Models of Language Evolution: Part II

Size: px
Start display at page:

Download "Models of Language Evolution: Part II"

Transcription

1 Models of Language Evolution: Part II Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015

2 Main Reference Partha Niyogi, The computational nature of language learning and evolution, MIT Press, 2006.

3 Multiple Language Models H = {G 1,..., G n } a space with n grammars corresponding languages L 1,..., L n A on alphabet A probability measure P on A according to which sentences are drawn in data set D speakers of language L i draw sentences according to probability P i with support on L i A (positive examples) distribution P is a weighted combination P = i α i P i where α i = α i,t are the fractions of population (time/generation t) that speak L i, with i α i = 1 learning algorithm A : D H computable function

4 probabilistic convergence: grammar G i is learnable if lim P(A(τ m) = G i ) = 1 m when τ m examples in L i drawn according to P i Population Dynamics State Space: S = space of all possible linguistic compositions of the population identify states s S with possible probability distributions P = (P G ) on H...identify with previous α = (α i ) Example: in 3-parameter model (with 8 possible grammars) have S = {P = (P i ) i=1,...,8 P i 0, i P i = 1} = 7 then distribution on A is P(x) = i P i P i (x)

5 finite sample: probability of formulating a certain hypothesis after a sample of size m p m (G i ) := P(A(τ m ) = G i ) limiting sample: limiting behavior for sample size m p(g i ) := lim m P(A(τ m) = G i ) given at generation/time t a distribution P t S of speakers of the different languages get recursion relation P t+1 = F (P t ) take P t+1,i = p m (G i ) in finite sample case, or P t+1,i = p(g i ) in limiting sample case (P t here determines P)

6 Markov Chain Model specify grammars G i through their syntactic parameters (n = 2 N number of possible settings of parameters) trigger learning algorithm as Markov Chain with 2 N nodes T = transition matrix of the Markov Chain then probabilities p m (G i ) = P(A(τ m ) = G i ) p m (G i ) = (2 N 1 2 N T m ) i i-th component of vector obtained by applying (on the right) matrix T m to normalized row vector 2 N 1 2 N (all components 2 N ) assuming starting with uniform distribution 2 N 1 2 N limiting distribution p(g i ) with T S

7 Interpreting limiting behavior seen in case of Markov Chain Model, if non-unique closed class in Markov Chain decomposition, limiting T matrix can have initial states with different probabilities of reaching different targets Example of matrix T in 3-parameter model seen before 2/5 3/5 1 2/5 3/5 T = starting at s 1 or s 3 will reach s 5 with probability 3/5 and s 2 with probability 2/5 interpret these probabilities as limiting composition of speakers population

8 3-parameter model with homogeneous initial population assume initial population consists only of speakers of one of the languages L i (that is, initial P has P i = 1 and all other P j = 0) after a number of generations observe drift towards other languages: population no longer homogeneous (or remains homogeneous, depending on initial state) at next generation p m (G i ) = (PT m ) i or p(g i ) = (PT ) i with P the initial distribution then this gives new P = (P i ) and recompute p m and p with this P for next generation, etc.

9 Shortcomings of the model simulations in case of 3-parameter model show: +V2-languages remain stable; -V2-languages all drift towards +V2-languages contrary to what known from historical linguistics: languages tend to lose the +V2-parameter (switching to -V2): both English and French historically switched from +V2 to -V2 model relies on many ad hoc assumptions about the state space, the learning algorithm, the probability distributions... some of these are clearly not realistic/adequate to actual language evolution Problem: identify which assumptions are inadequate and modify them and improve the model

10 Can model the S-shape? An observation of Historical Linguistics: S-shape of Language Change a certain change in a language begins very gradually, then proceeds at a much faster rate, then tails off slowly again in evolutionary biology, a logistic shaped curve governs replacement of organisms and of genetic alleles that differ in Darwinian fitness in the case of linguistic change, what mechanism would produce this kind of shape? in the model of language evolution have dependence on maturation time K and probability distribution P (a, b parameters in the 2-languages case; distribution P in multilingual case)

11 simulations in 2-languages model finds: initial rate of language change is highest when K small curves not S-shaped: if start with homogeneous L 1 population, percentage of L 2 speakers with generations first grows to above limiting value, then decreases slopes and location of the peak and of asymptotic value depend on K not clear is these are spurious phenomena due to assumptions in the model, or they say something more about the S-shape empirical observation of historical linguists

12

13 Effect of the dependence on P i probability distributions P i with which sentences in L i are generated these are the underlying parameters of the dynamical system seen already in 2-languages model, as dependence on a, b parameters if think of these parameters as changing in time, can affect a language change by (gradual) modification of the parameters can use for reverse engineering : if know a certain change occurs, find what diachronic modification of the parameters is needed in order to affect that change, then use to model other changes

