? )=D q 1 (z,p2?)+ 1 H?q 1 zm (z,p2?)s q ˆk h S q k h p? Spin-independent Spin-dependent p? 2002: A. Metz studied the universality property of Collins function in a modeldependent way very subtle finally found it is universal between SIDIS and e+e- ü ü ü ü ü 2004: Collins and Metz have general arguments 2008: Yuan generalizes to pp Collins function is universal: concern on collinear gauge link (unsubtracted TMDs) Now soft function seems to be fine, too h H?SIDIS 1 (z,p 2?)=H?e+ e 1 (z,p 2?)=H?pp 1 (z,p 2?) Metz 02, Collins, Metz 04, Yuan 08, Gamberg, Mulders,, Boer, Kang, Vogelsang, Yuan,, 24

25 Evolution structure TMD + DGLAP evolution DGLAP evolution z µ p T µ J p T R Resum ln(r) TMD evolution (z h,j T ) µ b 1/b Evolve TMD FFs from μ b to pt*r TMD FFs thus are related to the usual TMD FFs in SIDIS at scale pt*r Thus hadron TMD distribution inside the jet could be used to test the universality of TMD FFs from SIDIS, e+e- processes 25

26 Summary jet cross section and jet substructure for inclusive jet production follow a two-step factorization First step: parton-to-jet production Second step: jet internal substructure The hard function associated with the 1 st step is the same as that for single inclusive hadron production For jet substructure, one could then concentrate on the 2 nd step Collinear and TMD distribution of hadron in a jet are great processes to probe collinear and/or TMD FFs Factorization seems to be okay 26

27 Summary jet cross section and jet substructure for inclusive jet production follow a two-step factorization First step: parton-to-jet production Second step: jet internal substructure The hard function associated with the 1 st step is the same as that for single inclusive hadron production For jet substructure, one could then concentrate on the 2 nd step Collinear and TMD distribution of hadron in a jet are great processes to probe collinear and/or TMD FFs Factorization seems to be okay Thank you! 27

The transverse momentum distribution of hadrons inside jets

The transverse momentum distribution of hadrons inside jets The transverse momentum distribution of hadrons inside jets Felix Ringer Lawrence Berkeley National Laboratory INT, Seattle 09/13/17 Outline Introduction In-jet TMDs Collins asymmetries Conclusions Kang,

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Jet physics at the EIC and medium modifications

Jet physics at the EIC and medium modifications Jet physics at the EIC and medium modifications Kyle Lee Stony Brook University INT 2018 week 7 11/12/18-11/16/18 1 Introduction Jets at the LHC Jets are produced copiously at the LHC At the LHC, 60-70

More information

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory SCET approach to energy loss Zhongbo Kang Los Alamos National Laboratory Symposium on Jet and Electromagnetic Tomography of Dense Matter June 26-27, 2015 Outline Introduction SCET G = SCET with Glauber

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015 Studying Evolution with Jets at STAR Renee Fatemi University of Kentucky May 28 th, 2015 Relativistic Heavy Ion Collider Absolute Polarimeter (H jet) RHIC pc Polarimeters Siberian Snakes PHOBOS PHENIX

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory TMDs: Mechanism/universality with ep and pp collisions Zhongbo Kang Theoretical Division Los Alamos National Laboratory QCD Frontier 213 Thomas Jefferson National Accelerator Facility Newport News, VA,

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions)

Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions) Preliminary plan 1.Introduction 2.Inclusive and semi-inclusive DIS (structure functions) Basics of collinear PDFs at tree level (definition, gauge link) 3.Basics of collinear PDFs (interpretation) Basics

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering QCD Evolution 2017, JLab, May 22-26, 2017 Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering Marc Schlegel Institute for Theoretical Physics University of Tübingen in collaboration

More information

Gluon TMDs and Opportunities at EIC

Gluon TMDs and Opportunities at EIC Gluon TMDs and Opportunities at EIC Cristian Pisano INT-18-3 Workshop Transverse Spin and TMDs October 8-12 2018 Seattle (USA) 2/35 TMD factorization and color gauge invariance TMD factorization Two scale

More information

Ivan Vitev. Next generation nuclear physics with JLab12 and EIC Miami, FL, February 10 13, 2016

Ivan Vitev. Next generation nuclear physics with JLab12 and EIC Miami, FL, February 10 13, 2016 Ivan Vitev Next generation nuclear physics with JLab12 and EIC Miami, FL, February 10 13, 2016 EIC, design and kinematics suitable for jet physics. Qualitative expectation, comparison between heavy ion