14 3-parameter model with non-homogeneous initial population P = (P i ) i=1,...,8 probability distribution on the 8 possible grammars of the 3-parameter model P 7 point in 7-dimensional simplex in R 8 + T = transition matrix of the Markov Chain of 3-parameter model given P t (with P 0 = P) this determines P = P t on A which determines entries of T = T t non-homogrneous Markov Chain with T = T t for finite-sample size m use matrix T m t recursion step: next generation distribution P t+1 = P t T m t

15 Stability Analysis given distributions P i used in computing transition matrix T T ij = P(s i s j ) = x A : A(s i,x)=s j P(x) A(s, x) determines algorithm s next hypothesis, given current state of Markov Chain s and input x let T i be transition matrix when P = P i (target language is L i ) data D all coming from L i drawn according to P i (instead of mixture of languages with combination P) at generation/time t new distribution will be P = P t = i P t,i P i, where P t distribution of languages at generation t

16 get T t transition matrix by (T t ) ab = P t,i P i (x) = i i x A : A(s a,x)=s b P t,i (T i ) ab fixed points are solutions of P t+1 = P t finite-sample case size m: P = (P i ) satisfying P = ( i P i T i ) m limiting case: can show it becomes solution P = (P i ) of P = 1 8 (I 8 8 i P i T i ) 1 where I N N identity and 1 N N matrix with all entries 1 assuming initial distribution 1/8 1 8

17 Multilingual Learners realistically, leaners in a multilingual population do not zoom in on a unique grammar, but become multilingual themselves (even if in previous generation each individual speaks only one language) a more realistic model should take this into account instead of learning algorithm A : D H consider as a map A : D M(H) with M(H) = set of probability measures on H if H has n elements, identify M(H) = n 1 simplex

18 Bilingualism learning algorithm A : D [0, 1] a bilingual speaker (languages L 1 and L 2 ) produces sentences x A according to probability with P i supported on L i A P λ (x) = λp 1 (x) + (1 λ)p 2 (x) for a single speaker a particular value λ is fixed over the entire population it varies according to a distribution P(λ) over [0, 1]

19 probability of a sentence x A being produced, when input comes from entire population P(x) = P 1 (x) P(x) = 1 with expectation value P λ (x) P(λ) dλ λ P(λ) dλ + P 2 (x) 1 0 (1 λ) P(λ) dλ P(x) = E P (λ) P 1 (x) + (1 E P (λ)) P 2 (x) E P (λ) = 1 0 λ P(λ) dλ so input from population with probabilities P λ distributed according to P(λ) same as input from single speaker with probability P EP (λ)

20 learner (next generation) will also acquire bilingualism with a factor λ which is deduced (via the learning algorithm) from the incoming data again subdivide m input data sentences into groups 1 n 1 sentences in L 1 L 2 2 n 2 sentences in L 1 L 2 3 n 3 sentences in L 2 L 1 with n 1 + n 2 + n 3 = m three possible learning algorithms 1 A 1 sets λ = n 1 n 1 +n 3 (ignoring ambiguous sentences) 2 n A 1 sets λ = 1 n 1 +n 2 +n 3 (ambiguous sentences read as in L 2 ) 3 A 3 sets λ = n 1+n 2 n 1 +n 2 +n 3 (ambiguous sentences read as in L 1 )

21 at time/generation t set u t := E P (λ) average over population in that generation recursive relation u t+1 from u t in terms of parameters a = P 1 (L 1 L 2 ) b = P 2 (L 1 L 2 ) different weight put on the ambiguous sentences by the probability distributions P i of the two languages Result: recursion for the three algorithms A 1 : u t+1 = A 2 : u t+1 = u t (1 a) A 3 : u t+1 = u t (1 b) + b u t (1 a) u t (1 a) + (1 u t )(1 b)

22 Explanation case of A 2 : n 1 u t+1 = E( ) = E(n 1) n 1 + n 2 + n 3 m = P 1(L 1 L 2 )E P (λ) = (1 a)u t case of A 3 : n 1 + n 2 u t+1 = E( ) = E(n 1) n 1 + n 2 + n 3 m + E(n 2) m = u t (1 a) + u t a + (1 u t )b