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS

Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS Graduate School of Science and Technology, Niigata University, Ikarashi -8050, Niigata 950-8, Japan Department

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

INCLUSIVE D- AND B-MESON PRODUCTION

INCLUSIVE D- AND B-MESON PRODUCTION INCLUSIVE D- AND B-MESON PRODUCTION AT THE LHC Seminar Universitaet Muenster, May 7, 22 G. Kramer based on work in collaboration with B. Kniehl, I. Schienbein, H. Spiesberger G. Kramer (Universitaet Hamburg)

More information

arxiv: v1 [hep-ph] 14 Jul 2014

arxiv: v1 [hep-ph] 14 Jul 2014 arxiv:147.382v1 [hep-ph] 14 Jul 214 M. Anselmino, M. Boglione Dipartimento di Fisica Teorica, Università di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, I-1125 Torino, Italy E-mail: anselmino@to.infn.it,

More information

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY July 8, 2015, Pittsburgh Jets Zoltan Nagy DESY What are Jets? A di-jet ATLAS event A multi-jet (6-jet) event What are Jets? What are Jets? The pt is concentrated in a few narrow sprays of particles These

More information

Transverse Momentum Distributions: Matches and Mismatches

Transverse Momentum Distributions: Matches and Mismatches Transverse Momentum Distributions: Matches and Mismatches Ahmad Idilbi ECT* M.G. Echevarría, Ahmad Idilbi, Ignazio Scimemi. [arxiv:.947] MGE, AI, Andreas Schäfer, IS. [arxiv: 08.8] MGE, AI, IS. JHEP 07

More information

TMD phenomenology: from JLab to the LHC

TMD phenomenology: from JLab to the LHC TMD phenomenology: from JLab to the LHC Andrea Signori Spatial and momentum tomography of hadrons and nuclei INT 17-3 Sept 25 2017 1 TMD phenomenology at low and high energy Andrea Signori Spatial and

More information

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture II Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Jet production gg gg 2 3 2 4 3 2 1 4 1 3 1 4 gg qq _ qg qg

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Phenomenological applications of QCD threshold resummation

Phenomenological applications of QCD threshold resummation Phenomenological applications of QCD threshold resummation Werner Vogelsang Univ. Tübingen GGI Firenze, 27/09/2011 QCD threshold resummation: Important applications at LHC: precision QCD (see talks of

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Daniël Boer Free University, Amsterdam Outline Anomalously large cos(2φ) asymmetry in Drell-Yan A QCD vacuum effect? A hadronic effect?

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

Initial-state splitting

Initial-state splitting QCD lecture (p. 14) 1st order analysis For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: p zp. σ g+h (p) σ h (zp) α sc F π dz dkt 1 z kt

More information

Recent transverse spin results from STAR

Recent transverse spin results from STAR 1 STAR! Recent transverse spin results from STAR Qinghua Xu, Shandong University PanSpin215, Taipei, October 8, 215! Outline 2 Introduction Single spin asymmetries in the forward region Mid-rapidity hadron-jet

More information

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec Jets at the LHC New Possibilities Jeppe R. Andersen in collaboration with Jennifer M. Smillie Blois workshop, Dec 17 2011 Jeppe R. Andersen (CP 3 -Origins) Jets at the LHC Blois Workshop, Dec. 17 2011

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

Spin physics at Electron-Ion Collider

Spin physics at Electron-Ion Collider Spin physics at Electron-Ion Collider Jianwei Qiu Brookhaven National Laboratory Workshop on The Science Case for an EIC November 16-19, 2010; INT, University of Washington, Seattle, WA Outline of my talk

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at and S Hadrons Quark Anselm Vossen 1 CP-Violation in quark Fragmentation 2 Transitions in the QCD vacuum carry net chirality

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC Toward an Understanding of Hadron-Hadron Collisions From Feynman-Field to the LHC Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. XXIèmes Rencontres de Blois

More information

NLO Calculations of Particle Productions in pa Collisions

NLO Calculations of Particle Productions in pa Collisions NLO Calculations of Particle Productions in pa Collisions Bo-Wen Xiao Institute of Particle Physics, Central China Normal University Detroit, Wayne State, August 22nd, 2013 1 / 38 Introduction 1 Introduction

More information

A first determination of the unpolarized quark TMDs from a global analysis

A first determination of the unpolarized quark TMDs from a global analysis A first determination of the unpolarized quark TMDs from a global analysis Cristian Pisano QCD Evolution 2017 Thomas Jefferson National Accelerator Facility Newport News, VA (USA) May 22-26, 2017 In collaboration

More information

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy Jets in pp at NNLO João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova HP.5-5 September 014 Florence, Italy based on: Second order QCD corrections to gluonic jet production