23 case of A 1 : n 1 u t+1 = E( ) = ( ) m α n 1 β n 2 γ n n 3 1 n 1 + n 3 n 1 n 2 n 3 n 1 + n 3 with α = (1 a)u t, β = au t + b(1 u t ), γ = (1 b)(1 u t ) u t+1 = = m k=0 m k=0 n 1 =0 = ( m k k ( k n 1 )( ) m α n 1 β m k γ k n n 1 1 k k ) β m k (1 β) k α 1 β = α 1 β u t (1 a) u t (1 a) + (1 u t )(1 b)

Models of Language Evolution

Models of Language Evolution Models of Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Main Reference Partha Niyogi, The computational nature of language learning and evolution, MIT Press, 2006. From

More information

Language Acquisition and Parameters: Part II

Language Acquisition and Parameters: Part II Language Acquisition and Parameters: Part II Matilde Marcolli CS0: Mathematical and Computational Linguistics Winter 205 Transition Matrices in the Markov Chain Model absorbing states correspond to local

More information

Models of Language Acquisition: Part II

Models of Language Acquisition: Part II Models of Language Acquisition: Part II Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Probably Approximately Correct Model of Language Learning General setting of Statistical

More information

Language Learning Problems in the Principles and Parameters Framework

Language Learning Problems in the Principles and Parameters Framework Language Learning Problems in the Principles and Parameters Framework Partha Niyogi Presented by Chunchuan Lyu March 22, 2016 Partha Niyogi (presented by c.c. lyu) Language Learning March 22, 2016 1 /

More information

Probabilistic Linguistics

Probabilistic Linguistics Matilde Marcolli MAT1509HS: Mathematical and Computational Linguistics University of Toronto, Winter 2019, T 4-6 and W 4, BA6180 Bernoulli measures finite set A alphabet, strings of arbitrary (finite)

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

Structural Induction

Structural Induction Structural Induction In this lecture we ll extend the applicability of induction to many universes, ones where we can define certain kinds of objects by induction, in addition to proving their properties

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Geometry of Phylogenetic Inference

Geometry of Phylogenetic Inference Geometry of Phylogenetic Inference Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 References N. Eriksson, K. Ranestad, B. Sturmfels, S. Sullivant, Phylogenetic algebraic

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

CS 188 Introduction to AI Fall 2005 Stuart Russell Final

CS 188 Introduction to AI Fall 2005 Stuart Russell Final NAME: SID#: Section: 1 CS 188 Introduction to AI all 2005 Stuart Russell inal You have 2 hours and 50 minutes. he exam is open-book, open-notes. 100 points total. Panic not. Mark your answers ON HE EXAM

More information

Random Times and Their Properties

Random Times and Their Properties Chapter 6 Random Times and Their Properties Section 6.1 recalls the definition of a filtration (a growing collection of σ-fields) and of stopping times (basically, measurable random times). Section 6.2

More information

Be sure this exam has 9 pages including the cover. The University of British Columbia

Be sure this exam has 9 pages including the cover. The University of British Columbia Be sure this exam has 9 pages including the cover The University of British Columbia Sessional Exams 2011 Term 2 Mathematics 303 Introduction to Stochastic Processes Dr. D. Brydges Last Name: First Name:

More information

Hidden Markov Models, I. Examples. Steven R. Dunbar. Toy Models. Standard Mathematical Models. Realistic Hidden Markov Models.

Hidden Markov Models, I. Examples. Steven R. Dunbar. Toy Models. Standard Mathematical Models. Realistic Hidden Markov Models. , I. Toy Markov, I. February 17, 2017 1 / 39 Outline, I. Toy Markov 1 Toy 2 3 Markov 2 / 39 , I. Toy Markov A good stack of examples, as large as possible, is indispensable for a thorough understanding

More information

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 )

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 ) Part A 1. A Markov chain is a discrete-time stochastic process, defined by a set of states, a set of transition probabilities (between states), and a set of initial state probabilities; the process proceeds

More information

Natural Language Processing Prof. Pawan Goyal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Natural Language Processing Prof. Pawan Goyal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Natural Language Processing Prof. Pawan Goyal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Maximum Entropy Models I Welcome back for the 3rd module

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Simone Teufel and Ann Copestake Computer Laboratory University of Cambridge Lent 2017 Last session: catchup 1 Research ideas from sentiment

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO50 Linear Programming Chapter 6: The Simplex Method rd June 2005 Chapter 6: The Simplex Method 1 Recap Suppose A is an m-by-n matrix with rank m. max. c T x (P ) s.t. Ax = b x 0 On Wednesday, we learned

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Math Spring 2011 Final Exam

Math Spring 2011 Final Exam Math 471 - Spring 211 Final Exam Instructions The following exam consists of three problems, each with multiple parts. There are 15 points available on the exam. The highest possible score is 125. Your

More information

2007 Winton. Empirical Distributions

2007 Winton. Empirical Distributions 1 Empirical Distributions 2 Distributions In the discrete case, a probability distribution is just a set of values, each with some probability of occurrence Probabilities don t change as values occur Example,

More information

Fast Inference with Min-Sum Matrix Product

Fast Inference with Min-Sum Matrix Product Fast Inference with Min-Sum Matrix Product (or how I finished a homework assignment 15 years later) Pedro Felzenszwalb University of Chicago Julian McAuley Australia National University / NICTA 15 years

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Sequences and Information

Sequences and Information Sequences and Information Rahul Siddharthan The Institute of Mathematical Sciences, Chennai, India http://www.imsc.res.in/ rsidd/ Facets 16, 04/07/2016 This box says something By looking at the symbols

More information

Machine Learning, Midterm Exam: Spring 2008 SOLUTIONS. Q Topic Max. Score Score. 1 Short answer questions 20.

Machine Learning, Midterm Exam: Spring 2008 SOLUTIONS. Q Topic Max. Score Score. 1 Short answer questions 20. 10-601 Machine Learning, Midterm Exam: Spring 2008 Please put your name on this cover sheet If you need more room to work out your answer to a question, use the back of the page and clearly mark on the

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009 CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models Jimmy Lin The ischool University of Maryland Wednesday, September 30, 2009 Today s Agenda The great leap forward in NLP Hidden Markov

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Markov Chains. Arnoldo Frigessi Bernd Heidergott November 4, 2015

Markov Chains. Arnoldo Frigessi Bernd Heidergott November 4, 2015 Markov Chains Arnoldo Frigessi Bernd Heidergott November 4, 2015 1 Introduction Markov chains are stochastic models which play an important role in many applications in areas as diverse as biology, finance,

More information

10/17/04. Today s Main Points

10/17/04. Today s Main Points Part-of-speech Tagging & Hidden Markov Model Intro Lecture #10 Introduction to Natural Language Processing CMPSCI 585, Fall 2004 University of Massachusetts Amherst Andrew McCallum Today s Main Points

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Formal Languages 2: Group Theory

Formal Languages 2: Group Theory 2: Group Theory Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Group G, with presentation G = X R (finitely presented) X (finite) set of generators x 1,..., x N R (finite)

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2013 Class 7: Templates to HMMs 13 Feb 2013 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

Homework 6: Image Completion using Mixture of Bernoullis

Homework 6: Image Completion using Mixture of Bernoullis Homework 6: Image Completion using Mixture of Bernoullis Deadline: Wednesday, Nov. 21, at 11:59pm Submission: You must submit two files through MarkUs 1 : 1. a PDF file containing your writeup, titled

More information

Proseminar on Semantic Theory Fall 2010 Ling 720. Remko Scha (1981/1984): Distributive, Collective and Cumulative Quantification

Proseminar on Semantic Theory Fall 2010 Ling 720. Remko Scha (1981/1984): Distributive, Collective and Cumulative Quantification 1. Introduction Remko Scha (1981/1984): Distributive, Collective and Cumulative Quantification (1) The Importance of Scha (1981/1984) The first modern work on plurals (Landman 2000) There are many ideas

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Models of Molecular Evolution

Models of Molecular Evolution Models of Molecular Evolution Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison September 15, 2007 Genetics 875 (Fall 2009) Molecular Evolution September 15, 2009 1 /

More information

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this. Chapter 12 Synchronous CFGs Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings instead of single strings. They are useful in many situations where one

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Lecturer: Stefanos Zafeiriou Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs

More information

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G.

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 10-708: Probabilistic Graphical Models, Spring 2015 26 : Spectral GMs Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 1 Introduction A common task in machine learning is to work with

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

10-701/ Machine Learning, Fall

10-701/ Machine Learning, Fall 0-70/5-78 Machine Learning, Fall 2003 Homework 2 Solution If you have questions, please contact Jiayong Zhang .. (Error Function) The sum-of-squares error is the most common training

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Generalized Quantifiers Logical and Linguistic Aspects

Generalized Quantifiers Logical and Linguistic Aspects Generalized Quantifiers Logical and Linguistic Aspects Lecture 1: Formal Semantics and Generalized Quantifiers Dag Westerståhl University of Gothenburg SELLC 2010 Institute for Logic and Cognition, Sun

More information

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) S N VP V NP D N John hit the ball Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements

More information

Selection and Adversary Arguments. COMP 215 Lecture 19

Selection and Adversary Arguments. COMP 215 Lecture 19 Selection and Adversary Arguments COMP 215 Lecture 19 Selection Problems We want to find the k'th largest entry in an unsorted array. Could be the largest, smallest, median, etc. Ideas for an n lg n algorithm?