More information

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS Journal of Physics: Conference Series PAPER OPEN ACCESS Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS To cite this article: Ekaterina Christova and Elliot

More information

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Daniel L. Olvitt Jr. Temple University E-mail: daniel.olvitt@temple.edu The production of jets from polarized proton+proton collisions

More information

Parton densities with Parton Branching method and applications

Parton densities with Parton Branching method and applications Parton densities with Parton Branching method and applications Radek Žlebčík1 Armando Bermudez Martinez1, Francesco Hautmann2, Hannes Jung1, Ola Lelek1, Voica Radescu3 1 Deutsches Elektronen-Synchrotron

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado JAMboree Theory Center Jamboree Jefferson Lab, Dec 13, 2013 Introduction Hadrons composed of quarks and gluons scattering off partons Parton distribution functions Plausible at high energies (from GeV):

More information

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Yoshiyuki Miyachi, Tokyo Tech Contents Fragmentation and parton distribution function Resent fragmentation

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010 Jets (and photons) at the LHC J. Huston LPC March 10, 2010 More references Understanding cross sections at the LHC we have to understand QCD (at the LHC) PDF s, PDF luminosities and PDF uncertainties LO,

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

Results on QCD jet production at the LHC (incl. Heavy flavours)

Results on QCD jet production at the LHC (incl. Heavy flavours) Results on QCD jet production at the LHC (incl. Heavy flavours) R. Seuster (TRIUMF) On behalf of the ATLAS and CMS collaborations Recontres du Vietnam August 11th 17th, 2013 Windows on the Universe Outline

More information

Kinematical correlations: from RHIC to LHC

Kinematical correlations: from RHIC to LHC : from RHIC to LHC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and Univeristy of Rzeszów, PL-35-959 Cracow, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Kinematical correlations between outgoing

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy Double Parton Scattering in CMS Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x 2017 17th June 2017 Bari, Italy Outline Introduction to DPS DPS measurements with CMS 2b +

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Meson Structure with Dilepton Production

Meson Structure with Dilepton Production Meson Structure with Dilepton Production Jen-Chieh Peng University of Illinois at Urbana-Champaign 9 th Workshop on Hadron Physics in China and Opportunities Worldwide Nanjing University, July 24-28, 2017

More information

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng Measuring gluon sivers function at a future Electron-Ion Collider Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

More information

using photons in p A and A A collisions

using photons in p A and A A collisions Probing parton densities and energy loss processes using photons in p A and A A collisions François Arleo LAPTH, Annecy High p Probes of High Density QCD May 2011 Francois Arleo (LAPTH) Prompt γ in p A

More information

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS) INT 20, Seattle EIC workshop Week 6, Oct. 22, 20 H. Spiesberger based on work in collaboration with A. Kadeer, B. Kniehl, G. Kramer, C. Pisano, I. Schienbein,

More information

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron Transverse Energy-Energy Correlation on Hadron Collider Wei Wang ( 王伟 ) Deutsches Elektronen-Synchrotron Work with Ahmed Ali, Fernando Barreiro, Javier Llorente arxiv: 1205.1689, Phys.Rev. D86, 114017(2012)

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

Suppression of Heavy Quarkonium Production in pa Collisions

Suppression of Heavy Quarkonium Production in pa Collisions Suppression of Heavy Quarkonium Production in pa Collisions Jianwei Qiu Brookhaven National Laboratory Based on works done with Z.-B. Kang, G. Sterman, P. Sun, J.P. Vary, B.W. Xiao, F. Yuan, X.F. Zhang,

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory Alexei Prokudin Jefferson Laboratory WG6:Spin Physics TOTAL 60 talks Theory - 26 talks Experiment - 34 talks Theory Experiment WG6:Spin Physics

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes Filippo Delcarro What is the structure of the nucleons?! Is this structure explained by QCD?!!"#$%&' () *+,-. /0 Where does the spin of

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

Hard Probes and. Properties of QGP in HIC

Hard Probes and. Properties of QGP in HIC Hard Probes and 1 Properties of QGP in HIC Ben-Wei Zhang ( 张本威 ) 华中师范大学 Central China Normal University QPT2017,Xi an Jiaotong University, 2017/7/21-23 2 Outline Introduction Several Hard Probes 1) Leading

More information

TMDs and simulations for EIC

TMDs and simulations for EIC POETIC 2012, August 19 22, Indiana University Jefferson Lab TMDs and simulations for EIC F E Nucleon landscape Nucleon is a many body dynamical system of quarks and gluons Changing x we probe different

More information