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Evolutionary dynamics on graphs

Evolutionary dynamics on graphs Evolutionary dynamics on graphs Laura Hindersin May 4th 2015 Max-Planck-Institut für Evolutionsbiologie, Plön Evolutionary dynamics Main ingredients: Fitness: The ability to survive and reproduce. Selection

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n.

Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n. Birth-death chains Birth-death chain special type of Markov chain Finite state space X := {0,...,L}, with L 2 N X n X k:n k,n 2 N k apple n Random variable and a sequence of variables, with and A sequence

More information

A&S 320: Mathematical Modeling in Biology

A&S 320: Mathematical Modeling in Biology A&S 320: Mathematical Modeling in Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.ms.uky.edu/~dmu228/as320/ Spring 2016 David Murrugarra (University of Kentucky) A&S

More information

Introduction to Semantics. The Formalization of Meaning 1

Introduction to Semantics. The Formalization of Meaning 1 The Formalization of Meaning 1 1. Obtaining a System That Derives Truth Conditions (1) The Goal of Our Enterprise To develop a system that, for every sentence S of English, derives the truth-conditions

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17 12.1 Introduction Today we re going to do a couple more examples of dynamic programming. While

More information

Improved TBL algorithm for learning context-free grammar

Improved TBL algorithm for learning context-free grammar Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 267 274 2007 PIPS Improved TBL algorithm for learning context-free grammar Marcin Jaworski

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Lecture 3: Markov chains.

Lecture 3: Markov chains. 1 BIOINFORMATIK II PROBABILITY & STATISTICS Summer semester 2008 The University of Zürich and ETH Zürich Lecture 3: Markov chains. Prof. Andrew Barbour Dr. Nicolas Pétrélis Adapted from a course by Dr.

More information

Programming Assignment 4: Image Completion using Mixture of Bernoullis

Programming Assignment 4: Image Completion using Mixture of Bernoullis Programming Assignment 4: Image Completion using Mixture of Bernoullis Deadline: Tuesday, April 4, at 11:59pm TA: Renie Liao (csc321ta@cs.toronto.edu) Submission: You must submit two files through MarkUs

More information

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10 PageRank Ryan Tibshirani 36-462/36-662: Data Mining January 24 2012 Optional reading: ESL 14.10 1 Information retrieval with the web Last time we learned about information retrieval. We learned how to

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

Natural Language Processing Prof. Pushpak Bhattacharyya Department of Computer Science & Engineering, Indian Institute of Technology, Bombay

Natural Language Processing Prof. Pushpak Bhattacharyya Department of Computer Science & Engineering, Indian Institute of Technology, Bombay Natural Language Processing Prof. Pushpak Bhattacharyya Department of Computer Science & Engineering, Indian Institute of Technology, Bombay Lecture - 21 HMM, Forward and Backward Algorithms, Baum Welch

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Evolutionary Models. Evolutionary Models

Evolutionary Models. Evolutionary Models Edit Operators In standard pairwise alignment, what are the allowed edit operators that transform one sequence into the other? Describe how each of these edit operations are represented on a sequence alignment

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Today s Agenda. Need to cover lots of background material. Now on to the Map Reduce stuff. Rough conceptual sketch of unsupervised training using EM

Today s Agenda. Need to cover lots of background material. Now on to the Map Reduce stuff. Rough conceptual sketch of unsupervised training using EM Today s Agenda Need to cover lots of background material l Introduction to Statistical Models l Hidden Markov Models l Part of Speech Tagging l Applying HMMs to POS tagging l Expectation-Maximization (EM)

More information

Hidden Markov Models. Terminology, Representation and Basic Problems

Hidden Markov Models. Terminology, Representation and Basic Problems Hidden Markov Models Terminology, Representation and Basic Problems Data analysis? Machine learning? In bioinformatics, we analyze a lot of (sequential) data (biological sequences) to learn unknown parameters

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

An introduction to PRISM and its applications

An introduction to PRISM and its applications An introduction to PRISM and its applications Yoshitaka Kameya Tokyo Institute of Technology 2007/9/17 FJ-2007 1 Contents What is PRISM? Two examples: from population genetics from statistical natural

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

2 DISCRETE-TIME MARKOV CHAINS

2 DISCRETE-TIME MARKOV CHAINS 1 2 DISCRETE-TIME MARKOV CHAINS 21 FUNDAMENTAL DEFINITIONS AND PROPERTIES From now on we will consider processes with a countable or finite state space S {0, 1, 2, } Definition 1 A discrete-time discrete-state

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information